## **Exercise Sheet 1**

Discussion 11.09.2024

#### Exercise 1 - Vector calculus with $\nabla$

With the vector field  $\vec{A} = (A_x, A_y, A_z)$  and scalar field B write out the expression for

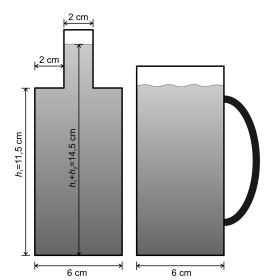
- a) the divergence  $(\nabla \cdot \vec{A})$ ;
- b) the curl  $(\nabla \times \vec{A})$
- c)  $(\vec{A} \cdot \nabla)\vec{A}$
- d)  $\nabla \times (\nabla B)$

## Exercise 2 - Divergence and curl of fields

Consider the vector fields  $\vec{A}$  drawn in the figure on the next page and described by the expressions below. Indicate whether the divergence  $(\nabla \cdot \vec{A})$  and curl  $(\nabla \times \vec{A})$  are zero or not. Assume that  $\vec{A}$  is 2D, or shows no dependence on  $x_3$ .

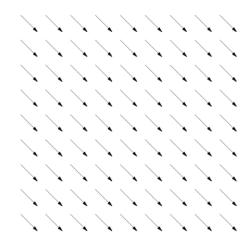
As indicated in the lecture you can use the following expressions to help visualise the divergence and curl:  $\nabla \cdot \vec{A} = \oiint \vec{A} \cdot d\vec{S}$  and  $\nabla \times \vec{A} = \oiint \vec{A} \cdot d\vec{l}$ 

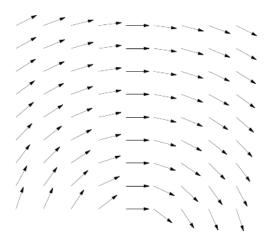
- e)  $\vec{A} = (x_2 x_1, -x_2)$
- f)  $\vec{A} = (x_2, x_1)$


# Exercise 3 - Pressure in hydrostatics

Use the absence of shear stress (cisaillement) in a static fluid to show that the pressure is isotropic even if it is not homogeneous (Pascal law). Suggestion: consider the equilibrium of a corner of fluid with an infinitesimal size.

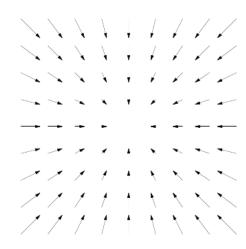
## Exercise 4 - Hydrostatic pressure in a bottle

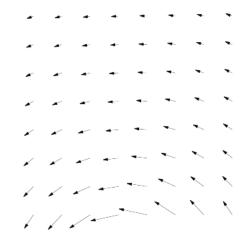

To celebrate the first physics lecture of the year, you decide to reward yourself with a drink. While pouring the beer, or water, from the bottle you think about the hydrostatic pressure. You realise that the hydrostatic pressure exerts a larger force on the bottom of the bottle as on the bottom of the glass.


- a) Considering the drawing, calculate this difference in force.
- b) Your intuition (rightfully) tells you that in both cases it should show the same weight on a scale, if the weight of the empty glass/bottle is accounted for. Explain this apparent paradox, and also prove it mathematically.



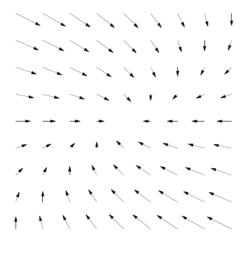
a) 
$$\vec{A} = \overrightarrow{\text{constante}}$$

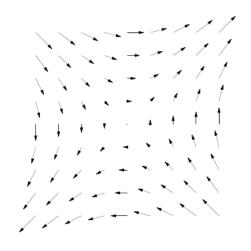

b) 
$$\|\vec{A}\| = \text{constante}$$






c) 
$$\|\vec{A}\| \propto \sqrt{x_1^2 + x_2^2}$$


d) 
$$\|\vec{A}\| \propto 1/\sqrt{x_1^2 + x_2^2}$$






e)

f)



