
Exercise Sheet 13

Discussion 11.12.2024

Exercise 1 - Displacement current

Consider a capacitor made of two parallel plates in vacuum of area A at distance $d << \sqrt{A}$. A toroidal solenoid of radius a made of N coils of cross-section S with $a >> \sqrt{S}$ is placed between the two plates. The total resistance of the solenoid is R_2 . At the time t=0 a switch closes a circuit which connects the capacitor in series with a resistor R_1 and a battery V_0 . The setup is shown in the figure.

- a) Calculate the electric field between the plates as function of time.
- b) Calculate the induced magnetic field inside the solenoid as function of time.
- c) Calculate the amount of charge that flows in the solenoid. For simplicity, do not consider the self-inductance of the solenoid.

Exercise 2 - AC Magnetic Field

A capacitor made of two parallel circular plates of radius a in vacuum is connected to a AC source, thus the total charge in the capacitor varies as $Q(t) = Q_0 \sin \omega t$. Calculate the B-field between the two plates.

Exercise 3 - Waves

Consider a function $\psi = A \sin(Bx) \cos(Ct) + D$, where x and t are space and time directions, and A, B, C, D are constants.

- a) Show that ψ is a solution of the wave equation.
- b) What is the speed of ψ ?

Consider a function $\chi = (x - v_1 t)^2 + 1/\sqrt{x + v_2 t}$.

c) Find the condition for v_1 and v_2 in order to let χ be a solution of the wave equation.