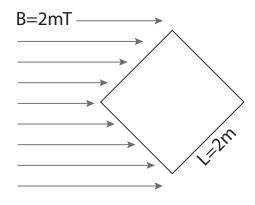
Exercise Sheet 12

Discussion 4.12.2024

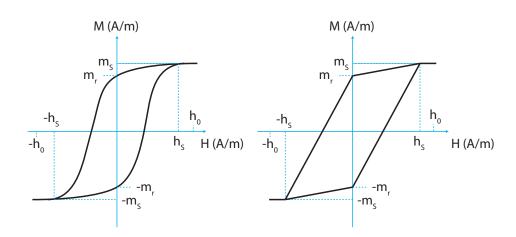
Exercise 1 - Impedance


- a) Find the complex impedance of a coil with self-inductance L and resistance R (of the wire in the coil) in parallel with a capacitor having an imperfect dielectric equivalent to a series resistance of also R.
- b) Find the value of R which makes the above impedance purely resistive (completely real) at all frequencies.
- c) Find a value of ω which makes the impedance purely resistive for all values of R.

Exercise 2 - Resonance

Consider an LCR circuit in series. In the lecture the current (or phase) resonance was derived. Using that the circulating charge is given by $\frac{I}{\omega}$ derive the charge resonance, i.e. the frequency for which the charge is largest.

Exercise 3 - Mu-Metal


A mu-metal box with $\mu_r = 10^5$ is placed in a homogeneous magnetic field of 2 mT as shown in the figure to the right. How thick does the mu-metal have to be, to shield the magnetic field completely inside the box?

Exercise 4 - Hysteresis

A ferromagnetic material is inserted and kept in a solenoid where you pass a current. By changing the current, you change the H field generated by the solenoid from an initial value of $+h_0$ to $-h_0$, and then you come back to the initial one. If you plot the magnetization M as a function of the H field you have applied you obtain the graph on the left side $(m_r = 200 \ A/m, m_s = 300 \ A/m, h_s = 1000 \ A/m)$.

- a) Describe this typical trend, explaining the physical situation in the important points of the hysteresis curve.
- b) We can simplify the hysteresis curve as in the figure on the right side. Use this simplification to evaluate the coercive H field. [Hint: the coercive field is defined in the B(H) plot]
- c) Determine the work done per unit volume on the magnet during the whole cycle. How is this energy dissipated?

