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Introduction

Historically the study of electricity and magnetism marks the transition
from classical to modern physics and has formed the basis for most of our
current physical approaches and models. The revolutionary step forward
was to introduce the concept of fields to describe the interactions between
two or more charged objects. This abstract concept of fields is also one of
the reasons why many students initially find the topic of electromagnetism
difficult as it moves away from things we can grasp and visualise or in
a general sense relate to in every day life. Although we only learn the
physics behind it in Physique générale I, we grow up developing a feeling for
kinematics and mechanics; we know that something falls down if we knock it
over and that “objects in motion remain in steady motion unless an external
force acts upon them”, although we never thought about formulating it that
way before college.

The absence of an innate feeling for the laws of electromagnetism can
be considered surprising given that it is a force many orders of magnitude
stronger than gravity. One can regard electromagnetism as the strongest
and most universal force. The Coulomb force between two electrons is about
1042 times as large as their gravitational attraction. Electrostatic forces
give matter its consistency and allow us to interact with it. Furthermore,
the study of electromagnetism will help understand many basic physical
phenomena ranging from the obvious examples of electronic equipment and
electro motors to copiers, the interaction between light and matter, and
how to survive being struck by lightning.

The final goal of this lecture will be the understanding of Maxwell’s
equations. These equations describe and predict all electromagnetic phe-
nomena and depending on the context they will appear in different forms
throughout this lecture. One of the most encountered forms is the so-called
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differential form for fields in vacuum:

∇⃗ · E⃗ =
ρ

ϵ0
(1)

∇⃗ · B⃗ = 0 (2)

∇⃗ × E⃗ = −∂B⃗

∂t
(3)

∇⃗ × B⃗ = µ0I⃗ +
1

c2
∂E⃗

∂t
(4)

Here E⃗ and B⃗ are the electric and magnetic field, respectively. The ∇⃗ vector
is called the nabla vector and it can be expressed as follows in Cartesian,
cylindrical, and spherical coordinates respectively:

∇⃗ =
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,
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,
∂
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)
(5)
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∇⃗ =

(
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,
1
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∂

∂θ
,

1

r sin θ

∂

∂ϕ

)
(7)

Already the shape of the equations and the use of ∇⃗ indicates that we
will encounter more advanced mathematics with regard to vector calculus
in this lecture. Furthermore we will need to use concepts such as (closed)
line integrals and (closed) surface integrals. The lecture is too short to
explain all these mathematical concepts in detail, but they will be shortly
introduced when they are first needed.

Now let’s return to the above expression of Maxwell’s equations. They
represent some of the most important findings of this lecture and before
making the first step on our journey it is helpful to realise what some of the
destinations are. The first equation states that charges are the source of
electric fields and we will encounter this as Gauss’s law. From the second
equation it follows that magnetic field lines have no beginning and no end;
they always close on themselves. Equation (3) represents that a magnetic
field which changes with time creates an electric field. This is known as
induction and forms the basis for many applications in electronics. The last
equations has two parts on the right side. The first part, µ0I⃗, states that
currents, or moving charges, are the source of magnetic fields (in vacuo).
The second part shows that also changing electric fields induce a magnetic
field, but with much smaller magnitude as c is the speed of light. This is
the equation which describes electromagnetic waves such as visible light,
but also radio waves and X-rays.



Chapter 1

Charge and current

In this chapter we will introduce two basic entities that will return through-
out this lecture: electric charge and current. At first this might seem trivial,
but a good definition will save us a lot of confusion later.

1.1 Electric charge

Based on experiments with static electricity shown during the lecture we
can conclude that only two types of charge exist: positive (+) and negative
(−). When two (or more) charges are put together we see that like charges
repel each other and opposite charges attract each other. This will later
help us assign a sign to the force between charges and define the direction of
electric field lines. The attraction (repulsion) of opposite (like) charges also
leads to many electrostatic phenomena that we encounter in daily life. If the
air is dry, people, or animals like cats, can become positively charged due
to the interaction with the environment whereby negative charge is passed
on. The famous examples are rubbing a balloon on hair or taking off a
sweater on a dry winter day. Afterwards the excess positive charges in for
example our hair repel each other and the hair stands out. But it can also be
that we attract neutrally charged light objects because our positive charge
attracts the negative charge in these objects and repels its positive charge.
Due to the difference in distance the forces do not cancel and the object
is attracted as is the case for the cat and the packaging material shown in
the lecture. This creation of a charge imbalance in an otherwise neutral
object is called electrostatic induction and this forms the basis for many
old fashioned high voltage generators such as the Wimshurst generator. A
beautiful example is also the Kelvin generator shown in Figure 1.1 where a
small charge imbalance is enhanced further and further by letting tap water
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1.1. ELECTRIC CHARGE 7

flow until it creates a spark.

Figure 1.1: Kelvin generator (from www.mpoweruk.com/homebrew.htm)

In the above we have implicitly assumed another important property,
namely the conservation of charge. It means that charge can neither be
made nor destroyed, it can only be moved around. If we call an object
neutral it only means that there is the same amount of positive and negative
charge. Now if we bring another charge close we separate the positive from
the negative charge. Depending on the properties of the material it is
more or less difficult to separate the charges. We will come back to this
in more detail in the discussion of dielectrics. For the moment we will just
distinguish metals, where charges move very easily, and insulators, where
charges can only be moved over very small distances.

Early experiments from the 1820s based on electrolysis have already
shown that charge is discrete. Later it was realised that the smallest unit
of charge is the electron (e−) which has a charge of −1.6 × 10−19 coulomb
[C], whereby the coulomb is the SI unit for charge. Throughout this lecture
Q will be used to identify charge. However, when talking about individual
charges we sometimes use q for the single charges and Q for the total charge
to avoid confusion. In order to handle mathematical problems that will arise
in later chapters we here define some special cases of charge:

• Point charge: this is a mathematic concept to simplify problems.
It considers that all charge Q is located on a point without spatial
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extension.

• Line charge density λ: used when only one coordinate is important.
It does not mean that all charge is necessarily located on a line. It
can also be used for wires and cylinders where for simplicity we can
sometimes consider that all charge is located on a line in the centre.

• Surface charge density σ: used when two coordinates are impor-
tant to describe the charge. This can be for example for a plane or
the surface of a sphere or cylinder. In a practical sense this can often
be used for metals because as we will see later all charge in that case
is located on the surface.

• Volume charge density ρ: this is the most realistic situation where
the amount of charge depends on three coordinates and it is therefore
used for charged volumes. Also when no details are specified, such as
for general laws, the volume charge density is used.

In all cases the total charge can be calculated by summation (for the point
charges) or integration. The integration of course only has to be performed
along the coordinate(s) that are relevant. For example to obtain the total
charge Q for a system described by surface charge density σ which is a
function of x and y:

Q =

ˆ
x

ˆ
y

σ(x, y)dxdy =

¨
A

σdA

Here dA is an infinitesimally small part of the surface. Throughout this
lecture dA will be typically used for open surfaces and dS for closed surfaces.
However, this should not be an issue, as also

˜
♣ σd♣ yields the same result

(but is more annoying to write or say out loud).

1.2 Current as moving charge

Let’s start by considering two separated regions, one is charged with +Q
and the other one with −Q. If we now connect these two regions by a
metallic wire, heat will be produced in the wire as an indication that a
current is flowing. After a while both regions are neutral and the current
stops. As we will see later this transient current is typical for a discharge
of charged regions. If we keep on adding positive charge to one side or
negative charge to the other side the current will not stop and we speak
of a steady current. These experiments show that current is related to the
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change in time of charge, but we don’t know how. Around 1875 Rowland’s
experiments with a rotating charged disk showed that moving charge and
current (I) are equivalent. Because we are free to choose the units we can
therefore define:

I =
dQ

dt
(1.1)

and thus the total charge Q that has flown over time T is

Q =

ˆ
T

I(t)dt (1.2)

The SI unit of current is the ampere [A] which is equivalent to one coulomb
per second [C/s].

One of the consequences of current being equivalent to moving charge is
that current has a magnitude and a direction; how much charge is moving
which way. Therefore to be exact current should always be expressed as a
vector (I⃗) unless there is no way that it could cause confusion, such as is
the case for a current through a wire.

Similar to what we did for charge we can also define a current density
j⃗, whereby we can restrict ourselves to the volume current density. Due to
the vectorial nature we have to be a bit more careful now and define it as
the current per unit area normal to the flow. If dA⃗ is the vector normal to
a small surface area dA we have the following situation:

if dA⃗ ∥ j⃗ → dI = jdA

if dA⃗ ⊥ j⃗ → dI = 0

Using the scalar product the total current passing through a surface A can
be more generally expressed as:

I =

¨
A

j⃗ · dA⃗ (1.3)

In this case we can still picture what we are integrating, namely the amount
of charge passing through a surface per unit of time. In future chapters we
will encounter similar integrals where the physical picture is less obvious,
so this is a good point to become familiar with it.



Chapter 2

Coulomb’s law

Coulomb’s law describes the interaction between charges. It is the central
law for electrostatics and plays there a similar role as Newton’s gravitational
law does for classical mechanics. We will see that it has a similar form as the
gravitational force, but with some important differences. Firstly it is many
orders of magnitude stronger. More importantly in contrast to gravity it can
be both attractive and repulsive. At the moment we will restrict ourselves
to charges in vacuo, but in later chapters we will see that the general form
will not change.

2.1 Derivation of Coulomb’s law

In order to derive a general law we have to consider the following points:
the direction of the force, the dependence on the magnitude and sign of
the charges, and the dependence on the distance. In order to provide a
better understanding of the background of the Coulomb force, and how it
was derived in the eighteenth century, these three aspects will be shortly
explained here.

Direction

From Newton’s third law we know that for every action there is an equal
and opposite reaction; the force of charge 1 on charge 2 is the opposite of
the force of charge 2 on 1 : F⃗12 = −F⃗21. From symmetry considerations
we then see that the only option is that the force is directed along the line
connecting the two charges. This means that the Coulomb force is a central
force. In later chapters we will also see examples of forces that are not
central.

10



2.1. DERIVATION OF COULOMB’S LAW 11

Dependence on magnitude and sign of charges

In the previous chapter we determined that same charges repel each other
and that opposites charges attract. Mathematically this can be represented
by multiplication: −×− = +, +× + = +, but −× + = −. Furthermore
we have seen that the force increases when one (or both) of the charges
increases, which also hints at a multiplication. Therefore we can say that
the Coulomb force is proportional to the product of the charges:

F ∝ Q1Q2

Dependence of distance

From experiments we know that the force between charged objects becomes
smaller when the distance between them increases. Without losing general-
ity we can thus say that the force is inversely proportional to the distance r
to the power n: F ∝ 1

rn
. Historically much of the effort went into deriving

the value of n by means of a variety of experiments. Using a torsion balance
Coulomb determined that it must be very close to 2, but the most elegant
experiment came from Cavendish. It is based on placing a charge inside a
homogeneously charged sphere. If n ̸= 2 then this charge will experience a
force, if n = 2 then it will experience no force. By ever increasing precision
of the measurements it is now possible to state that n = 2 with a possible
deviation of 3× 10−16. We can thus confidently state that:

F ∝ 1

r2

Putting the previous findings together we obtain that the Coulomb force
is proportional to the product of the charges, inversely proportional to the
square of the distance, and is oriented along the vector connecting the two
charges. In SI units (the charge in coulomb [C] and the distance in meter
[m]) the proportionality constant is

1

4πϵ0
≈ 9× 109

in units of Newton times meter squared divided by coulomb square [Nm2C−2].
Here ϵ0 (≈ 8.8 × 10−12 C2N−1m−2) is the permittivity of free space, some-
times also called the dielectric constant.

In order to write the Coulomb force in a single formula it is useful to
repeat the concept of a unit vector. A unit vector is a vector with length
1 (no units) that is pointing along the direction we are interested in. For
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example the unit vector r̂12 between charges Q1 and Q2 connected by a
vector r⃗12 is

r̂12 =
r⃗12
|r⃗12|

(2.1)

Here |r⃗12| is the length of the vector, or in other words the distance between
Q1 and Q2, which we will refer to as r12. Note that the vector r⃗12 points
from charge 2 to charge 1.

Figure 2.1: Basic illustration of the Coulomb force between two charges

Now we can write Coulomb’s law between two charges Q1 and Q2 in
vectorial form as

F⃗ =
1

4πϵ0

Q1Q2

r212
r̂12 (2.2)

In Figure 2.1 a basic representation of the Coulomb force between two
charges of varying polarity is shown.

To obtain a feeling for the strength of the Coulomb force in everyday
life we can consider kitchen salt. This is made up of sodium (Na) and
chlorine (Cl) atoms arranged in a 3D checkerboard as shown in Figure 2.2
with a distance between the atoms of r = 0.28 nm. The Na atoms each
transfer one electron to the Cl atoms and the bonding between them is
then due to the attractive Coulomb force. The charge of a single electron
is 1.6× 10−19 C and if we enter all values in Equation 2.2 we obtain a force
between two atoms of F ≈ 3 × 10−9 N. In 1 mm2 of salt there are about
1013 atomic bonds, yielding that the force needed to break the bonds in 1
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mm2 of kitchen salt is 3× 104 N. Or in other words it holds about 300 kg!
(This is a simplified example of the use of the Coulomb force. For a more
exact calculation one needs to also consider the repulsive force from the next
atoms with the same charge, and the attractive force from the next opposite
charge after that. If one does this using the Coulomb force one gets a very
good comparison to the experimentally determined bonding strength. Which
indicates that the Coulomb force is also valid at atomic scales.)

Figure 2.2: Atomic structure of kitchen salt (NaCl)

2.2 Superposition principle

In the previous section we have considered the force between just two
charges, but in more realistic situations one would encounter a variety of
charges that are either positive or negative, or one has a charge distribution.
In these cases the vectorial form of the Coulomb equation has significant
advantage as it allows us to use the superposition principle. This states
that the total force on charge Q in the environment of N other charges
labelled Qi, is simply the vectorial sum of all individual forces: F⃗ =

∑
i F⃗i.

The total Coulomb force can thus be expressed as

F⃗ =
Q

4πϵ0

N∑
i=1

Qir̂i
r2i

(2.3)

Here r⃗i are the vectors connecting charge Q with charge Qi. Depending on
the arrangement of the charges and on their sign and magnitude this can
also yield a zero force on the charge under investigation if we consider all
other charges as fixed.
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We can extend the superposition principle to continuous charge distri-
butions. In this case the summation becomes an integration over the charge
density which is defined as in Section 1.1. The most useful situation to con-
sider, also with respect to later chapters, is that of a point charge Q in
proximity to an object τ with a continuous charge density ρ. (The same
arguments are valid for surface and line charge densities, see also the exam-
ples in the lecture and exercises.) Because in the charged volume we can
define small parts dq = ρdτ , the Coulomb force on Q from every volume
element dτ connected by r⃗ is:

dF⃗ =
Qρr̂dτ

4πϵ0r2

The total force on point charge Q from the charged object τ then becomes:

F⃗ =

ˆ
τ

dF⃗ = Q

ˆ
τ

ρr̂dτ

4πϵ0r2
(2.4)

This equation fails to reveal the full complexity of the situation, namely
that during the integration also r⃗ changes and that this is thus a variable
in the integral. Even if τ has a very simple shape, such as a rod or disk, the
integral can typically only be solved by smart substitutions and considering
the symmetry of the system. To simplify the calculation it is sometimes
useful to consider further steps of the superposition principle. For example a
negatively charged disk with a hole in it can be seen as a superposition of the
negatively charged disk without the hole and a smaller positively charged
disk. The focus of this course does not lie on the mathematics, but students
are expected to follow and understand the examples given in the lecture and
exercises. In a further generalisation ρ can also be inhomogeneous and thus
be a further variable in the integration.

2.3 Mutual potential energy of charges

Similar to other forces, such as gravity, we can also associate a potential
energy to the Coulomb force. This potential energy can directly be com-
pared with, or summed to, other potential energies. In the next chapter we
will derive the more powerful concept of potential as a field quantity and
many electrostatic courses skip the current part. However, it is instructive
to include it, also to extend the similarities to previous physics courses as
far as possible.

The change in potential energy ∆U12 is the work done by an external
force solely in changing the configuration from state 1 to 2. As illustrated
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Figure 2.3: Illustration of the mutual potential energy between two charges.

in Figure 2.3 configuration 1 can for example be two positive point charges
Q1 and Q2 at a distance r′. Configuration 2 is the same two charges placed
at a distance r. In order to move charge Q2 by the distance dx a force F
which is opposite to the Coulomb force has to be applied as indicated in
the figure. The work done in this infinitesimal movement is

dW = Fdx =
−Q1Q2dx

4πϵ0x2

and the total work done in moving the charges from a distance r′ to r is
equal to the change in potential energy and can be expressed as

∆U12 = W =

ˆ r

r′

−Q1Q2dx

4πϵ0x2
=

Q1Q2

4πϵ0

(
1

r
− 1

r′

)
(2.5)

Instead of working with a potential energy difference it is often easier to
define a more absolute scale. This can be done by considering configuration
1 as with the two charges infinitely far apart and call this zero; U = 0 for
r′ = ∞. Then Equation 2.5 reduces to the following

U =
Q1Q2

4πϵ0r
(2.6)

Two important points should be noted about this equation. Firstly because
it was derived by integration it is purely a scalar function; i.e. all vectors are
reduced to their magnitude. And second, the potential energy is inversely
proportional to the distance and not to the distance squared.

In the previous derivation we only considered two charges, but we can
easily expand the concept to more charges. Because the Coulomb force is a
central force and thus conservative the potential difference is independent
of the path taken and thus valid for any two points. We can thus sum the
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mutual potential energies of any pair of charges to obtain the total potential
energy. For example for 3 charges the equation becomes

U =
Q1Q2

4πϵ0r12
+

Q2Q3

4πϵ0r23
+

Q1Q3

4πϵ0r13
(2.7)

This can be expanded for any number of charges and used to calculate the
potential energy of a collection of charges.

From potential energy the force on a charged particle can in turn be ob-
tained by taking the partial derivative along the spatial direction of interest;
i.e.

Fx = −∂U

∂x
, Fy = −∂U

∂y
, Fz = −∂U

∂z

This is especially useful for situations where the potential energy landscape
is given and the force on a charge needs to be determined.

Similar to what was explained for mechanics, the system will always aim
to reduce the potential energy. Thus particles with the same charge will
aim to attain an infinite separation and particles with opposite charge will
cluster together. The system will be in equilibrium if the total force is zero,
or in other words if the partial derivatives of the potential energy are all
zero. This equilibrium will be a stable one if this is also a minimum of the
potential energy landscape.



Chapter 3

Electrostatic field quantities

Although Coulomb’s law describes all of electrostatics it becomes very te-
dious to work with if the systems become larger or more complex. It will
be much easier to work with fields to describe the system and predict what
will happen. At a certain point it will even become practically impossible
to work with anything but field properties. At first the concept of fields
will appear very abstract and grasping this concept will be one of the most
difficult parts of this course. It might sound contradictory, but the best way
to come to understand fields is by not trying to completely understand and
grasp it, but to initially just accept it and then let it grow on you. This is
actually a useful approach to many abstract physical concepts. Niels Bohr,
who is considered as the ”father” of quantum mechanics, once famously
said that whoever says they understand quantum mechanics shows that he
or she clearly doesn’t understand it.

3.1 The electric field (E-field)

The electric field, which is often abbreviated to E-field, can be defined as
the (Coulomb) force that would be exerted on a charge if it is placed at
any point relative to other charges or charged objects. Because the force is
a vector it means that the E-field is a so-called vector field; it is a vector
defined for every point in space. To be able to calculate the E-field of
different objects we consider a positive test charge Qt. This test charge is
so small that it doesn’t have influence on the other charges and therefore
its contribution to the electric field is zero. We can now define the E-field
as

E⃗ =
⃗F (Qt)

Qt

, (3.1)

17



18 CHAPTER 3. ELECTROSTATIC FIELD QUANTITIES

The E-field is thus defined as force per unit positive charge and the units
are Newton per Coulomb [NC−1]. However, for reasons that will become
clear later, typically the unit Volt per meter [Vm−1] is used.

Figure 3.1: Illustration of the E-field by field lines for (a) two negative
charges and (b) a positive and negative charge.

We can now use Equation 3.1 to calculate the E-field. The simplest case
is the electric field of a point charge Q. From Equation 2.2 we know the
Coulomb force of a point charge experienced by a test charge at a distance
r⃗ and can then directly calculate the E-field:

E⃗ =
F⃗ (Qt)

Qt

=
Q

4πϵ0r2
r̂ (3.2)

Along similar lines we can obtain the E-field for a collection of point charges
from the superposition principle in Equation 2.3 which yields:

E⃗ =
Q1

4πϵ0r21
r̂1 +

Q2

4πϵ0r22
r̂2 + ... =

1

4πϵ0

∑
i

Qir̂i
r2i

(3.3)
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For a charge distribution ρ of an object τ the E-field can similarly be cal-
culated by integrating over all small contributions to the Coulomb force for
a test charge as described in Equation 2.4 and then dividing by this test
charge, thus yielding:

E⃗ =

ˆ
dE⃗ =

ˆ
τ

ρr̂dτ

4πϵ0r2
(3.4)

With similar equations for surface or line charge distributions.
An important aspect of the E-field is that it can be graphically expressed

by so-called field lines. In a primitive sense these can be thought of as all
the force vectors placed behind each other to form continuous lines with a
direction. More formally the field lines of an E-field originate from charges
or charged objects and end at other charged objects or infinity. Even more
precisely, the field lines are the path that a positive test charge would follow
when allowed to move freely in the vicinity of other charges.

In Figure 3.1 the field lines of two negative charges (a) and a positive
and negative charge (b) are shown for a region in the vicinity of the two
charges. From this figure we can learn some important aspects of field lines.

• Field lines start at positive charges and end at negative charges.

• The density of field lines is representative for the field strength.

• All the field lines in (a) originate from infinity, and

• All the filed lines in (b) originate from the positive charge and end at
the negative charge.

Whereby the last two points are of course only valid if there are no other
charged objects around. The picture in Figure 3.1 only shows a two-
dimensional cut through the E-field, the field lines expand in three-dimensional
space and given the symmetry this can be visualised by rotating the figure
around the axis connecting the two charges.

An important example is to calculate the E-field at a distance a along
the centre axis of a plane circular sheet with surface charge density σ and
radius b as illustrated in Figure 3.2. Before applying Equation 3.4 with
brute force it is helpful to first consider the symmetry of the system. For
every contribution to the E-field from a region at distance r from the centre
there is an equal contribution from a region with −r (i.e. from the opposite
half of the disk). All the contributions which are not along the centre axis
cancel and only the projection by cos θ on the axis has to be considered.
Therefore the tedious vectorial summation reduces to a normal integration
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Figure 3.2: Plane circular sheet with surface charge density σ.

as long as we stay on the central axis. A small ring at radius r from the
centre and with width dr has a surface area 2πrdr and contributes to the
E-field:

dE =
σ2πrdr cos θ

4πϵ0x2

with cos θ = a
x
this becomes

dE =
σardr

2ϵ0x3

If we no use Pythagoras, x2 = a2 + r2, and Eq. 3.4 we obtain

E =
σa

2ϵ0

ˆ b

0

rdr

(a2 + r2)3/2

With the consideration that rdr = 1
2
d (a2 + r2) we can now solve the integral

and obtain

E =
σa

2ϵ0

(
1

a
− 1√

a2 + b2

)
The importance of this result is realised when we make the disk very big;
b → ∞ or in general b ≫ a. In this case the E-field becomes

E =
σ

2ϵ0
(3.5)

Note that this is independent of a and because of b ≫ 0 also valid away
from the centre axis (which anyway looses meaning for b → ∞). Equation
3.5 is the expression for a homogenous E-field, and we will encounter
this expression many times in future chapters.
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3.2 Electric potential

In the previous section we defined the electric field as the force that would
be exerted on a (test) charge when placed at a certain point in space.
Similarly we can define the electric potential as the potential energy a test
charge would have if placed at a certain point in space with respect to other
charged objects. Formally one can only consider potential energy differences
and to be entirely correct we have to name it the electric potential difference,
but for simplicity this last part of the name is normally dropped. In practice
we typically consider the potential of our planet as zero. In the treatment
of many problems here we will set the potential at infinity as zero.

The potential energy is a scalar; i.e. only a magnitude and no direction.
The electric potential is therefore a scalar field and not a vector field like
the E-field. In everyday life we encounter scalar fields more often as vector
fields. In weather forecasts the temperature for different places forms a
scalar field map. Often scalar fields are graphically displayed by means of
iso-lines connecting points with the same properties. For temperature these
are isotherms, and we encounter them commonly as isobars (connecting
points with the same air pressure) in overview weather maps. Anybody
who ever went to a mountainous area knows the topographic maps with
lines that indicate the height above sea level. These lines are iso-altitude
lines, but can also be regarded as iso-potentials with regard to the potential
energy of the gravitational force of the earth. Also the electric potential,
and as we will see later indirectly the electric field, is typically displayed by
iso-potential lines which are typically called equipotential lines or surfaces.

The electric potential difference Φ between point A and B can be defined
as the work done to bring a positive test charge Qt from point A to B,
divided by this test charge

ΦAB =
WAB(Qt)

Qt

(3.6)

Based on this definition the units are Joule per Coulomb [JC−1], but typi-
cally the unit Volt [V] is used. The Coulomb force is conservative and the
potential difference is therefore independent on the path taken, which also
means that in calculations we can use any path that suits us best.

To explore the connection between electric potential and electric field it
is illustrative to calculate the work done to move a test charge along the
path dL⃗:

WAB =

ˆ B

A

F⃗ · dL⃗
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Here the force is the external force needed and thus opposite to the Coulomb
force on a test charge:

WAB =

ˆ B

A

−QtE⃗ · dL⃗

To obtain the potential at B with reference to the potential at A (which
we can later define as zero) we can use Eq. 3.6 and get

ΦAB = −
ˆ B

A

E⃗ · dL⃗ (3.7)

This is a path integral of the E-field along the path dL⃗. For a path that
is always perpendicular to the E-field the scalar product is always zero and
all the points along this path are thus at the same potential. We thus see
that equipotential lines and surfaces are perpendicular to the E-field. For
any other path we have to integrate the local projection of the E-field on
this path. Before considering an example it should be remarked that the
potential energy of a charge Q now can simply be obtained from

U = QΦ (3.8)

Whereby this potential energy is with respect to where we defined the zero
of the potential. The potential (and also the E-field) is a property of the
source charge, whereas the potential energy (and Coulomb force) depends
on both charges.

From Equation 3.2 we know the E-field of a point charge and we can
then use Eq. 3.7 to calculate the electric potential at a point P at a distance
rP from a point charge, with respect to the potential at infinity (which we
can set to zero):

ΦP = −
ˆ P

∞

Qr̂ · dL⃗
4πϵ0r2

If θ is the angle between dL⃗ and r̂ we find that

r̂ · dL⃗ = dL cos θ = dr

which means we project our dL⃗ on r̂ and call this dr. This is valid for any
path but easiest to imagine if we follow a radial path from infinity. Note
that there is no path coming from infinity that is always perpendicular to
r̂. With rp the distance from the point charge to P we can now rewrite and
solve the integral to obtain the electric potential of a point charge:

ΦP = − Q

4πϵ0

ˆ rp

∞

dr

r2
=

Q

4πϵ0rp
(3.9)
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The potential difference between two points at distances r1 and r2 from a
point charge then becomes

Φ1 − Φ2 =
Q

4πϵ0

(
1

r1
− 1

r2

)
The electric potential changes sign when considering a negative point charge
instead of a positive one and it asymptotically approaches zero as a function
of distance. All points at the same distance (radius) from the point charge
have the same potential and the equipotential surfaces thus are spheres
centred at the point charge as illustrated in Figure 3.3(a).

Figure 3.3: Equipotential lines and E-field of (a) a single point charge and
(b) two point charges. Note that the E-field lines are always perpendicular
to the equipotential lines.

From the superposition principle and Equation 3.3 we can now derive
the electric potential for a collection of point charges:

Φ =
Q1

4πϵ0r1
+

Q2

4πϵ0r2
+ ... =

1

4πϵ0

∑
i

Qi

ri
(3.10)

And along similar lines we can determine that the electric potential of
a continuous charge distribution is

Φ =

ˆ
τ

ρdτ

4πϵ0r
(3.11)

Whereby again it has to be taken into account that r changes with the
integration, and similar expressions can be found for surface and line charge
distributions. In both cases the zero of the potential is set at infinity.
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Now let’s return to the example of the charged disk at the end of the
previous section. Using similar arguments as we did there we can determine
the contributions of rings of charge to the potential on the axis as

dΦ =
2πσrdr

4πϵ0x

After making similar substitutions the integral can be solved and we obtain

Φ =
σ

2ϵ0

(√
a2 + b2 − a

)
along a. In the previous section we could obtain an expression for a uniform
E-field by setting b to infinity, however, if try the same thing here then the
potential Φ also becomes infinite. The reason for this is that we actually
defined Φ = 0 at infinity and thus we can’t use the same expression anymore
for b → ∞. In this case it is easier to directly apply Equation 3.7 to the
uniform E-field we know results from increasing b, as expressed in Equation
3.5. The only relevant coordinate is a and the term E⃗ · dL⃗ reduces to Eda
and the integral is easily solved to obtain the potential for an uniform
field:

Φ =

ˆ
−Eda = C − Ea (3.12)

Here C is the potential of the charged disk. This result also explains why
the E-field is expressed in [Vm−1].

If the electric potential is given it is also possible to use this to obtain
the E-field. Reciprocal to the previous description the E-field is obtained
by taking the vectorial partial derivative of the potential:

E⃗ = −∇Φ (3.13)

whereby ∇ is defined as in Eq. 5. Written out for cartesian coordinates
this becomes:

E⃗ =

(
−∂Φ

∂x
,−∂Φ

∂y
,−∂Φ

∂z

)
From this we see again that the E-field is always perpendicular to equipo-
tential lines.

3.3 Charges in E-fields

We have defined the E-field as the force that would be exerted on a test
charge, now it is time to look at what happens if we place an actual charge
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in an E-field. An important assumption or boundary condition that we will
assume is valid for all cases from now on, is that the charge has no influence
on the E-field. This can either be the case if the charge is very small or if
the E-field is kept constant by external sources.

The force that a charge Q in an E-field experiences is

F⃗ = QE⃗ (3.14)

which is according to Newton equal to mass times acceleration:

F⃗ = QE⃗ = ma⃗.

For ions and smaller particles the gravitational force is more than 109 times
smaller as the electrical force and the former can thus typically be neglected.
Instead of the E-field we can of course also consider a potential difference
in which case the expression becomes:

Q
∆Φ

x
= ma

in which case the acceleration is oriented along the direction the potential
difference occurs.

The main point to be learned from this is that an E-field can be used
to accelerate charged particles along the field lines, or perpendicular to the
equipotential surfaces. It also allows us to use a new energy scale, the
electronvolt [eV]. This is the energy gained by an electron when passing a
potential difference of 1 V. This makes 1 eV = 1.6× 10−19 J.

For sake of simplicity we will in this lecture only consider two possible
cases and both are for uniform, and stationary, E-fields: 1) the initial ve-

locity of the charge is zero or parallel to the field lines (v⃗i||E⃗), and 2) the

initial velocity is perpendicular to the field lines (v⃗i ⊥ E⃗). In the first case
the particle is accelerated along the direction of the initial velocity. All the
gained energy is transformed in kinetic energy (if we are far from relativistic
velocities) and we get

Q∆Φ =
1

2
mv2f −

1

2
mv2i

which can be used to calculate the final velocity vf . Thus the particle
is simply accelerated or slowed down along the initial direction of travel.
This is a very important aspect and is used in a variety of applications. In
mechanics this can be compared to throwing an object straight up or down,
or letting it drop from a given height.
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If the initial velocity is perpendicular to the E-field, the charged par-
ticle will not experience any force along the direction of travel. The only
acceleration is along the perpendicular direction and is given by:

a⊥ =
QE

m
.

If the E-field has a length l along the initial velocity direction, the charge
takes a time t = l

vi
to travel through the field. In this time the velocity

along the perpendicular direction becomes

v⊥ = a⊥t =
QEl

mvi
.

By travelling through the field the charge is deflected and the angle of
deflection α can be obtained from

tanα =
v⊥
vi

=
QEl

mv2i
.

Such a deflector can be used to steer a beam of charged particles to a target
and is used in many applications. In mechanics one can compare it to the
situation of throwing an object horizontally from a cliff.

In the more general case of where the velocity is neither parallel nor
perpendicular to the E-field the problem can be relatively straightforward
solved by separating it into a parallel and perpendicular part. However,
when the E-field is not uniform, both the velocity of the charge and its
direction are changed. In this case beams of charged particles can be col-
limated or focussed, or manipulated in any required way. This is the field
of electron optics which is not part of this lecture, but students should be
aware that such possibilities exist.

3.4 Electric dipole

Some highly symmetric charge arrangements occur regularly in treatments
and are thus worth to consider separately. The simplest, and most impor-
tant, of such arrangements is the electric dipole. This consists of two equal
but opposite charges +q and −q fixed at a distance a from each other as il-
lustrated in Figure 3.4. The total charge of the dipole is zero. Furthermore
we only consider the ideal dipole where the distance a is small compared
to other distances.

In this case we can use a trick to calculate the electric potential of
the whole dipole. In Figure 3.4 the potential at point P having polar
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Figure 3.4: Electric dipole and arrangement to calculate its potential.

coordinates (r, θ) due to +q is given by the electric potential of a point
charge (Eq. 3.9) as

ΦP (+q) : Φq =
q

4πϵ0r1
=

q

4πϵ0r

whereby r1 ≈ r2 ≈ r because r ≫ a. The potential due to −q is almost
equal but opposite and the small difference is due to the fact that −q is
displaced by a distance a along the x-axis

ΦP (−q) : Φ−q = −Φq − dΦq.

The total potential at point P then becomes

ΦP = −dΦq = −a
∂ (q/4πϵ0r)

∂x
.

Which can be rewritten and solved using that x = r cos θ and ∂r
∂x

= x
r
= cos θ

as

ΦP =
−qa

4πϵ0

∂
(
1
r

)
∂x

=
qa

4πϵ0r2
∂r

∂x
=

qa cos θ

4πϵ0r2
.
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This can be rewritten in a more general way by introducing the electric
dipole moment defined as:

p⃗ = qa⃗ (3.15)

This is a vector quantity pointing in the direction from −q to +q. Using
the scalar product p⃗ · r⃗ = pr cos θ we can now obtain an expression for the
potential of an electric dipole

ΦP =
p⃗ · r⃗

4πϵ0r3
=

p⃗ · r̂
4πϵ0r2

(3.16)

It should be noted that whereas for a point charge (or electric monopole)
the potential is inversely proportional to r, for the dipole it is inversely
proportional to r2. We will later see that this can be expanded for higher
order multipoles. Another important point is that the potential is zero for
p⃗ · r⃗ = 0 which is the case for the plane exactly half way between the two
charges.

We can now apply Equation 3.13 to Eq. 3.16 and use the definition of
∇ in polar coordinates in Eq. 6 to determine the E-field of an electric
dipole:

Eθ = −1

r

∂Φ

∂θ
=

p sin θ

4πϵ0r3
(3.17)

Er = −∂Φ

∂r
=

2p cos θ

4πϵ0r3
(3.18)

When plotted in two dimensions this E-field looks like the one shown in
Figure 3.3(b).

In a uniform E-field the forces on both charges are equal but opposite
and the total force on the dipole is thus zero.∑

F⃗ = 0

In a non-uniform E-field this is generally not the case and the dipole will
experience a force proportional to the gradient of the field. Taking into
account the changes of the E-field over the length of the dipole, it is possible
to derive the total force on the dipole. For example for the x-component
this gives

Fx = px
∂Ex

∂x
+ py

∂Ex

∂y
+ pz

∂Ex

∂z
(3.19)
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With similar expressions for the y and z components. For the total force
this can be rewritten as

F⃗ = (p⃗ · ∇)E⃗. (3.20)

In a uniform E-field the forces on each of the charges are equal but
opposite, but they act on different ends of the dipole. This induces a torque
which will align the dipole to the E-field in such a way that the dipole
moment is aligned parallel to the field. The torque τ⃗ on a dipole in an
electric field can be expressed as

τ⃗ = p⃗× E⃗ (3.21)

Figure 3.5: E-field of a planer quadrupole.

(Dipole approximation for arbitrary charge distribution: to be included)
Besides the electric dipole we can also define higher order multipoles.

Just like in a dipole the sum of the monopoles (charges) is zero and we have
a dipole moment p⃗, for a quadrupole the sum of both the monopoles and
dipole moments equals zero∑

Q = 0,
∑

p⃗ = 0.

In this case we can define the quadrupole moment q which is a tensor. For
a quadrupole the potential is proportional to q

r3
and the E-field to q

r4
. The

latter is shown for a planar quadrupole in Figure 3.5.
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Expanding on this we can define the octupole where the sum of the
monopoles, dipole moments, and quadrupole moments is zero. In this case
the potential is proportional to 1

r4
and the E-field to 1

r5
.



Chapter 4

Gauss’s law and its
consequences

Carl Friedrich Gauss (1777-1855) is considered to be the greatest mathe-
matician of modern times. Much of modern science, and thus also society,
relies heavily on the mathematical concepts he introduced. In this chapter
Gauss’s law on electrostatics will be derived, showing how the flux of the
E-field through any closed surface is directly related to the enclosed charge.
It will be shown that this is a powerful tool to find the E-field of objects.
In a related sense it will be shown that for static electric fields no closed
field lines can exist, which is the so-called circuital law.

There are a variety of important consequences of Gauss’s law and the
circuital law, which will be explained in detail below. The correct imple-
mentation of these laws and especially a thorough consideration of their
consequences will help get a more intuitive feeling of how E-fields behave
and how situations that initially appear very complex can be greatly sim-
plified. It will even help us understand how Rutherford could determine
the size of the atom and how electric eels probe their environment.

4.1 Derivation of Gauss’s law

A central ingredient of Gauss’s law is the flux of a vector field through
a surface. It is relatively straightforward to consider the flux, or in this
case flow, of water in a river through some surface. Also in Section 1.2 we
considered the flux of charge through some surface to define the current,
or the current density. In both cases we can still picture something moving
through a surface and we can imagine somehow counting the amount of
water or charge that passes to get an idea of the flux. However, we can also

31
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consider the flux of a (static) vector field through a surface. In the previous
chapter we looked at the E-field as the force that would be exerted on a test
charge. Similarly we can think of the flux of the E-field through a surface
as the amount of such test charges that would be forced through it, or as
a type of current that would flow. This is not a formal definition, but just
meant to help make the step from actual things moving to the flux of a field
easier.

The formal definition of the flux of a vector field, in this case the E-field,
φ through a surface area dA is

φdA = E⃗ · dA⃗. (4.1)

Here the vector dA⃗ is again the surface normal whereby the magnitude
represents the size of the area and the direction the orientation of the surface
in space. This means that the flux is maximal when the surface normal is
parallel to the field and the surface itself thus perpendicular. The flux goes
to zero when the surface normal and field are perpendicular. In this case no
field lines pass through the surface. Because for a closed surface the surface
normal always points out of the object, the flux is positive when the field
points outward, and negative when it points inward.

Figure 4.1: Flux of a vector field through a surface.

The total flux of a vector field through any surface A can now be ob-
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tained by integrating over that surface

φtot =

ˆ
A

dφ =

ˆ
A

E⃗ · dA⃗. (4.2)

In Figure 4.1 the above definition of flux of a vector field is illustrated and
summarised.

As a first example for the flux of an electrostatic field, we can now
consider the flux of the electric field generated by a point charge, through
an enclosing sphere with radius r. We choose the sphere to be centred
at the point charge and from symmetry we know that the E-field is now
always parallel to the surface normal and Eq. 4.1 thus reduces to a normal
multiplication. From Eq. 3.2 we know the E-field of a point charge and
further we know that the surface area of a sphere is 4πr2. Using Eq. 4.2
we obtain:

φ =

ˆ
A

EdA =

ˆ
A

Q

4πϵ0r2
dA =

Q

4πϵ0r2
4πr2 =

Q

ϵ0

That this rather simple result is not an exception due to the choice of
enclosing surface, but a general rule will be the main result of Gauss’s law.

Figure 4.2: Illustration of solid angle dΩ for a surface element dS⃗

We consider a randomly shaped closed surface S enclosing a charge Q.
For simplicity only a single charge is considered, but the argument also
holds for a collection of charges or a charge distribution. The flux through
a surface element dS can be obtained from Eq. 4.1:

φdS = E⃗ · dS⃗ =
Qr̂ · dS⃗
4πϵ0r2

=
QdS cos θ

4πϵ0r2
(4.3)
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Here θ is the angle between the surface normal and the radial vector from
the charge r̂. We can now use the concept of the solid angle dΩ to simplify
this expression. The solid angle is illustrated in Figure 4.2 and can be
viewed as a dimensionless area enclosed by a cone. It is accordingly defined
as

dΩ =
dS cos θ

r2
(4.4)

Of importance to our derivation is that the integral of the solid angle over
any closed surface (hence the

‚
) becomes independent of the shape of that

surface and always yields
‹

dΩ = 4π (4.5)

We can now use Eq. 4.4 and 4.5 to further simplify 4.3:

φdS =
QdΩ

4πϵ0

and from integrating it follows that:

φ =

‹
QdΩ

4πϵ0
=

Q

ϵ0

We can now summarise this and apply the superposition theorem to obtain
Gauss’s law: ‹

E⃗ · dS⃗ =
∑
i

Qi

ϵ0
(4.6)

Often the summation will be implicitly assumed. Expressed in words, this
means that the flux of an E-field over any closed surface is equal to
the total enclosed charge divided by ϵ0.

This statement is valid regardless of the chosen surface as long as it is
closed, which is often called a Gaussian surface. This not only includes nice
geometric shapes, but also irregular shapes such as a human body or car.
This means we can choose the closed surface that fits our problem best at
will. Another consequence is that, if no charge is enclosed, the total flux
passing through the surface will be zero; as much flux enters as leaves.

Equation 4.6 is the so-called integral form of Gauss’s law. Because the
closed surface always has some spatial extension, it is also always applied in
an extended fashion. Sometimes it is easier to have a local expression of the
law and this can be obtained from Gauss’s divergence theorem. The
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derivation will be shown during the lecture, but it comes down to applying
Eq. 4.6 to an infinitesimal small cube with charge density ρ. This then
yields (

∂E

∂x
+

∂E

∂y
+

∂E

∂z

)
=

ρ

ϵ0

Using the nabla vector ∇ we obtain the differential form of Gauss’s law:

∇ · E⃗ =
ρ

ϵ0
(4.7)

Which is the same as the first Maxwell equation in the introduction.

4.2 Using Gauss’s law

Before showing how Gauss’s law can be used to find E-fields it is useful to
consider some of its general consequences.

All excess charge is located on surface of a conductor: As men-
tioned before, there is no E-field inside a conductor. If there would be
an E-field, this would move the free charge which in turn would compen-
sate the field. If the field is zero, then its flux is also zero. This means
that for any Gaussian surface chosen within the conductor the left part of
Eq. 4.6 is zero and thus also the total charge enclosed by this surface is
zero. Consequentially all the excess charge is located on the surface of the
conductor.

Charge inside hollow conductor is screened: We consider a con-
ductor with some cavity in which a charge is placed. Again we know that
inside the conductor the E-field is zero. If we choose a Gaussian surface
inside the conductor enclosing the cavity the total charge has to be zero.
Therefore an equal amount of charge is now located on the inner surface of
the conductor to screen the charge.

No E-field exists inside a hollow conductor: We consider the same
conductor with a cavity, but without a charge placed inside. If we now as-
sume an E-field can exist inside this cavity, then there are regions with
higher and lower potential. If we choose a Gaussian surface enclosing one
of these regions then there is a flux across this surface, which according to
Gauss’s law would mean there is a charge inside. But we know there is
no charge, so the assumption of an E-field leads to a contradiction. This
absence of a E-field inside a hollow conductor is often referred to as elec-
trostatic shielding or screening, or as the Faraday cage.
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Besides these general consequences the main use of Gauss’s law is to
find E-fields for a given charge configuration. The strategy is in all cases
the same and can be summarised as follows:

• Choose a smart and easy closed surface based on the symmetry of the
system under consideration

• Write down expression or solve integral for flux through Gaussian
surface and charge contained inside

• Simplify to obtain an expression E = ...

• Integrate E to obtain the potential if required

During the lecture and exercises many examples will be given and they will
also be included here when time permits.

Figure 4.3: Potential and E-field as a function of distance away from the
centre for different types of spherical systems. (From Duffin ©McGraw-
Hill)

For a charged or conducting sphere we see that the electrostatic potential
is inversely proportional to the radius of the sphere for the same amount of
charge. This is also illustrated in the summary of potential and electric field
behaviour as a function of distance from the centre of a sphere for different
objects displayed in Figure 4.3. This means that if we know its charge we
can determine the size of an object from its potential. This effect was used
by Rutherford to determine the size of the nucleus of an atom by looking
at the backscattering of α-particles from a gold foil.

We can also consider what happens if we keep the potential the same,
but vary the radius of an object. To illustrate this, we look at the E-field
and potential just outside a sphere with radius r0 and surface charge density
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σ = Q/4πr20. From Gauss’s law we derived that the E-field is given by

Es =
Q

4πϵ0r20
=

σ

ϵ0

and the potential by

Φs =
Q

4πϵ0r0
=

r0σ

ϵ0
.

If we keep the potential fixed and regard the radius as a variable this means
that the charge density and local E-field show the following dependence on
the radius:

σ =
ϵ0Φ

r0
(4.8)

Es =
Φ

r0
(4.9)

It should be realised that these equations are only valid under the assump-
tions expressed above and should only be regarded as locally valid. These
expressions mean that both the surface charge density and the E-field just
outside the object increase if the radius decreases, or if the curvature in-
creases. This is referred to as the point effect because, for a sharp point,
the E-field will be the highest, as also illustrated in Figure 4.4. Because at
these sharp points the field is the largest it will also be the first point where
the air will be ionised and as a consequence a so-called corona discharge
will occur.

Figure 4.4: Electric field just outside an object with different local curva-
ture.
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4.3 The circuital law

The circuital law in a simple picture deals with the question of whether
there exist closed E-field lines. To answer this we consider the integral of
the E-field along a closed loop L:

˛
L

E⃗ · dL⃗ (4.10)

In Figure 4.5 such a possible loop is indicated which we can always separate
into two paths I and II between points A and B. The integral

´
E⃗ · dL⃗

between A and B is the potential difference between those points. From
the fact that the Coulomb force is conservative we know that this potential
difference is independent of the path taken and furthermore that the sign
of the integral reverses if we reverse the path:

ˆ B

A,I

E⃗ · dL⃗ =

ˆ B

A,II

E⃗ · dL⃗

and

ˆ A

B,II

E⃗ · dL⃗ = −
ˆ B

A,I

E⃗ · dL⃗

If we add all this together we obtain

˛
E⃗ · dL⃗ =

ˆ B

A,I

E⃗ · dL⃗+

ˆ A

B,II

E⃗ · dL⃗ = 0

Or summarised in the circuital law:
˛

E⃗ · dL⃗ = 0 (4.11)

Equation 4.11 represents the integral form of the circuital law. It means
that no closed E-field lines exist for electrostatic fields and that, as we will
see later, a power source is needed to create a current. In later chapters,
we will see examples going beyond electrostatics where the right hand side
of this equation is not equal to zero.

Also the circuital law can be expressed in a local differential form. The
derivation of this goes beyond the scope of this course and relies of Stoke’s
theorem in mathematics. Here only the result of this is relevant and the
circuital law can also be expressed as:

∇× E⃗ = 0 (4.12)
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Figure 4.5: A general closed path through an E-field (arrows).

Figure 4.6: Surface of conductor with closed path

Although the impact at this point of the circuital law appears to be
limited, the fact that we can treat it as a general law has some further
consequences. Let’s consider the rectangular closed loop around the surface
of a conductor in Figure 4.6. If we decompose the E-field into components
perpendicular (E⊥) and parallel to the surface (E∥) and realise that the
E-field inside the conductor is zero, we can decompose Eq. 4.11 in parts as
follows starting at the top right

−E⊥dy + 0 + E⊥dy + E∥dx = 0

From this it directly follows that E∥ = 0 and that E-field lines are always
perpendicular to the surface of a conductor. This means that, if a
conductor is placed in an electric field, the field lines will be bent in such
a way as to ensure they connect to the conducting surface perpendicularly.
This effect is of obvious importance when determining how an E-field will
look, but it is also used by some animals to determine the conductivity,
and thus edibility, of objects close by. The most famous example of this is
the electric eel who uses the change in shape of the field lines to determine
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whether something is a fish and to observe how it moves without having to
identify it visually.

4.4 Uniqueness theorem

We can combine the differential form of Gauss’s law (4.7) and the relation-
ship between E-field and potential (Eq. 3.13) to obtain

∇ · ∇Φ = − ρ

ϵ0

Because Φ is a scalar field this can be rewritten as

∇2Φ = − ρ

ϵ0
(4.13)

This is known as Poisson’s equation in the presence of charge, and as the
Laplace equation if no charge is present; i.e.

∇2Φ = 0 (4.14)

with

∇2 =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
(4.15)

Although Eq. 4.13 and 4.14 look simple they can form an extremely complex
set of differential equations and an unique solution can only be found if the
boundary conditions are specified.

The students in this course will not be required to solve Poisson’s or the
Laplace equation, but are expected to be aware of their use. Here we will
use those equations to derive a very powerful tool for the determination of
electric fields; the uniqueness theorem.

Given is a certain charge configuration with well defined boundary con-
ditions. Let’s now assume that there are two possible solutions for the
potential (and E-field) Φ1 and Φ2. Then we can define their difference as
Φ3 = Φ1 − Φ2. Because both Φ1 and Φ2 are solutions we know from Eq.
4.13 that:

∇2Φ1 = − ρ

ϵ0
and ∇2Φ2 = − ρ

ϵ0

From their difference it directly follows that

∇2Φ3 = 0
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Which is the Laplace equation for Φ3. In this equation there is no charge
and thus no sources or sinks, so the maxima and minima can only occur at
the boundary. However, at the boundary, the boundary conditions are the
same for Φ1 and Φ2 meaning that

Φ1 = Φ2 → Φ3 = 0 (at boundary)

This implies that both the maximum and the minimum of Φ3 are zero and
that Φ3 is thus zero everywhere. Consequently this means that Φ1 and Φ2

are equal everywhere and no two different solutions can exist.
The fact that no two solutions of the potential and E-field are possible

for a given charge distribution and boundary conditions is known as the
uniqueness theorem. It can be formulated as follows: If a solution can be
found, then it is the only correct one. The main implication is that in many
cases we don’t have to calculate the E-field, because we can ”replace” the
system by a charge configuration with the ”same” boundary conditions that
we do know the solution to.

This still sounds rather complex, so let’s consider an example. Given
is a positive point charge +q placed at a distance d in front of a grounded
plane conductor, giving the boundary condition Φ = 0 at this surface.
Even for this simple system, solving Eq. 4.13 is already rather complex, so
instead we consider a system we know with the ”same” charge distribution
and boundary condition. This would be two opposite but equal charges
+q and −q placed at a distance 2d from each other. We know that half
way between the charges there is a plane where Φ = 0 creating the same
boundary condition. If we now only consider the left half of Figure 4.7, we
have found a solution to the posed problem. According to the uniqueness
theorem we also know that this is the only possible correct solution. This
way of solving a problem is known as the image charge solution.
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Figure 4.7: Image charge solution to the problem of a charge in front of a
plane conductor.



Chapter 5

Capacitance and dielectrics

In the previous chapters we developed the terminology and methods to de-
termine the electric field and potential for model systems. In this chapter we
will make the step toward real systems and applications. The first part will
be concerned with capacitance and capacitors, which are important com-
ponents for a wide range of applications. Furthermore, the use of vacuum
as a medium is, of course, highly unrealistic compared to the real situation.
In the second part about dielectrics it will be shown how non-metallic ma-
terials influence the E-field and that, with only small corrections, we can
continue using the laws which were derived for vacuum.

5.1 Capacitance of a conductor

We have seen that the electrostatic potential of an object is changed if we
place charge on it. This means that, for a given object, there is an intrinsic
relationship between its potential and charge. In other words, there is a
certain amount of charge Q a conductor can hold for a given potential Φ.
This ”capacity for charge” is called the capacitance (C) of the object and
it is defined as

C =
Q

Φ
(5.1)

The units of capacitance are coulomb per volt [CV−1] or farad [F]. Because
the coulomb is a large unit compared to everyday life, also the farad is large.
Typically values for capacitance are in the pico- to micro-farad range. By
definition capacitance is always positive.

Using the uniqueness theorem, it can be shown that capacitance is con-
stant, is independent of given voltages or charge densities, and only depends

43
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on the geometry. The proof itself is not of importance and will be omit-
ted here. The result, however, is of utmost importance and will be used
implicitly throughout this lecture.

We will consider the capacitance of a conducting sphere as an example.
From the previous chapter we know that the potential of a sphere depends
on charge Q and radius r0 as follows

Φ =
Q

4πϵ0r0

Using Eq. 5.1 we can now calculate the capacitance of a sphere:

C = 4πϵ0r0 (5.2)

If we now consider a sphere of radius r0 = 10 mm to obtain a capacitance of
C ≈ 10−12 F or 1 picofarad. Using the same equation we can also calculate
the capacitance of the earth (r0 = 6.3× 106 m) and obtain C ≈ 7× 10−4 F.

5.2 Capacitors

In the previous section it was ignored where the charge on the object came
from or what the environment looked like. In principle it was assumed that
there was only a single object surrounded by vacuum. This is obviously
not a realistic situation and, instead of the capacitance of a single object,
we will here consider the capacitance of a combination of objects. Together
these are termed capacitors.

An ideal capacitor is formed by two charged objects (or more, but
we restrict ourselves to the simple case) whereby all the field lines from
the positively charged object (A) end at the negatively charged object (B).
This means that if we now draw a closed surface enclosing both objects the
total flux through this surface is zero. According to Gauss’s law this means
that the total charge of the two objects is also zero. Therefore the situation
can be regarded as if the amount of charge Q has moved from object B
to object A. Due to this charge transfer, both objects are at a different
potential with a potential difference ∆Φ = ΦA − ΦB. We can now define
the capacitance of this ideal capacitor as

C =
Q

ΦA − ΦB

(5.3)

Which is again by definition positive and if needed the absolute value of the
potential difference can be used because the transferred charge Q is always
positive.
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The name might suggest that one will almost never encounter such an
ideal capacitor, but this is luckily not the case. Most real capacitors are
extremely close to being ideal capacitors and any deviations can typically
be neglected. This allows us to apply the simple description derived above
in a variety of cases. In all examples in this lecture it will thus be assumed
that the negative charge on one object is the same as the positive charge
on the other and it will just be called Q.

Figure 5.1: Illustration of a spherical capacitor or cut through of a cylin-
drical capacitor.

The most obvious example of a (ideal) capacitor is the spherical capac-
itor shown in Figure 5.1. This consist of two concentric spherical electrodes
with radius Ra and Rb as illustrated in the figure. All the field lines point
radially from the inner electrode to the outer one. The voltage difference be-
tween the two electrodes can be calculated from their respective potentials
and the fact that both have the same but opposite charge:

∆Φ =
Q

4πϵ0Rb

− Q

4πϵ0Ra

=
Q (Ra −Rb)

4πϵ0RaRb

From Eq. 5.3 we can now calculate the capacitance and obtain

C = 4πϵ0
RaRb

(Ra −Rb)
(5.4)

It is easy to picture why a spherical capacitor is not the first choice in any
applications; the manufacturing is difficult and connecting the electrodes
even more so. More commonly used is the parallel plate capacitor,
which consists of two charged plates of surface area A located at a distance
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d from each other. If d ≪ A this can be considered as an ideal capacitor
and the capacitance can be obtained as follows. The surface charge density
on the electrodes is σ = Q

A
and we know from the examples in the lecture

that in this case the homogeneous E-field of an ”infinite” plane is

E =
σ

ϵ0
=

Q

ϵ0A

From this we can obtain the potential difference as

∆Φ = Ed =
Qd

ϵ0A

and the capacitance thus becomes according to 5.3

C = ϵ0
A

d
(5.5)

A further important example is the cylindrical capacitor, which forms
the basis for the co-axial cable used for signal transmission. We again refer
to Figure 5.1, but now consider it as the cross-section through a cylinder
with length l ≫ Ra running perpendicular to the paper. The line charge
density now becomes λ = Q

l
. From the lectures related to previous chapter

we know the E-field is thus

E =
λ

2πϵ0r
=

Q

2πϵ0rl

To obtain the potential difference we integrate the E-field between the core
and outer cylinder:

∆Φ = −
ˆ

Edr = −
ˆ Rb

Ra

Qdr

2πϵ0rl
=

Q

2πϵ0l
ln

Ra

Rb

From Eq. 5.3 we can now calculate the capacitance

C =
2πϵ0l

ln Ra

Rb

(5.6)

In all cases the capacitance only depends on the geometry and objects
can be scaled (can be made larger or smaller) without loss of generality, as
long as the assumptions are met. Furthermore, to increase the surface area,
and thus capacitance, of a parallel plate capacitor it can even be rolled up
in a spiral, without significantly changing its properties.
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The properties of combinations of capacitors are presented here
without derivation. The background will be discussed during the lecture.
For capacitors in series the total capacitance C ′ becomes

1

C ′ =
∑
i

1

Ci

(5.7)

And for capacitors in parallel it becomes

C ′ =
∑
i

Ci (5.8)

Note that these equations are exactly the opposite of what is obtained for
resistors in parallel or in series.

5.3 Dielectrics

There are many applications for capacitors in everyday life, ranging from
energy storage to signal filtering. Practically all electronic equipment con-
tains a large number of capacitors and modern touch screens are also based
on capacitance. It is obvious that all such technologies are not based only
on capacitors that rely on a vacuum between the electrodes. Therefore it
is important to consider what happens to matter when it is placed in an
E-field, for example, between the plates of a parallel plate capacitor. We
already know for the case of a metal that all charges will flow according to
the electric field and as a result will cancel it, giving zero field inside. Here
we will consider all materials where the charge can’t move that easily and
that are thus not a metal. All these non-metallic systems, thus including
insulators and semiconductors, are called dielectrics.

The first thing that should be realised is that (besides vacuum) a true
insulator does not exist. All matter is made up of a collection of positive
and negative charges, even though they can’t move long distances, and
the material can thus be polarised. One example of the polarisation of
matter is when it is made up of polar molecules, such as water. Similar
to NaCl discussed in Chapter 2, the bonding between the hydrogen and
oxygen atoms in water is because an electron from each hydrogen goes to
the oxygen. As illustrated in Figure 5.2 on the left this results in a negative
charge on the oxygen and positive on the hydrogen. Because the hydrogen
atoms are arranged in an angle of 104◦ with respect to each other, the two
dipole moments p⃗1 and p⃗2 don’t cancel and the molecule has a net dipole
moment. In an external electric field the water molecules will thus tend to
align and, as will be explained below, reduce the E-field.
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Figure 5.2: Examples of the polarisation of matter.

Another possibility of how matter can be polarised is illustrated in Fig-
ure 5.2 on the right. This is representative for any material where the atoms
are close enough together to form a solid. As we know, each atom is made
up of a positively charged nucleus and a negatively charged electron cloud.
These electrons are bound to the nucleus by the Coulomb force, but in
an external electric field their distribution can shift a bit, which creates a
dipole moment pointing from the centre of mass of the electron cloud to
the nucleus. One can thus regard this as a bad metal; the electrons want
to move due to the E-field, but they are still too strongly bound by the
nucleus to really move away. Therefore just like a metal completely screens
the E-field, in a dielectric the E-field will be partially screened and thus
reduce the field inside the material.

To be able to quantify this picture we need to introduce two new con-
cepts: the polarisation of a material P⃗ and the polarisation charge
Qp or polarisation surface charge density σp. The polarisation of a material
is the summation of all the dipole moments mentioned in the previous para-
graph. In principle, all these individual dipoles don’t have to point exactly
in the same direction and if they all point in random directions P⃗ = 0, oth-
erwise P⃗ will have some finite value. In a very simple sense we can regard
the continues arrangement of small dipoles as a vector field, and we will see
that we can almost directly add or subtract P⃗ from the E-field.

The polarisation charge is the charge that is associated with the polar-
isation, and here we will mostly use it as a helpful mathematical concept.
More formally it can be derived by considering the amount of charge that
has moved through a surface S in the dielectric when the polarisation was
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induced. Thus dQp = P⃗ · dS⃗ and if we integrate this out we obtain

QP = −
‹

P⃗ · dS⃗ (5.9)

whereby the minus sign is due to the definition of the direction of a dipole.
Again, this definition is not of importance for this lecture, but it should be
realised that the charge density of polarisation charge at the surface is the
aforementioned σp. For a homogeneous polarisation this will be positive on
one side of the material and negative on the other side. What we referred
to as charges in the previous chapters will be called conduction charges
(sub-index c) in the presence of dielectrics.

Figure 5.3: Dielectric in an external E-field.

Now let’s consider what happens if we place a dielectric in a (homo-
geneous) external electric field. This situation is illustrated in Figure 5.3

for a constant external E-field E⃗ext. Besides this external field, we see that
also the surface charge density on each side of the dielectric will cause a
field, which is opposite to the external field and not larger than E⃗ext, this is

termed E⃗pol. Now we can consider the average E-field in the dielectric
〈
E⃗
〉

by taking the difference of the external field and the polarisation field:〈
E⃗
〉
= |E⃗ext| − |E⃗pol| (5.10)
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To illustrate that the field is reduced here the difference of magnitudes
is taken, but to be precise one should take a vectorial sum. The reason
the average E-field in the dielectric is considered is to take possible inho-
mogeneities or an anisotropic response into account. However, this goes
beyond the scope of this lecture and in the following we consider E⃗ as the

field inside the dielectric instead of
〈
E⃗
〉
.

From the above considerations we can now define a connection between
the polarisation of the dielectric and the (average) field inside

P⃗ = ϵ0χeE⃗ (5.11)

Here χe is the electric susceptibility, or how easy it is to polarise a material.
Large values indicate a dielectric that is easily polarised and the χe of
vacuum is zero.

Figure 5.4: Gauss’s law with dielectrics.

In the previous chapter we have seen that Gauss’s law is a powerful
tool, thus it is important to consider how it can be used in the presence of
a dielectric. In Figure 5.4 the very general case is illustrated of conduction
charges and a part of a dielectric enclosed in a Gaussian surface S. We can
now write down Gauss’s law (Eq. 4.6) and get‹

S

E⃗ · dS⃗ =
∑ Qc

ϵ0
+
∑ Qp

ϵ0

Combining this with Eq. 5.9 we obtain:‹
S

E⃗ · dS⃗ =
∑ Qc

ϵ0
− 1

ϵ0

‹
S

P⃗ · dS⃗

And after rewriting ‹
S

(
ϵ0E⃗ + P⃗

)
· dS⃗ =

∑
Qc (5.12)
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This looks very similar to the original Gauss’s law and can be even further
simplified by the definition of the so-called D-field

D⃗ = ϵ0E⃗ + P⃗ (5.13)

Based on this Gauss’s law for D-fields is obtained‹
D⃗ · dS⃗ =

∑
Qc (5.14)

∇ · D⃗ = ρc (5.15)

Two things should be noticed. The first is that only conduction charges
are a source of D-fields. The second is that also in vacuum we can use the
D-field and it is then equal to the E-field times ϵ0.

The D-field is historically termed the displacement field, but this termi-
nology has no real physical meaning and will not be used in this lecture.
Here it will just be called D-field and its use lies in the fact that we can
define a field quantity that does not depend on the material or medium.

If we combine Equations 5.13 and 5.11 we obtain

D⃗ = ϵ0 (1 + χe) E⃗ (5.16)

We now define the relative permittivity ϵr as follows

ϵr = 1 + χe (5.17)

To obtain the relationship between the E-field and D-field

D⃗ = ϵ0ϵrE⃗ (5.18)

This relationship is valid for any material (in vacuum ϵr = 1). In a general
sense the relative permittivity is a tensor; it can be anisotropic, non-linear,
and in-homogenous. For simplicity we will consider ϵr here as a material-
specific scalar, which has values ranging from 1.0006 (air), to 7 in rubber,
80 in water, 300 in strontium titanate, or even more than 100’000 in some
complex oxides.

Because only conduction charges are sources of the D-field, it only de-
pends on the external parameters and not on the material which is present.
From Eq. 5.18 it then directly follows that in a dielectric the E-field is
reduced by a factor ϵr. This effect is directly measurable and the E-field
of a point charge in a dielectric becomes

E⃗ =
Qr̂

4πϵrϵ0r2
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and the D-field of the same point charge is

D⃗ =
Qr̂

4πr2

regardless of the medium. This reduction of the E-field is often referred
to as the screening of charges in dielectrics. This effect is responsible for
many of the functional properties of doped semiconductors, but this goes
beyond the scope of this lecture and is more fitting for a lecture in solid
state physics.

Let’s now consider a capacitor with dielectric placed between the plates,
similar to the situation shown in Figure 5.3, but without vacuum between
the dielectric and the plates. Here a definition of ϵr which is used to deter-
mine the value in practice becomes important. The relative permittivity is
given by the ratio of capacitance of the empty (vacuum) capacitor C0 and
the identical capacitor with the dielectric inserted:

ϵr =
C

C0

(5.19)

Based on the definition in Eq. 5.3 the empty capacitor will have charge Q0

and potential difference Φ0 given by

Φ0 =
Q0

C0

In the empty capacitor the surface charge density σ0 causes an electric field
E0 =

σ0

ϵ0
.

We now have to distinguish between two cases: 1) where the capacitor
is isolated and the charge is thus kept constant, and 2) where the capacitor
is connected to a power supply and the potential difference is kept constant.

In the first case the surface charge density will also be the same, thus
the D-field will be the same and the E-field will be reduced by a factor ϵr:

E =
E0

ϵr
=

σ0

ϵ0ϵr

The new voltage drop can be calculated from Eq. 5.3 and 5.19 and becomes

Φ =
Q

C
=

Q0

C0ϵr
=

Φ0

ϵr

Thus also the potential difference is reduced by a factor ϵr, which should
come as no surprise given that fact that the geometry is the same. It should
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be stressed again that the above equations are only valid for an isolated
capacitor.

For the second case, the power supply provides the charge needed to
keep the potential difference constant at Φ0. The charge on the capacitor
after inserting the dielectric then becomes

Q = Φ0C = Q0
C

C0

= Q0ϵr

The amount of charge thus increases by a factor ϵr and also the surface
charge density increases by the same factor: σ = σ0ϵr. We can now calculate
the E-field in the dielectric as

E =
σ

ϵ0ϵr
=

σ0ϵr
ϵ0ϵr

=
σ0

ϵ0
= E0

The E-field inside the dielectric is thus the same as in the empty capacitor.
It is easily verified that the D-field on the other hand increases by a factor
ϵr in this case. Again, it should be noted that these last derivation is only
valid for a capacitor connected to a power supply.

5.4 Electric energy

For applications it is useful to consider the energy that can be stored in a
capacitor or collection of charged objects. This will also allow us to calculate
the force exerted on the dielectric or between charged conductors.

To calculate the electric energy stored in a capacitor it is most straight-
forward to consider the work done in charging the capacitor. Let’s consider
a parallel plate capacitor as illustrated in Figure 5.5 with capacitance C and
distance d. An amount of charge q corresponds to a potential difference Φ
according to q = ΦC and a E-field E = Φ

d
. The force on a small additional

amount of charge dq between the plates of the capacitor is

F = dqE =
Φdq

d

The work done to move this charge against the potential Φ from one plate
to the other is

dW = Fdx =
Φdq

d
d = Φdq

The total work done to charge the capacitor with a charge Q then becomes

W =

ˆ Q

0

Φdq =

ˆ Q

0

qdq

C
=

Q2

2C
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Figure 5.5: Charging a capacitor

The energy stored in the capacitor is equal to the work done in charging it:

UE =
Q2

2C
=

1

2
CΦ2 =

1

2
QΦ (5.20)

Depending on what parameters are known any of the three expressions can
be used.

Without further evidence it will be stated that this result in Eq. 5.20
can in general be used for any charged object, or collection of objects. As
an example we consider the collection of three charges for which we derived
the mutual potential energy in Eq. 2.7. This equation can be rewritten as

U =
1

2
Q1

(
Q2

4πε0r12
+

Q3

4πε0r31

)
+
1

2
Q2

(
Q1

4πε0r12
+

Q3

4πε0r32

)
+
1

2
Q3

(
Q2

4πε0r23
+

Q1

4πε0r13

)
The term between the brackets is the potential Φi at the respective charge
outside the brackets Qi due to all other charges. The expression can thus
be summarised as

U =
1

2
Q1Φ1 +

1

2
Q2Φ2 +

1

2
Q3Φ3

or

UE =
∑
i

1

2
QiΦi (5.21)
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This has the same form as Eq. 5.20 and shows that the total electric energy
can be obtained by summation.

We now return to the capacitor with a dielectric between the plates to
determine how the dielectric changes the amount of stored energy. The
electric energy of the empty capacitor is according to 5.20: U0

E = 1
2
C0Φ

2
0.

Similar to the example described above we again have to consider the two
different cases: 1) the capacitor is isolated when the dielectric is inserted,
and 2) it is connected.

In the first case the charge is constant at Q0 and the electric energy
after inserting the dielectric becomes (5.20)

UE =
Q2

0

2C
=

Q2
0

2ϵrC0

=
1

ϵr
U0
E

The stored electric energy is thus reduced by a factor ϵr.
In the second case the potential is kept constant at Φ0 and the electric

energy with dielectric is

UE =
1

2
CΦ2

0 = ϵr
1

2
C0Φ

2
0 = ϵrU

0
E

The stored energy thus increases by a factor ϵr. This additional energy is
provided by the voltage source.

An isolated system will try to reduce the energy and the force between
charged objects can thus be determined from

F⃗ = −(∇UE)Q (5.22)

Where the subscript Q indicates that the derivatives are taken for constant
charge. We expand this now for the x direction, but similar expansions
hold for other coordinates and coordinate systems. Using UE = Q2

2C
from

Eq. 5.20 and realising Q is constant we obtain

Fx = −
(
∂UE

∂x

)
= −1

2
Q2∂

(
1

C

)
1

∂x
=

Q2

2C2

∂C

∂x

Thus

Fx =
1

2
Φ2∂C

∂x
(5.23)

Applied to the parallel plate capacitor we can now use this to calculate
the force between the plates. The capacitance is given by Eq. 5.5 and if
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we put this in Eq. 5.23 considering the spacing of the plates along the
x-direction, we obtain

Fx = −1

2
ϵ0A

Φ2

x2
= −1

2
ϵ0E

2A =
−σ2A

2ϵ0

It should come as no surprise that the plates attract each other with a force
that is proportional to the surface charge density squared multiplied by the
surface area.

For a connected system with constant potential difference the force can
be expressed as follows

F⃗ = +(∇UE)Φ (5.24)

The positive sign comes from the extra work done by the power supply and
the subscript Φ indicates the potential is kept constant. Using UE = 1

2
CΦ2

from 5.20 we obtain along the x-direction

Fx =

(
∂UE

∂x

)
=

1

2
Φ2∂C

∂x

Which is identical to Eq. 5.23. Which makes sense because regardless of
how a situation is reached, the forces in the steady state situation should
be the same. Thus in both cases the plates attract each other. It is left up
to the reader to calculate the force with which a dielectric is pulled into a
capacitor from the change of capacitance.

In some cases it is more useful or exact to calculate the electric
energy from the E-field. Here only the final equations will be stated
without further proof, in the lecture the derivation was shown

UE =
1

2
ϵ0

ˆ
τ

E2dτ (5.25)

Here τ is the region of interest in space. In a dielectric Eq. 5.25 changes to

UE =
1

2
ϵ0

ˆ
τ

ϵrE
2dτ (5.26)

or more formally

UE =
1

2

ˆ
τ

D⃗ · E⃗dτ (5.27)



Chapter 6

Electrical networks

In the previous chapters the static situation was considered on how electric
fields look and what their consequences are. In everyday life and for many
useful applications a current typically needs to flow through the respective
elements and we want to be able to manipulate this current. In this chapter
some of the basic physical concepts for creating an electric network are
considered. Many aspects are treated in more detail in other lectures.

The main idea of this chapter is that we want to have a useful current.
However, we have seen in Equation 4.11 that

¸
E⃗ · dL⃗ = 0, thus somewhere

works needs to be done to provide a useful current. This work is called
the electromotive force with units of Volt [V] and it is what we typically
consider when we connect a circuit to a power supply or battery. In the
rest of the lecture such a source will be assumed to be connected if needed.

6.1 Resistivity and conductivity

From experiments it follows that the current density flowing through a
material is directly proportional to the electric field applied across it. The
material specific proportionality constant is called the conductivity σ (not

to be confused with the surface charge density). Thus j⃗ = σE⃗, whereby
in the following we assume everything is collinear and we thus omit the
vectors for simplicity.

From Eq. 1.3 we know that in this case the total current is I = jA with
A being the cross-sectional area of the material. For this homogeneous E-
field we can also rewrite it in terms of potential difference ∆Φ according to
Eq. 3.12: E = ∆Φ

l
whereby l the length of the material is. Combining this

we obtain

I =
σA

l
∆Φ
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We now define the (macroscopic) conductance Σ of a material as

Σ =
σA

l
(6.1)

Meaning that I = Σ∆Φ. For most applications we are more interested in the
electrical resistance (units Ohm [Ω]) of a material, which is the reciprocal
value to the conductance: R = 1

Σ
. We then obtain a, probably familiar,

expression

I =
∆Φ

R
or ∆Φ = RI (6.2)

Which is known as Ohm’s law. For simplicity ∆Φ is often also replaced
by just Φ

Based on the definition of the resistance above, we can also define a
material specific parameter the resistivity ρ (not to be confused with charge
density).

ρ =
1

σ
=

RA

l

From this it is clear that the units of resistivity are Ωm.
More common is the reverse expression

R =
ρl

A
(6.3)

This allows us to calculate the resistance of a piece of material if we know
the area and length. It fits directly in with the experience that short, thick
cables have a lower resistance as long, thin ones.

Ohm’s law presented above is based on macroscopic observations and
does not explain the microscopic picture of why a material has a certain
conductivity, and thus resistivity. The first step in this direction is pro-
vided by the Drude model. Further refinements are based on quantum
mechanical considerations and are one of the topics of condensed matter
physics.

The Drude model is based on the distinction of the electron velocities
in a material in two different regimes: the ”real” or average velocity v, and
the drift velocity vd. The average velocity is the speed the electrons achieve
between collisions with each other or with defects in the crystal lattice. This
is on the order of 106 m/s, material dependent, and independent of whether
an E-field is applied or not. As indicated in Figure 6.1(a) it is oriented in
all directions and thus induces no net electron flow. The drift velocity on
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Figure 6.1: Drude model. a) Electron trajectories without applied field. b)
Electron trajectories with E-field applied.

the other hand is induced by the E-field and also has a direction dictated
by the field, as indicated in Figure 6.1(b). It is on the order of 10−4 m/s.

There is a material dependent average mean free path between collisions
λ (has nothing to do with line charge density), which leads to an average
time τ between collisions of

τ =
λ

v
During this time the E-field can accelerate the electron according to

a =
eE

m

Where m the effective mass of the electron in the given material. The drift
velocity after a time τ becomes

vd = aτ =
λeE

vm

The current flowing through the material due to the applied E-field is the
density of electrons n with this drift velocity times their charge and velocity

j = nevd =
ne2Eλ

2mv

Where the factor 1
2
comes from the fact that the average drift velocity is

half the maximum drift velocity.
We also know that j = σE which leads to the following expression for

the conductivity

σ =
ne2λ

2mv
(6.4)
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In this expression, n, λ, m, and v are all material dependent. This thus
directly explains why the conductivity of different materials is different, and
it even explains the temperature dependence of conductivity through the
temperature dependence of λ. However, to explain why different materials
have different parameters and how they can be determined, goes far beyond
the scope of this course.

6.2 Kirchhoff’s laws

The Kirchhoff laws are probably familiar to any student of this course. Here
only their physical background will be shortly explained.

The first Kirchhoff law that the sum of all currents at a given point
equals zero, or ∑

i

Ii = 0 (6.5)

is based on the conservation of charge. Whatever amount of charge goes
into a given point also has to exit again.

The second Kirchhoff law states that the sum of all voltage sources is
equal to all voltage drops over elements. Or that the sum of all potential
drops is equal if we consider the electromotive force being a potential drop
in the opposite direction. This can be expressed as∑

i

∆Φi = 0 (6.6)

This law is based on the path independence of potential difference.
These two laws can be used to derive the current, voltage, or resistance

at any point in a network of resistors. One of the main results is the
determination of the equivalent resistance R′ for a combination of resistors.
For resistors in series this leads to

R′ =
∑
i

Ri (6.7)

For resistors in parallel one obtains

1

R′ =
∑
i

1

Ri

(6.8)

It should be noted that this is opposite to the situation for capacitors in
Eq. 5.7 and 5.8.



6.3. COMBINATION OF CAPACITOR AND RESISTOR 61

6.3 Combination of capacitor and resistor

The combination of a capacitor and resistor is an important element in
many electrical networks. Here we will only consider the DC case, but also
in AC networks this combination plays a crucial role. The main use is in
signal shaping and in making filters.

Figure 6.2: Simplest scheme of a resistor and capacitor. The situation for
charging a capacitor is shown.

In Figure 6.2 the simplest possible set-up of a resistor-capacitor (RC)
combination is shown. We will first consider the case of charging the
capacitor. To this means the switch S will be closed at time t = 0 and a
current can flow to charge the capacitor.

To determine how the charge on the capacitor changes as a function of
time we start with Kirchhoff’s second law applied to the circuit, leading to

Φ0 − ΦC −RI = 0

Where ΦC is the potential drop over the capacitor. It also applies that
ΦC = Q

C
and thus

dΦC

dt
=

dQ
dt

C
=

I(t)

C
Combined this leads to the following expression

Φ0 − ΦC −RC
dΦC

dt
= 0

Which can be rewritten as a separable differential equation

d (Φ0 − ΦC)

Φ0 − ΦC

= − dt

RC
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Integration yields the solution ln (Φ0 − ΦC) =
−t
RC

+K with K a constant.
By considering that for t = 0, ΦC = 0 this constant can be determined as
K = lnΦ0. Put together this gives the following behaviour of the voltage
over capacitor as a function of time

ΦC(t) = Φ0

(
1− e

−t
τ

)
, τ = RC (6.9)

With Q(t) = CΦC(t) we can now determine the charge on the capacitor as
function of time. This shows a trend as displayed in Figure 6.3 at the top,
reaching a maximum value of CΦ0.

Figure 6.3: Behaviour of the charge (top) and current (bottom) when charg-
ing a capacitor.

From the voltage also the current needed to charge the capacitor as a
function of time can be determined:

I(t) = C
dΦC

dt
=

Φ0

R
e

−t
τ (6.10)

This shows an exponential decay as displayed in Figure 6.3 at the bottom.
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In Equations 6.9 and 6.10 τ = RC is the characteristic time constant
for the circuit. It is a measure of how long it takes to charge the capacitor.
It should be noted however that a truly fully charged capacitor is obtained
only after infinite time.

The behaviour when discharging a capacitor can be obtained along
similar lines. In this case the power supply is removed from Figure 6.2, the
capacitor is charged with an initial charge Q0, and at t = 0 the switch is
closed to let the capacitor discharge over the resistor. Equation 6.6 now
yields that RI +ΦC = 0, which, with the same substitutions as above, can
be rewritten as

dΦC

ΦC

=
−dt

RC

This can also be solved by integration. Taking into account the boundary
condition that the voltage at t = 0 is Φ0 = Q0

C
the potential difference of

the capacitor as function of time becomes

ΦC(t) = Φ0e
−t
τ , τ = RC (6.11)

The current shows the same exponential decay as when charging a capacitor
and is

I(t) =
Φ0

R
e

−t
τ

The time constant τ of discharging a well calibrated capacitor can be
used to precisely determine the value of the resistor. Furthermore, cyclical
charging and discharging a capacitor can be used to create a saw-tooth
shaped current signal.



Chapter 7

Magnetostatics

All the previous chapters dealt with the properties of electrostatic interac-
tions. The Coulomb law served as a fundamental law from which we could
derive other properties, such as the E-field and potential. Static charges are
the source, or basic element, of electric fields and all fields can, in principle,
be obtained by a superposition of charges. We will now turn to magnetic
interactions and see that there are many similarities, but also some crucial
differences.

The main difference is that there is no magnetic equivalent to the point
charge. This would be a magnetic monopole, just like a point charge is half
a dipole, but magnetic monopoles have never been identified and physicists
still argue whether they can exist at all. Consequently, there is also no
magnetic equivalent to a conductor.

The most important similarity is that both electric and magnetic in-
teractions can be described by vector fields; the E-field and the B-field.
We will therefore start from the B-field and expand from there. The most
straightforward way is now to look at different objects or units and deter-
mine the magnetic field they produce. Further we will consider how they
react to a B-field and which force they experience.

7.1 Current element as basis for B-field

Hans Christian Oersted was in 1820 the first to observe that a current
carrying wire influences the needle of a compass. Based on this initial
observation Andre Ampère performed more detailed experiments. He found
that the needle of a compass indeed circles around a current carrying wire
as illustrated in Figure 7.1, following a right hand rule type of pointing
direction. More importantly he also determined the force on a small current

64
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carrying test wire as a function of relative orientation and position with
respect to the main wire. This showed that a current element Id⃗l is a
source of a magnetic field, but also responds to it, just like in electrostatics
a point charge is both a source of, and influenced by, a E-field.

Figure 7.1: Charge of compass needle pointing direction around a current
carrying wire.

The findings of Ampère can be summarised as follows. The force the
test wire experiences is proportional to the current running through it.
The force is perpendicular to the current element: F⃗ ⊥ Id⃗l. It is also
perpendicular to the magnetic field produced by the big wire (as measured

by the compass): F⃗ ⊥ B⃗. And it scales with sine of the angle between
current and field. Putting all this together yields

dF⃗ = Id⃗l × B⃗ (7.1)

Whether the B-field originates from another wire or from any other source
is not important. From the vector product it is directly clear that this is
not a central force and thus also can’t be conservative.

We can now use this result to calculate the force on a current circuit in
a homogeneous B-field. For simplicity we consider the square circuit shown
in Figure 7.2, but the result is valid for a “closed” circuit of any shape.
Based on Eq. 7.1 the total force on the circuit is given by

¸
Id⃗l × B⃗. In

sections 1 and 3 the current element is (anti)parallel to the B-field and the
force is thus zero: F1 = −F3 = 0. The force on section 2 is F2 = IaB and
the force on part 4 is F4 = −IaB. The total force is thus zero. However,
similar to a dipole in an E-field, the opposite forces F2 and F4 induce a
torque on the circuit. This torque is given by

T⃗ = IA⃗× B⃗ (7.2)
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Here A⃗ is the vector normal to the circuit with a magnitude given by the
circuit area. In the square example this thus becomes abe⃗n whereby the
direction of e⃗n is given by applying the right hand rule to the current cir-
culation.

Figure 7.2: Square current circuit in a magnetic field.

This torque on a current carrying circuit in a B-field can be used for a
variety of applications. The most prominent ones are a galvanometer, and
similar measurement devices, where the torque as function of the current
directly allows to let a needle indicate the magnitude of the current. The
other example is a stepper motor, which is often used when precise move-
ments are required. In this case the current special periodic shape to allow
the current carrying circuit to make full rotations.

In the discussion above we considered the influence of a B-field on a
current element, here we will now look at the B-field created by a current
element. The central law in this respect is the law of Biot-Savart which
states

dB⃗ =
µ0Id⃗l × r̂

4πr2
(7.3)

Here µ0 is the permeability of free space and µ0 = 4π × 10−7.

During the lecture it will be explained how Equation 7.3 can be used to
determine the B-field generated by several current carrying objects. Here
only the final results will be given.
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A single loop with radius R at a distance x from the centre along the
axis of the loop:

Bx =
µ0IR

2

2 (x2 +R2)
3
2

and By = Bz = 0 (7.4)

Inside a solenoid with n windings per unit length:

Bx = µ0nI and By = Bz = 0 (7.5)

The B-field inside the solenoid is homogeneous and independent on the
radius of the windings.

Due to a straight wire:

B⃗ =
µ0I⃗ × r̂

2πr
(7.6)

This is the B-field as characterised by Oersted and Ampère.

Figure 7.3: Force between two wires

We can now use these results to calculate the force between two straight
wires carrying currents I1 and I2 as illustrated in Figure 7.3. When substi-
tuting Eq. 7.6 in 7.1 and integrating over the length l we obtain

F⃗ =
µ0lI⃗2 ×

(
I⃗1 × r̂

)
2πr

(7.7)

If we consider only parallel wires and consider the direction of the force
from the right part of Figure 7.3 this can be simplified to

F =
µ0I1I2l

2πr
(7.8)

Here it should be realised that opposite currents repel and like currents
attract each other.
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7.2 Moving charges and B-fields

An electrical current is, as we know, composed of moving charges. We can
thus use the results derived above to determine the force of the B-field on
a moving charge, and the B-field created by a moving charge. In order to
do so we can express the current element above as Id⃗l = nqv⃗. Here n is the
number of charges and in the following we want to derive expressions for a
single charge and thus set n = 1.

If we enter this substitution in the law of Biot-Savart in Eq. 7.3 we
obtain the following B-field due to a single moving charge

dB⃗ =
µ0qv⃗ × r̂

4πr2
(7.9)

Thus any moving charge creates a B-field which moves along with the
charge. As we will see below every moving charge also experiences a force
due a magnetic field and this is what counteracts the (expansive) Coulomb
interaction in a beam of moving electrons.

To determine the force on a moving charge in a B-field we substi-
tute Id⃗l = qv⃗ in Ampère’s law in Eq. 7.1 to obtain

F⃗ = qv⃗ × B⃗ (7.10)

This is known as the Lorentz force.
For a charged particle moving parallel to the magnetic field, the force,

and thus also the acceleration, is zero. If the velocity is perpendicular to
a homogeneous magnetic field, the Lorentz force is perpendicular to both
velocity and B-field. Because also the resulting acceleration is perpendicular
to the velocity, the magnitude of the velocity will be constant. Only the
direction of the velocity will change. In a large enough field the charge will
describe a circular motion as illustrated in Figure 7.4, where the acceleration
is given by a = v2

r
, with r the radius of the circle. Using that F = qvB = ma

we can rewrite this obtain the radius of the circle

r =
mv

qB
(7.11)

If the extension of the field is smaller as the diameter of the circle, this
radius represents the local curvature of the path.

This radius can be used to identify, or select, particles based on their
charge to mass ratio. One example of this is the bubble chamber for the
identification of subatomic particles. Further the separation of radioactive
isotopes can also be performed by a magnetic field and formed the basis for
the uranium enrichment plant in Oakridge in 1944.
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Figure 7.4: Charged particle with velocity perpendicular to homogeneous
B-field.

In the general case of a charged particle with non-zero velocity in a
homogeneous B-field the velocity component parallel to the field is not
affected, whereas the perpendicular component will form a circle. The
particle will thus describe a spiral path. The time for one circle is according
to Eq. 7.11

t =
2πr

v
=

2πm

qB

The pitch of the spiral x∥ then becomes

x∥ = v∥t =
2πmv∥
qB

In non-homogenous B-fields the trajectory of a charged particle becomes
a distorted spiral in a very general sense. Well shaped magnetic fields can
actually be used to trap particles with a given initial velocity and charge
to mass ratio. In the earth’s magnetic field cosmic charged particles are
deflected to the poles and some of them are trapped going back and forth
between the north and south pole, forming the Van Allen belt.
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7.3 Combinations of B- and E-fields

To determine the force on a charged particle with velocity v⃗ in a combination
of an E- and B-field we can simply sum Eq. 3.14 and 7.10 to obtain

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
(7.12)

This expression is generally valid for any combination of velocity and fields.
For simplicity we will here limit ourselves to the case that the electric field
and the magnetic field are perpendicular to each other.

Figure 7.5: Combination of E- and B-field to form a velocity filter.

Consider the situation illustrated in Figure 7.5, with the coordinate
system as indicated. Both the E- and B-field only induce a force along the
y direction, and with the indicated relative orientation their contributions
to the force are opposite. The total force along the y direction then becomes

Fy = q (E − vxB)

A special case arises when

vx =
E

B

In this case also Fy = 0 and thus the total force on the charge is zero
and it will travel straight independent of the charge q. This is the working
principle of a velocity filter for charged particles.
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For charged particles in free space the influence of E- and B-fields can
in a very general sense be summarised as follows. An E-field determines
the kinetic energy, a B-field determines the momentum, and a combination
of both determines the velocity.

An important application of combined fields is the Hall effect. Here a
magnetic field is applied perpendicular to a slab of material with thickness
t through which a current I flows. The charges q will have drift velocity vd
either in the direction of the current or in the opposite direction, depending
on whether q is positive or negative. Because also the resulting force F⃗ =
qv⃗d × B⃗ depends on the sign of q the charge carriers will always be pushed
in the same direction. This creates an charge imbalance, and thus potential
difference, between the two sides of the sample. The sign of this potential
difference will depend on sign of q and can be used to determine whether
the current flows as (negative) electrons, or as (positive) missing electrons
which are termed holes.

Furthermore, the relationship between the current, the applied B-field,
the thickness of the sample, and the resulting potential difference can be
derived to be

∆Φ =
BI

nqt

Here n is the carrier density according to the Drude model in Eq. 6.1.
Because the charge can only be e− or e+ and the other parameters are
known, the Hall effect can also be used to determine the carrier density in
a material.

7.4 Magnetic dipole

In section 3.4 we encountered the electric dipole, consisting of opposite
charges at a small distance, as an important building block for electrostatics.
Here the magnetic dipole will be introduced. Their behaviour in an E-field,
respectively B-field will be very similar and also the shape of the field they
produce is identical.

An important example of a magnetic dipole is a small current loop.
Based on the use of current elements as the basis of a B-field, a dipole
would be two opposite current elements, and a loop is exactly such a con-
tinuous collection of opposite current elements. The shape of the loop is
not important, but typically one considers it as circular.

In the discussion surrounding Figure 7.2 we saw that the force on a
current loop in a homogenous magnetic field is zero and that the loop
experiences a torque as described in Eq. 7.2. If we now define themagnetic



72 CHAPTER 7. MAGNETOSTATICS

dipole moment m⃗ as

m⃗ = IA⃗ (7.13)

with I and A⃗ as defined for Eq. 7.2. With this definition the similarity
with the expressions for the electric dipole becomes directly clear. All the
properties for the magnetic dipole can be derived by replacing B⃗ for E⃗, m⃗
for p⃗, and 1

µ0
for ϵ0.

Figure 7.6: B-field of a magnetic dipole.

The torque becomes

T⃗ = m⃗× B⃗ (7.14)

The force on a dipole in a B-field is

F⃗ = (m⃗ · ∇) B⃗ (7.15)

Consequently the potential energy of a magnetic dipole in a magnetic field
becomes

U = −m⃗ · B⃗ (7.16)

The B-field due to a magnetic dipole, decomposed in a radial and tangential
component, is given by

Br =
2µ0m cos θ

4πr3
(7.17)

Bθ =
µ0m sin θ

4πr3
(7.18)
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This has exactly the same shape as the E-field of an electric dipole as shown
in Figure 7.6.

Also a small permanent magnet is a magnetic dipole and can’t be
distinguished from a small current loop based on the behaviour in a external
field, nor on the field it creates. In this case the dipole moment is related
to the magnetisation of the material. More on this topic will be discussed
in a later chapter.

7.5 Ampère’s circuital law

In the treatment of electrostatics we saw the usefulness of general laws such
as Gauss’s law. In magnetostatics this role is taken by Ampère’s circuital
law.

Figure 7.7: Illustration of Ampère’s circuital law.

Consider a circuital path around a current carrying wire as illustrated
in Figure 7.7. We know from Eq. 7.6 that the tangential magnetic field is
given by

Bθ =
µ0I

2πr
If we now integrate this B-field along the path L we obtain˛

L

B⃗ · dL⃗ = BθL =
µ0I

2πr
2πr = µ0I

Although this appears to be a special case, this result is valid for any
closed path of whatever shape and angle relative to the wire. Based on the
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superposition principle of fields, it is also valid if several wires are encircled.
This leads us to formulate Ampère’s circuital law as follows

˛
B⃗ · dL⃗ =

∑
i

µ0Ii (7.19)

As we will see later, we have to be careful with what encircled current
means. If we draw the closed path around some current carrying wires,
the idea is clear, but there are situations where a more formal definition
is required. In this case we should integrate the current density j⃗ over the
surface S of which the closed path forms the boundary. This means that

˛
B⃗ · dL⃗ = µ0

¨
S

j⃗ · dS⃗ (7.20)

Which can also be expressed in differential form as

∇× B⃗ = µ0j⃗ (7.21)

This law again shows that currents are the source of magnetic fields.
In the lecture it will be shown how Equations 7.19 and 7.20 can be used

to easily determine the magnetic field of current carrying objects.

It is also possible to formulate Gauss’s law for B-fields, although it
has much less importance as for E-fields. Independent of whether the source
is a current element, a dipole, or a permanent magnet the total flux of the
B-field over any closed surface is always zero. Thus

‹
B⃗ · dS⃗ = 0 (7.22)

∇ · B⃗ = 0 (7.23)

This represents the absence of sources and sinks for magnetic field lines; they
always close on themselves. Or in other words it represents the absence of
magnetic monopoles.

7.6 Vector potential

Because the force due to a magnetic field is not conservative, the work done
does depend on the path taken. It is therefore of only very limited use to
define a scalar potential for the magnetic field in a similar way as we did
for the E-field. Another problem becomes clear in the presence of currents
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if we do consider a scalar potential given by B⃗ = −∇ΦB. When we take
the curl of both sides of this expression we get ∇ × B⃗ = µ0j⃗ for the left
side and −∇ × ∇ΦB = 0 for the right side. This shows that ΦB becomes
almost meaningless in the presence of a current, which we know to be the
source of B⃗ and thus of very limited (or no) use.

The reason we could define a scalar potential for the E-field was that
∇× E⃗ = 0. For the B-field we have a similar situation with regard to the
divergence (∇ · B⃗ = 0) and we can make use of this to define a potential

given by a vector field, the so-called vector potential A⃗. The definition of
the vector potential is

B⃗ = ∇× A⃗ (7.24)

Whereas for E-fields any constant added to the scalar potential field
gives the same E⃗, we can add any gradient of a scalar field to A⃗ and obtain
the same B-field. The definition of the vector potential in Eq. 7.24 gives
us freedom in the choice of both A⃗ and ∇ · A⃗. One typical choice for the
latter is ∇ · A⃗ = 0, but other choices can be made.

As an example, let’s consider what could be a suitable vector potential
for a current element. Starting with Eq. 7.3 and rewriting −r̂

r2
= ∇1

r
we

obtain for the B-field of a circuit

B⃗ = −
˛

µ0I

4π
d⃗l ×∇1

r

With

−d⃗l ×∇1

r
= ∇× d⃗l

r
− 1

r
∇× d⃗l

and that ∇× d⃗l = 0 this becomes

B⃗ = −
˛

µ0I

4π
∇× d⃗l

r

after reversing the order of differentiation and integration we get

B⃗ = ∇×
˛

µ0Id⃗l

4πr
(7.25)

Now we can compare Equations 7.25 and 7.24 to get an expression for the
vector potential, yielding

dA⃗ =
µ0Id⃗l

4πr
(7.26)

The main thing we learn from Eq. 7.26 is that the field lines of the vector
potential are typically parallel to d⃗l and that this is a suitable choice of A⃗ .
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7.7 Angular momentum and precession of a

dipole

One important difference between magnetic dipoles and electric dipoles is
that all magnetic dipoles also have angular momentum. This is most clearly
illustrated by a current loop with radius r. There are particle (electrons)
with mass me and angular velocity ω circling around, yielding an angular
momentum of L⃗ = mer

2ωên. We can also describe the (circular) current
as number of charges that pass by per second and thus as I = eω

2π
. If we

combine this expressions with the definition of the dipole moment in Eq.
7.13 we obtain

m⃗ = IA⃗ =
eω

2π
πr2ên =

1

2
er2ωên

Which can be rewritten based on the angular momentum as

m⃗ =
e

2me

L⃗

Using the gyromagnetic ratio γ we obtain the following expression for
the general case as

m⃗ = γL⃗ (7.27)

For a current loop γ = e
2me

. Which is also valid for an electron circling
around an atom.

Most elementary particles also have an intrinsic magnetic dipole mo-
ment, and thus also angular momentum, which is called the spin. In this
case it is common to use the Landé g-factor instead of the gyromagnetic
ratio. The relationship between them is

g =
2me

e
γ

For an electron around an atomic core g = 1, but for a free electron the
intrinsic magnetic dipole moment creates the situation that g = 2. For
other elementary particles g takes other values.

Whereas an electric dipole will turn to align to an external E-field, the
angular momentum of a magnetic dipole will make it precess around a
B-field. This is similar to the recession of a spinning top in the earth grav-
itational field. The frequency of precession is called the Larmor frequency
νL and it depends on the applied magnetic field as follows

νL =
−γ

2π
B
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In magnetic resonance imaging (MRI) techniques this frequency is mea-
sured. From this the gyromagnetic ratio can be determined, which in turn
gives insight in the atomic composition.



Chapter 8

Induction

In the previous chapters we have derived the most important properties of
static electric and magnetic fields. In the central equations representing
the circuital laws and Gauss’s laws we see that for this steady situation the
E- and B-fields are decoupled. One of the main results of this chapter will
be that this decoupling is lifted for fields that vary as a function of time.
Especially, a changing B-field will induce an electrical field which can be
used for applications.

8.1 Electromagnetic induction

Central to the understanding of induction is the concept of the flux of a
magnetic field. Analogous to the situation for an E-field illustrated in
Figure 4.1 and Eq. 4.2, we can define the flux of a B-field as

φm =

ˆ
A

B⃗ · dA⃗. (8.1)

From this equation it is clear that φm changes either when the B-field
changes, the area changes, or the relative orientation of B⃗ and dA⃗ changes.

Let us start with the example illustrated in Figure 8.1 of a conductor
with length l⃗ moving with velocity v⃗ in a constant homogeneous B-field.
All the charges in the conductor will feel a Lorentz force according to Eq.
7.10 which will separate the charges according to their charge in different
directions. This charge imbalance will induce a potential difference, which
we can calculate from the E-field. According to the definition of the E-field
in Eq. 3.1 the field due to the Lorentz force will be the following

E⃗ =
F⃗

q
=

qv⃗ × B⃗

q
= v⃗ × B⃗

78
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Figure 8.1: Moving conductor in a B-field.

If we now take the situation illustrated in Figure 8.1 where B⃗ ⊥ v⃗ ⊥ l⃗ then
E = vB and the potential difference between the two ends of the conductor
becomes

∆Φ = El = Bvl

Note that the E-field and potential difference in this case are not due to
static charge, but more closely related to the electromotive force in Chapter
6.

Another way of looking at this problem is by realising that in a time
dt the conductor has moved a distance vdt and given the length of the
conductor this is equivalent to an area A = vldt. Thus the magnetic flux
cut by the conductor in a time dt is

dφm = BA = Bvldt

From the previous result we know that ∆Φ = El = Bvl and thus that

∆Φ = −dφm

dt
(8.2)

Here the minus sign comes from the relative orientation of the conductor,
velocity, and B-field. This equation is generally valid, although we only
derived it for a specific case, and can be used to determine the induced
voltage due to any change in magnetic flux as a function of time. It is often
referred to as Faraday’s law of electromagnetic induction.

We can now apply this expression to the circuit of changing size illus-
trated in Figure 8.2. An external force F⃗app moves the (green) sliding part of
the circuit to the right with a velocity v. The flux of the constant magnetic
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Figure 8.2: A circuit which changes in size in a homogeneous and constant
magnetic field.

field through the circuit is φm = Blx and the change is flux as a function
of time becomes

dφm

dt
= Bl

dx

dt
= Blv

According to Eq. 8.2 the induced potential difference, or electromotive force
is thus

∆Φ =
dφm

dt
= Blv

This will potential difference will let a current flow through the circuit in
the direction as indicated in the figure. In the B-field this current will
experience a force F⃗B trying to move the sliding conductor against the
original direction.

That the system with induction forms a negative feedback loop where
the induced current opposes the original motion is a very general result and
valid for any magnetic induction effect. It is often referred to as Lenz’s law
which states that: the direction of any magnetic induction effect is such as
to oppose the cause of the effect.

From this it directly follows that one of the many applications of mag-
netic induction is to stop or damp motion. This is called a Eddy current
break. Furthermore, almost any generator is based on magnetic induction.
An external force, such as water power, is used to rotate a circuit in a fixed
B-field, resulting in an alternating current. Further important applications
of induction are the microphone and magnetic tape read head.

Here we used Eq. 8.2 to consider moving conductors, but the same
expression can be used for any other reason why the flux changes. This can
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be a varying B-field, or when the relative orientation of circuit and B-field
changes.

In the previous discussion we have focussed on the potential difference
induced by a changing magnetic flux, here we will make the link to the
electric field. From Eq. 3.7 we know that the E-field and the potential
difference are related and if we now consider the potential difference going
around a closed circuit, as induced by a changing magnetic flux, we obtain

∆Φ =

˛
L

E⃗ · dL⃗ = −dφm

dt

Using the definition of the magnetic flux in Eq. 8.1 we can rewrite this as
˛
L

E⃗ · dL⃗ = − d

dt

¨
A

B⃗ · dA⃗ (8.3)

This extension of the circuital law is called Faraday’s law. It is generally
valid, both in vacuum and in a material. If no time varying magnetic flux
is present then it reduces back to Eq. 4.11. It should be noted that in the
presence of a varying magnetic flux the E-field is no longer conservative.
Many expressions and conclusions that were based on this assumption can
thus not necessarily be used in this case.

During the lecture it will be shown how the differential form of Equa-
tion 8.3 can be derived. Here it suffices to just give the final result

∇× E⃗ = −∂B⃗

∂t
(8.4)

8.2 Inductance

In the previous chapter we have seen that every current creates a magnetic
field. For a current carrying circuit it is easy to realise that this magnetic
field has a flux through the circuit which is also proportional to the current:
φm ∝ B⃗ ∝ I. We now define the self-inductance L as the proportionality
constant between current and flux:

φm = LI (8.5)

By definition self-inductance is always positive. It has the unit Henry [H]
and is just like capacitance primarily dependent on the geometry. This is
the same L as encountered in AC networks, where in combination with a
resistor and capacitor it becomes a band pass filter.
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If we now apply Eq. 8.2 and take into account that the self-inductance
is not time dependent we obtain that

∆Φ = −L
dI

dt
(8.6)

This expression represents that a varying current will cause a changing
magnetic flux and thus induce a potential difference. As a result of Lenz’s
law, this voltage drop is opposite to the applied voltage difference to let
the current flow. In other words, the self-inductance will create a current
which opposes the original current and can thus be regarded as an extra
resistance.

To summarise, self-inductance is an internal resistance against changes
in the current. Because every current carrying element causes a magnetic
field and also partly picks up the flux of this field, this resistance can’t be
avoided. Even a simple single wire of length x has a self-inductance of
L = µ0x

8π
or 1

20
µH per meter.

The most obvious example of an object to calculate the self-inductance
is the solenoid. We consider a solenoid or coil with n windings per meter,
and area A, and length l. Using the B-field from Eq. 7.5 we can calculate
the flux cut per winding

φn = BA = µ0nIA

There are a total of nl windings, thus the total flux becomes φtot = µ0n
2lAI.

From the definition in Eq. 8.5 we can now calculate the self-inductance of
a solenoid as

L =
φtot

I
= µ0n

2lA (8.7)

During the lecture it will be shown how to calculate the self-inductance of
a co-axial cable.

Along similar lines as a circuit will induce a magnetic flux through itself,
it can also cause a flux through another circuit. The relation between the
current in one circuit and the flux trough another is called the mutual in-
ductance M . In general this is only determined by the geometry and thus
the mutual inductance is the same whichever way we look at the problem.
It is thus defined as

φ2 = MI1 and φ1 = MI2 (8.8)
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If we now want to determine the potential difference induced in circuit
number 2 due a changing current in circuit 1 we obtain

∆Φ2 = −dφm

dt
= −M

dI1
dt

(8.9)

And the same is valid in reverse. It should be noted that also the mutual
inductance has the unit Henry.

Figure 8.3: Ideal transformer where the same flux passes through both coils.

For the general case of coupled circuits we have to consider how strong
the coupling between the circuits is, based on how much of the flux from
one circuit can pass through the other. This is referred to as the coefficient
of coupling k which has a maximum value of 1, and is defined as

k =
M√
L1L2

(8.10)

Here we will only consider the ideal situation of k = 1 for simplicity, but
the general argument will not change.

In Figure 8.3 and ideal transformer is shown consisting of a primary
coil with n1 windings and a secondary coil with n2 windings. The working
mechanism is that an alternating current and voltage in the primary coil
will create a varying magnetic flux in the secondary coil, which will induce
a potential difference and current there. Through using a magnetic core,
as will be explained in the next chapter, k = 1 and thus the same flux
φm passes through both coils. The total flux passing through coil 1 is
φ1 = n1φm and through coil 2 φ2 = n2φm. Thus the potential difference
Φ1 = −n1

dφm

dt
, but through the other coil it passes in the other direction

and Φ2 = n2
dφm

dt
. If the coupling were not perfect, this would have to be
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multiplied by k. The ratio of the voltages on the primary and secondary
coil now becomes

Φ2

Φ1

= −n2

n1

Here the minus sign indicates the phase difference between the two signals.
Because the energy can’t increase, the current has to decrease in a similar
fashion and

I2
I1

=
n1

n2

Transformers are used to reduce or increase the voltage of an AC signal
and are encountered when making the step down from high voyage power
lines to the house grid, but also from the grid to, for example, a laptop
computer. The ideal transformer for a given application depends on factors
such as the operating frequency and expected load. However, these issues
are beyond the scope of this course.



Chapter 9

Magnetism in materials

In the previous chapters we have only considered the magnetic field in vacuo,
here we will consider what happens to the magnetic field in a medium.
There will be some similarities to the discussion of the electric field in
dielectric materials in Chapter 5, but there will also be some important dif-
ferences. The first is that due to the non-existence of magnetic monopoles
in nature, there is no magnetic equivalence to a conductor, and the pre-
sented theory will have to be valid for all types of materials. Furthermore,
in the discussion of dielectrics we could, for sake of simplicity, ignore any
non linear or temperature dependent effects. If we would do the same for
magnetic materials we would bypass the most prominent member of the
family; the ferromagnets, which are commonly referred to as magnets.

9.1 Magnetic fields in materials

In general the B-field is zero in materials in the absence of an external
magnetic field, except in the case of ferromagnets which will be discussed
in more detail later. We also know that currents are the source of an
external B-field, for example in a solenoid. Now the question becomes how
the magnetic field is influenced by the presence of a material.

The most straightforward approach is to consider how the inductance
of a coil is changed when we insert a material, a so-called core, in it. The
inductance without a core is L0 and the inductance with a core is changed
to Lm = µrL0. Here µr is the relative permeability which is this defined
as

µr =
Lm

L0

(9.1)

85
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By definition µr = 1 for vacuum. In typical materials it take values ranging
from 0.9 to 107. In dielectrics the equivalent parameter is the relative
permittivity as can be seen from the definition in Eq. 5.19.

From Eq. 8.5 we know that the flux φm = LI, and if we now consider
the solenoid with the same current before and after inserting the core we
obtain

φm

φ0

=
LmI

L0I
= µr

If the magnetic flux is changed and the area stays the same, it means that
also the mean magnetic field is changed accordingly: Bm

B0
= µr. Or more

formally

B⃗m = µrB⃗0 (9.2)

In section 5.3 we saw that in a dielectric the electric field is reduced by a
factor ϵr and that all equations change accordingly. For a magnetic field in
a medium the field and all related equations are increased by a factor µr.

In everyday language we can for example say that ”iron becomes mag-
netised”, but what do we mean by this? Here we can again make the link
to dielectrics where we defined the polarisation of a material through the
collection of electric dipole moments in the material. We can now define the
magnetisation M⃗ of a material as magnetic dipole moment per volume

M⃗ =
dm⃗

dτ

We will expand on the nature of magnetic dipoles in a material in the
next section. This magnetisation causes a magnetic field B⃗M by itself, just
like the polarisation causes a E-field, and the total magnetic field inside a
material becomes

B⃗ = B⃗0 + B⃗M

Similar to the introduction of the D-field in section 5.3, we can now
introduce the magnetic field strength or the H-field.

H⃗ =
B⃗

µ0

− M⃗ (9.3)

The currents that we considered in the previous chapters are the sources of
the H-field and Ampere’s circuital law thus becomes˛

H⃗ · dL⃗ = I (9.4)

∇× H⃗ = j⃗ (9.5)
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The B-field can be referred to as the magnetic flux density and this
name already implies that Gauss’s law for magnetic fields in Eq. 7.23 applies
to the B-field, also in materials. On the other hand, when using Ampere’s
circuital law in the presence of a material one has to use the H-field and
thus Eq. 9.5. The reason for this goes beyond the scope of this lecture, but
when carefully applied this provides the procedure to solve many magnetic
problems involving materials.

To clarify the situation further let us consider a solenoid with a fixed
current. The H-field inside the solenoid does not depend on the material
which is inserted and is always nI (follows from circuital law Eq. 9.5).
However, the B-field changes with µr depending on the material. This is
similar to a capacitor with fixed voltage; the E-field will be independent of
the material inserted, but the D field will change with the factor ϵr. Now we
consider the same solenoid but with materials with different µr (or partly
air), which is the problem of the electromagnet, but also generally valid
for interfaces. Because no flux leaves the system, the magnitude of the B-
field is the same in all parts (but different from the empty solenoid), and
the magnitude of the H-field thus changes across interfaces. Similarly, if we
take a capacitor with different dielectrics the magnitude of the D-field will
be the same everywhere (but different from the empty capacitor) and the
magnitude of the E-field changes at the interface according to the material.

As will be explained below, the important point is thus to distinguish
interfaces between materials (B is constant and H changes), and what hap-
pens when you insert a material in a solenoid (H is constant and B changes).
A handwaving way to describe it is that once the solenoid system is defined
by the current and all materials present, the magnitude of the B-field is the
same everywhere in space, but this value of the B-field depends on what
materials are present.

The relationship between field and magnetisation, or how easily the
material can become magnetised, is given by the magnetic susceptibility
χm according to

M⃗ = χmH⃗ (9.6)

If we now rewrite Eq. 9.3 and insert the above expression we obtain

B⃗ = µ0

(
H⃗ + M⃗

)
= µ0 (1 + χm) H⃗

An alternative definition for the relative permeability, along the lines of Eq.
5.17, is

µr = 1 + χm (9.7)
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Thus we obtain for the B-field

B⃗ = µ0µrH⃗ (9.8)

Again the similarity, and differences, with respect to the case for dielectrics
described in Eq. 5.18 should be noted.

Equation 9.8 is always valid, also in vacuum where it becomes B⃗ = µ0H⃗.
The relative permeability can be very complex. Apart from orientational
dependence and inhomogeneities, which will not be discussed here, it can
be a function of temperature, H-field, and even of history. This will be
discussed in the next section.

Figure 9.1: Magnetic screening at an interface.

Before giving an explanation of the responses of different types of ma-
terial in a magnetic field, it is useful to consider what will happen at the
interface between two materials with different µr. In Figure 9.1 such an
interface between material 1 and 2 is displayed. We can first apply Gauss’s
law for B-fields, Eq. 7.23, on a cylinder with infinitesimal length, and up-
per and lower area dS, over the interface. Because we can neglect the side
surfaces, and the other surfaces are pointing in opposite direction, we obtain

B⊥1dS −B⊥2dS = 0

Which yields

B⊥1 = B⊥2 (9.9)

For the circuital law we have to consider the H-field. This can be applied
to the closed loop indicated in the figure, but with infinitesimal size per-
pendicular to the interface. There are no free currents at the interface thus
we obtain ˛

H⃗ · dL⃗ = H∥2L−H∥1L = 0
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Thus H∥1 = H∥2 and using Eq. 9.8 we obtain

B∥1 =
µr1

µr2

B∥2 (9.10)

Thus the perpendicular component of the B-field does not change, whereas
the parallel component is rescaled according to the ratio of the relative per-
meabilities. This can be used formagnetic screening to isolate something
from surrounding magnetic fields. The idea is to take a material with a very
high relative permeability, such as mu-metal which has µr ≈ 105. At the
interface with, for example air, all the magnetic field lines inside the ma-
terial will be bent almost almost flat along the interface. If the material
is thick enough, typically about a mm is sufficient, the B-field will not be
able to pass through it. A closed surface of such a material will thus guide
all field lines around its interior. Note that this will also be a Faraday cage
and thus also no E-field will pass inside. Inside a mu-metal box is thus
an electromagnetically very quite place, as long as no sources are present.
Furthermore, this effect will also guide field lines through a magnetic ma-
terial, which forms the basis for the transformer in the previous chapter.
Lastly, because there is no magnetic equivalence to a conductor, the mag-
netic field lines typically don’t, and are certainly not required to, impinge
perpendicular to a surface.

9.2 Microscopic picture of magnetism

Based on experiments considering the response to an applied magnetic field,
5 different classes of materials can be distinguished.

• Diamagnetic: Materials with a small and negative χm, which is
independent of the applied H-field, and also does not depend on tem-
perature.

• Paramagnetic: Materials with a small and positive χm, which is
independent of H, but decreases with increasing temperature.

• Ferromagnetic: Metallic materials with a large and positive χm

which strongly depends on H and on history. These materials be-
come paramagnetic above a critical temperature TC called the Curie
temperature

• Antiferromagnetic: Materials with a small and positive χm, which
depends on H and history. Becomes paramagnetic above a critical
temperature TN called the Néel temperature.
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• Ferrimagnetic: Similar behaviour as ferromagnetic materials, but
non-metallic.

The last two classes are given for completeness and will only be shortly
explained below.

The first major difference is whether χm of a material is positive or
negative. Based on magnetic energy considerations, which go beyond the
scope of this course, the force on a material with χm in an H-field can be
determined. Along the x-direction, for example, the force is approximately

Fx ≈ 1

2
µ0χm

∂H2

∂x
(9.11)

Here H2 becomes the magnetic field density. This means that diamagnetic
materials will seek regions of lower field density and are thus repelled by a
magnetic dipole, as illustrated in the lower panel of Figure 9.2. Materials
with positive χm, such as paramagnetic materials, seek regions with higher
field density and are thus attracted by a magnetic dipole, as illustrated in
the upper panel of Figure 9.2. Note that in a homogeneous magnetic field,
the field density is constant.

Figure 9.2: Force on a paramagnetic and diamagnetic material in a dipole
field.

We will now to turn to the question on why materials have a differ-
ent magnetic susceptibility. In Section 7.6 the concept of intrinsic angular
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momentum, and thus magnetic dipole moment, of the electron was intro-
duced. This electron spin can only have discrete values, referred to as up
and down, as was shown in the Stern-Gerlach experiment in 1922. These
up and down values mean opposite magnetic dipole moments and often
they are thus drawn as vectors or arrows. Based on the principle of how
atomic levels are filled (Hund’s rule) we can now have two possible situa-
tions: i) per atom there are just as much electrons with spin up as spin
down, meaning that all electrons are paired, ii) there are unpaired elec-
trons meaning there are more of one spin direction then the other, thus
not all spin is cancelled and there is a resultant magnetic dipole moment.

In diamagnetic materials all electrons are paired and there is thus no
resultant magnetic moment. Examples of this are copper, gold, graphite,
and water, thus almost all living things are diamagnetic. An external mag-
netic field will cause small circular currents and a Larmor precession of elec-
trons. This will create a magnetic field opposing the external field and thus
reducing the field inside the material. All materials have this diamagnetic
contribution, but typically it is overshadowed by other effects. Typically
the diamagnetic effect is very small, but as will be shown in the lecture, a
superconductor is a perfect diamagnet and the effect is very strong.

In paramagnetic materials there are unpaired electrons and every
atom thus has a magnetic dipole moment. However, these dipole moments
are randomly ordered with expect to each other, as illustrated in the first
panel in Figure 9.3. When an H-field is applied these dipole moments
will align with the field, creating an M⃗ pointing in the same direction as
H⃗. The field is thus increased by the presence of the material and χm is
positive. Higher temperatures mean that the magnetic moments will start
to fluctuate, reducing their ordering also in an H-field, and thus reducing
χm.

Most metals in the periodic table are paramagnetic, except for the no-
ble metals and bismuth. Examples are aluminium, tungsten, and platinum.
But also some small molecules, such as O2 are paramagnetic. Some oxida-
tion states of hemoglobin are slightly paramagnetic, but most are diamag-
netic.

Ferromagnetic materials are what we commonly refer to as magnets.
In this class of materials the atoms have a resultant magnetic moment, but
in contrast to paramagnetic materials these moments are ordered also with-
out applying an external field (Figure 9.3B). The reason for this spontaneous
ordering goes far beyond the scope of this lecture and can only be explained
using quantum mechanical considerations. This magnetisation will greatly
enhance the applied magnetic field, thus making χm ≫ 0. The only pure
materials which are ferromagnetic at room temperature are nickel, iron, and
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Figure 9.3: Order of the resultant magnetic moment, or spin, in different
material classes.

cobalt. Other materials become ferromagnetic at lower temperature, and
many composite materials based on these elements are also ferromagnetic.

If we increase the temperature for a ferromagnetic material, thermal fluc-
tuations will compete with the spontaneous ordering, and above a certain
temperature the ordering will break down and the material will behave like
a paramagnet. This is called the Curie temperature. For iron TC = 770◦C.
If we now cool down the material again the spontaneous ordering reappears,
but a block of iron as a whole will not be magnetic anymore. The reason
for this is that there are many different magnetic domains in which all
magnetic moments point in the same direction, but between domains the
order is random. These domains are of the order of tens of micrometer.

In an external magnetic field the domains will start to align in the
direction of the field, which requires significant energy. One can actually
listen to cracking noise the alignment makes, which is referred to as the
Barkhausen effect. If the H-field becomes large enough all domains are
oriented in the same direction, and the material is said to be saturated.
This initial magnetisation is indicated by the dashed line from 0 to a in
Figure 9.4.

If we now reduce the external field again, some domains will switch back,
but many will remain as they were in the saturation field. When the H-field
is zero we reach point b in the curve in 9.4, which is called the residual
magnetisation. How large this is is material dependent, and this is the
magnetisation we use in permanent magnets. When switch the H-field, the
magnetic domains will start to switch with it and at a certain moment the
resultant B-field is zero (point c). This is called the coercive field and
indicates how difficult it is to flip the magnetisation of a ferromagnet. At a
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Figure 9.4: Hysteresis curve of a ferromagnetic material.

certain moment we will reach opposite saturation (point d), and if we reduce
the H-field from that point the residual magnetisation will be opposite from
before (point e).

A full loop as displayed in Figure 9.4 is called a hysteresis cycle. It
contains the most important properties of a ferromagnetic material, apart
from the Curie temperature. When the cycle is narrow, i.e. the coercive
force and remanence are small, the material is a soft magnet. If the cycle is
broad with large coercive field and and remanence, the material is a hard
magnet. The latter are ideal for permanent magnets and memory devices,
whereas soft magnets are better for transformers. The reason for this is that
the work done per unit volume in one hysteresis cycle is the area enclosed
by the curve in the B vs. H diagram:

WV =

˛
BdH =

˛
HdB (per unit volume) (9.12)

In a transformer the system is driven through this cycle with the frequency
of the AC signal and this energy is lost in the form of noise and heat.

For completeness the situation for antiferromagnetic materials is
shortly explained. In this case there are also unpaired electrons and a
resultant magnetic moment per atom. Also here there is spontaneous or-
dering, but now the spins on adjacent atoms are arranged exactly opposite
to each other, as illustrated in Figure 9.3C. With an applied H-field the
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magnetisation is thus zero, but in a field some of the magnetic moments
will flip. The only pure antiferromagnetic material is chromium, for the
rest it is found in certain oxides and other compounds. Antiferromagnets
play an important role in modern read heads, but a further discussion goes
far beyond the scope of this lecture.



Chapter 10

Electromagnetic waves

In the previous part of this script we have looked at static and slowly vary-
ing E- and B-fields in vacuum and in materials. Here we will look at the
coupling between these fields in more detail and find that the solutions of
Maxwell’s equations can be expressed as a wave equation. One of the main
limitations for the discussion in this chapter will be that it has to stay
rather superficial. A truly complete and detailed discussion of the encoun-
tered phenomena will not only require far more time, but also advanced
mathematical knowledge, and concepts that we skipped in the previous
sections to keep the material easy to digest.

10.1 The wave equation

In the previous course on physics the harmonic oscillator has been intro-
duced, with a prominent example being the mass on a spring. Here we will
extend this to a long chain of N masses (m) and springs (spring constant
k) as illustrated in Figure 10.1. The chain runs along the x direction and
distance between the masses is b. For the mass at position x+b we can now
derive the equation of motion. The spring force experienced by this mass is
proportional to the distance to the next mass and thus their displacements
u

Fspring = k[u(x+ 2b)− u(x+ b)]− k[u(x+ b)− u(x)]

If we put this in Newton’s third law F = ma = m∂2u(x+b)
∂t2

and simplify we
obtain

m
∂2u(x+ b)

∂t2
= k[u(x+ 2b)− 2u(x+ b) + u(x)]

95
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Now we can rewrite this in properties of the full chain, the length L = Nb,
mass M = Nm and spring constant K = k/N :

m
∂2u(x+ b)

∂t2
=

KL2

M

(
u(x+ 2b)− 2u(x+ b) + u(x)

b2

)
If we now take the limit that b → 0 but keeping the length, mass, and spring
constant of the chain constant, we see that the term between brackets on
the right side of the equation is the definition of the second derivative of u
with respect to x. The equation of motion for a single point on this chain
now becomes

∂2u

∂t2
=

KL2

M

∂2u

∂x2

.

Figure 10.1: Long chain of masses and springs.

The equation we have derived describes the motion of a piece of mass
in a long spring-like chain, which could also be a rope. We can generalise
this expression by replacing the proportionality constants by c2, for reasons
that will become clear below. This yields the 1D wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(10.1)

The solution will be dependent on both space and time: u(x, t).
By substitution into Eq. 10.1 it can be easily verified that any function

f of x− ct is a solution to the wave equation, thus u(x, t) = f(x− ct). As
illustrated in Figure 10.2 this function represents that anything which is at
the position x at time t = 0 will have moved a distance ct along the positive
x axis during time t. It is thus a signal package moving with velocity c along
the x-axis.

Along similar lines it can be shown that any function g of x+ ct is also
a function of Eq. 10.1. Because the system is linear this means that the
general solution of the 1D wave equation is the sum of both functions

u(x, t) = f(x− ct) + g(x+ ct) (10.2)

Whereby either of them can be zero. The general solution is therefore a
superposition of wave packages moving along positive x and along negative
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Figure 10.2: General solution to the 1D wave equation.

x both with velocity c. The exact shape of this function will depend on
the boundary conditions or what sets things in motion. Under some special
conditions the two functions perfectly match and a standing wave is formed.
In a musical instrument such a standing wave in either a string or air, causes
the associated tone.

The above derivation for the wave equation is for a 1D system, but
this can be extended to full space including all directions. This gives the
general wave equation in 3D

∂2u

∂t2
= c2∇2u (10.3)

The solutions are again functions representing signals moving in any direc-
tion in space with velocity c.

10.2 Extension to Ampere’s law

In section 7.5 we have introduced Ampere’s circuital law: ∇ × B⃗ = µ0j⃗
(Eq. 7.19 and 7.21), and we have been using it since to solve many problems.
However, if we look more closely at this law we will notice that something
is wrong with it. We did not have to worry about it before, because we
never touched the regime where this incompleteness would play a role.

From a mathematical point of view the problem becomes clear if we take
the divergence of both sides of the equation. On the left we get ∇ · ∇× B⃗
which is always zero because the divergence of the curl is zero by definition.
On the right hand side we have ∇ · µ0j⃗, which can be zero, but doesn’t
have to be. For example it is not zero when a current enters, but doesn’t
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exit, a closed surface, which happens when we are charging, or discharging,
a capacitor.

Figure 10.3: Ampere’s law when charging a capacitor.

To fix this problem we can consider exactly this situation and look at
what happens with Ampere’s law when charging a capacitor. The first thing
we have to consider is what it means that the closed line integral of the B-
field is equal to the current it encircles (times µ0) in Eq. 7.19. Formally the
closed path is the boundary of the surface the current flows through and
expressed in Eq. 7.20. For the situation of charging a capacitor illustrated in
Figure 10.3 we can define different surfaces S and S ′ for the closed path L.
The current through surface S is I whereas the current through S ′ is zero.
This would mean that the resulting B-field would depend on the surface we
choose. This can of course not be the case for a fundamental law.

In order to solve this discrepancy we include an extra term in Ampere’s
law, the displacement current Id. Thus˛

L

B⃗ · dL⃗ = µ0(Ic + Id)

whereby Ic is the current as we considered it before. We see that there
is only a paradox when we are charging (or discharging) the capacitor,
meaning that it will be related to the change in the E-field in the capacitor.
The E-field in the capacitor is E = σ

ϵ0
= Q

ϵ0Sc
where Q is the charge on the
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capacitor and Sc the surface of the plates. The current Ic brings the charge
to the plates and is thus

Ic =
dQ

dt
= ϵ0

d (ESc)

dt

Through surface S ′ we know that Ic = 0 and to make sure that we obtain
the same B-field this means that Id = ϵ0

d(ESc)
dt

. The E-field times the surface
Sc it is perpendicular to, is nothing else than the flux of the E-field, and
Id is thus related to the change in flux through the surface S ′ between the
capacitor plates

Id = ϵ0
dφE

dt
= ϵ0

∂

∂t

¨
S′
E⃗ · dS⃗ ′

If we combine this with our initial assumption and if we generalise for any
surface S that L can be a boundary off, we obtain the complete version
of Ampere’s circuital law˛

L

B⃗ · dL⃗ = µ0I + µ0ϵ0
∂

∂t

¨
S

E⃗ · dS⃗ (10.4)

or, using Eq. 7.20˛
L

B⃗ · dL⃗ = µ0

¨
S

j⃗ · dS⃗ + µ0ϵ0
∂

∂t

¨
S

E⃗ · dS⃗ (10.5)

In differential form this becomes

∇× B⃗ = µ0j⃗ + µ0ϵ0
∂E⃗

∂t
(10.6)

It is left up to the reader to verify that this also solves the mathematical
problem indicated above.

10.3 Electromagnetic waves in vacuo

In vacuo and in the absence of sources (ρ = 0 and j = 0) the differential
form of the Maxwell equations now reduces to

∇ · E⃗ = 0 (10.7)

∇× E⃗ = −∂B⃗

∂t
(10.8)

∇ · B⃗ = 0 (10.9)

∇× B⃗ = µ0ϵ0
∂E⃗

∂t
(10.10)
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When combining these equations with the vector identity

∇×∇× A⃗ = ∇(∇ · A⃗)−∇2A⃗

it is possible to rewrite the equations eliminating either B⃗ or E⃗ as shown
during the lecture. This results in the following expression for the E-field

∂2E⃗

∂t2
=

1

ϵ0µ0

∇2E⃗ (10.11)

And an equivalent expression for the B-field

∂2B⃗

∂t2
=

1

ϵ0µ0

∇2B⃗ (10.12)

From a comparison with Eq. 10.3 one can directly recognise that these
expressions represent 3D waves of E and B fields. The velocity c of these
waves is the speed of light and is given by

c =

√
1

ϵ0µ0

≈ 3× 108 m/s (10.13)

Which means that the speed of light can be determined from electrical mea-
surements!

The solution of Equations 10.11 and 10.12 depends on the boundary
conditions, such as how the wave was created. The general solution will
be of the form given in Eq. 10.2 and can represent anything from a short
pulse to a nice sinusoidal signal. One could easily write hundreds of pages
and give several courses about the properties of such electromagnetic (EM)
waves, but this goes far beyond the scope of this course and we will restrict
ourselves to some simplified aspects.

Before discussing these properties is it important to consider the elec-
tromagnetic spectrum in Figure 10.4. This indicates that all electro-
magnetic radiation, ranging from radio waves, via infrared heat transfer
and visible light, to high energy X-rays, all are part of the same family.
They are described by exactly the same equations and they all travel with
the same velocity c. The difference lies in the frequency ν of the oscillation
of the E-field, and in the distance between maxima in the field, which is
the wavelength λ. This wavelength can range from hundreds of kilometres
in long radio waves, to subatomic distances in γ-rays. Visible light has a
range of about 400 to 700 nm.

The product of λ and ν is constant and is the velocity c

λν = c (10.14)
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Figure 10.4: The electromagnetic spectrum.

Thus radio waves have a low frequency, megahertz in commercial radio,
and X-rays have a high frequency. According to the wave-particle dualism
one can also talk about a light particle; the photon. The frequency of the
wave is directly linked to the energy of the photon, and thus also to the
wavelength

E = hν =
hc

λ
(10.15)

Here h is Planck’s constant given as

h = 6.626× 10−34 Js

Often the energy is expressed in electronvolt (eV) instead of Joule (J)
whereby 1 eV = 1.6 × 10−19 J, which is the energy of an electron accel-
erated by 1 volt potential difference. The advantage of this scale is that the
numbers are more easy to work with and that 1 eV is around the energy of
a red photon. X-rays and γ-rays have energies of tens of kiloelectronvolts
and are therefore called high energy radiation.

10.4 Monochromatic plane waves

As indicated in the previous section we have to restrict ourselves to a certain
class of electromagnetic waves in this lecture. These are monochromatic
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plane waves. The monochromatic means we are dealing with only one
colour, or better only one energy/frequency/wavelength. Plane wave means
that the wave has a wavefront only perpendicular to the direction it travels.
This is similar to a straight wave at a long beach, and this situation is
obtained if we look far away from the source.

The E- and B-fields of the wave still have to be solutions to Maxwell’s
equations in vacuo without sources. We first assume solutions of the form
E⃗ = E(x, y, z; t)ŷ and B⃗ = B(x, y, z; t)ẑ for a wave travelling along the x̂-
direction. In the lecture it is shown that if we now explicitly write out the
differential form of Maxwell’s equations and realise which partial derivatives
become zero the equations reduce to

E⃗ = E(x; t)ŷ and
∂E

∂x
= −∂B

∂t
(10.16)

and

B⃗ = B(x; t)ẑ and
∂B

∂x
= −ϵ0µ0

∂E

∂t

Thus The E- and B-field are perpendicular to each other and the spatial
dependence of E is coupled to the time dependence of B, and vice versa.

Figure 10.5: Illustration of the E- and B-fields of a monochromatic plane
wave travelling along the x-axis

The propagation direction is typically refereed to as the Poynting vec-
tor S⃗ or c⃗, which is also the direction in which the energy transfer occurs.
The E- and B-field oscillation directions are related to the Poynting vector
as

S⃗ =
1

µ0

E⃗ × B⃗ (10.17)
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As illustrated in Figure 10.5. More formally it should be the H-field instead
of the B-field here, but at this point this would only complicate matters.

We can now try solutions of the form f(t − x
c
) = sin(−ω(t − x

c
)) =

sin(kx− ωt) Whereby ω = 2πν is the angular frequency and k = 2π
λ

is the
wave number. We thus get solutions

Ey = Ey0 sin(kx− ωt)Bz = Bz0 sin(kx− ωt+ ϕ)

With ϕ a phase difference between the E- and B-field oscillations. If we
enter this in Eq. 10.16 we obtain the following

kEy0 cos(kx− ωt) = ωBz0 cos(kx− ωt+ ϕ)

From which it directly follows that ϕ has to be zero and the E- and B-field
oscillate in phase. Furthermore we can determine the aptitude ratio of
the two fields to be

Ey0

Bz0

=
ω

k
= λν = c

And thus

Ey = cBz (10.18)

Which means that the E-field is c times, or 3 × 108 times larger than the
B-field for any electromagnetic wave. Therefore, most of the properties and
influence on the environment are related to the E-field.

Figure 10.6: Illustration of the E-field oscillation direction for different
polarisation directions.

Although the E- and B-field have to be perpendicular to each other, and
to the propagation direction, they can change direction together as long as
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Eq. 10.17 is satisfied. The oscillation direction of the E-field is referred
to as the polarisation of the electromagnetic wave. Some possible
light polarisations are indicated in Figure 10.6. If the E-field oscillation
direction, and consequently also the B-field, randomly changes direction,
the wave is unpolarised. After passing the wave through a polariser the E-
field only oscillates along one direction and the wave is linearly polarised. By
creating a superposition of such a wave with a phase shifted copy, complex
polarisation patterns can be obtained, of which a circular polarisation is a
good example. Here the E-field oscillation direction continuously changes
direction in a screw-like fashion.

10.5 EM waves in non-conducting media

Some of the power of the Maxwell equations comes from the fact that they
are independent on the origin of the electric and magnetic field. This means
that all the equation we have derived in previous chapters also apply to
electromagnetic waves.

We know that in a dielectric the E-field is changed and that we have to
replace ϵ0 by ϵrϵ0. Similarly we have to replace µ0 by µrµ0 in all equations.
Therefore, the velocity of the EM wave in a non-conducting medium cm
changes to

cm =
1

√
ϵrϵ0µrµ0

=
c

√
ϵrµr

(10.19)

If we now restrict ourselves to the by far larger class of non-ferromagnetic
materials, µr ≈ 1 and thus cm ≈ c√

ϵr
. We have seen that ϵr can range from 1

to several tens of thousands, which will thus significantly alter the velocity
of the EM wave.

This change in velocity causes a refraction of the wave at an interface be-
tween materials with different ϵr. The refractive index n, which should be
familiar from high-school physics, is determined by the ratio of the velocity
with respect to the speed of light in vacuum

n =
c

cm
≈

√
ϵr (10.20)

It is thus possible to approximately measure the optical refractive index
of a material by placing it in a capacitor and measuring the change in
capacitance.

As explained during the lecture, the relative permittivity is typically
not a constant, but a non-linear tensor. In particular it will depend on the
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wavelength/frequency/energy of an EM wave, which is related to processes
happening on an atomic scale and how easily dipoles are induced. As a
consequence also the refractive index will change with wavelength, and thus
with colour, leading to fascinating phenomena such as the rainbow.

Many “optical” phenomena, including wave guiding and birefringence,
can now be explained by the exact form and dependency of ϵr, including its
anisotropic behaviour. It should be realised that by choosing and combining
materials with corresponding ϵr an almost complete control over EM wave
properties over interfaces can be achieved.

10.6 Generation of electromagnetic waves

In the previous sections we have discussed some of the properties and be-
haviour of electromagnetic waves assuming that they are there. Here we will
consider how they can be generated. This could be the topic for a full course
or even a study, so we will only scrape the surface here. Especially sources
based on the recombination of electrons and holes and subsequent emission
of a photon, such as light-emitting diode (LED) and LASER, require an
in-depth understanding of solid state physics.

We have seen that in the absence of sources, Q = 0 and I = 0, there is
only propagation and no generation of EM waves. If the charge is constant,
then I = 0 and we have a steady E-field. If Q moves at constant speed,
then the current is constant and the B-field is steady. However, we need
that both the E-field and the B-field change as a function of time, so we
need a current that changes with time, and thus accelerating charges.

In principle any acceleration of a charge causes an EM wave, whereby
the properties of the wave directly depend on the form of the acceleration.
In bremsstrahlung very fast electrons are suddenly stopped in a target,
resulting in the emission of X-rays. But also changes in direction are accel-
erations, which is the working principle of synchrotron radiation.

In a more formal description we can consider that Coulomb’s law (Eq.
3.2) needs to be corrected for the fact that the E-field will only change with
the speed of light. The first step is to realise that not the position r⃗ at
this moment is relevant, but the position r⃗′ a time r′

c
ago. Furthermore,

we need to take into account what happened with the charge in the mean
time. Now the E-field becomes

E⃗ =
q

4πϵ0

[
r̂′

r′2
+

r′

c

d

dt

(
r̂′

r′2

)
+

1

c2
d2r̂′

dt2

]
(10.21)

Which for a steady charge reduces back to Eq. 3.2. In the next chapter a
derivation of Eq. 10.21 is presented. This has been done by two students
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of the lecture and thus slightly deviates in terminology, but is correct in
content.

For the generation of an EM wave only acceleration is relevant so we
only look at the last term of Eq. 10.21

E⃗EM =
q

4πϵ0c2
d2r̂′

dt2

Furthermore, only the component of the acceleration perpendicular to our
line of sight, here ax, can generate waves that reach us. Thus the expression
for the E-field of an accelerating charge reduces to

Ex(t) =
q

4πϵ0c2r
ax(t−

r

c
) (10.22)

Where it is explicitly indicated that we have to consider the acceleration at
a time r

c
ago. The corresponding B-field of the EM wave becomes

By(t) =
q

4πϵ0c3r
ax(t−

r

c
) (10.23)

In the generation of electromagnetic waves the oscillating electric
dipole plays a central role. That such an oscillation is automatically ac-
companied by the acceleration of charges should be clear. Along similar
lines as the derivation for a single charge the E-field as a function of time
for the dipole can be obtained

E⃗(r, t) =
1

4πϵ0r3c2
(⃗̈p(t− r

c
)× r⃗)× r⃗ (10.24)

Where ⃗̈p is the second derivative of the dipole moment with time, considered
at a time r

c
ago. If we look from far away, we only need to consider the

radial component which becomes

Erad(r, t) =
p̈(t− r

c
) sin θ

4πϵ0rc2
(10.25)

Here the electric dipole moment as a function of time can for example
be p⃗(t) = ql⃗ sin(ωt). The polarisation of the EM wave emitted from an
oscillated dipole is along the direction of oscillation.

The reason why the oscillating dipole is important, is because it is the
working principle of antenna. Here a generator drives a alternating cur-
rent along different directions of a metallic rod. Together this forms a large
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charge oscillation. The emitted electromagnetic waves have the same fre-
quency as with which the current is driven, and thus the corresponding
wavelength. The polarisation will be along the direction of the rod. Max-
imum power is achieved when the length of the antenna is approximately
λ/2. This radiation will cause a similar oscillating current in a second
metallic rod placed at a certain distance at any orientation which is not
perpendicular to the first antenna. This current is easily detected and a
signal is thus transferred.

10.7 Power of electromagnetic waves

For wireless transmission of signals, but also for example to estimate the
possible damage, it is important to consider the power that is transmitted
by radiation. In the following the average power, thus the average energy
transferred per unit of time, of an oscillating electric dipole far away from
the source is calculated.

The dipole oscillation can be described by p⃗(t) = p⃗0 sin(ωt). For the
power the time offset and the exact orientation are not of importance and
from the previous section we obtain the following expressions for the E- and
B-field far away from the source

E(t) =
p̈ sin θ

4πϵ0rc2
(10.26)

B(t) =
p̈ sin θ

4πϵ0rc3
(10.27)

Whereby the B-field is perpendicular to the E-field. As indicated with the
introduction in Eq. 10.17, the Poynting vector describes the energy transfer.
Inserting the two equations above and using that c2 = 1

ϵ0µ0
the following

expression for S⃗ is obtained

S⃗ =
[p̈]2 sin2 θ

16π2ϵ0r2c3
r̂ (10.28)

The power is the energy integrated over space: P =
¸
S⃗ · dA⃗. And for a

sphere (4πr2) one thus obtains

P =
2 [p̈]2 sin2 θ

12πϵ0c3
. (10.29)
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For the average power we need the average of the square of the second
derivative of the dipole moment

〈
[p̈]2
〉
=

ω4p20
2

(10.30)

The average power emitted by an oscillating dipole thus becomes

⟨P ⟩ = ω4p20
12πϵ0c3

. (10.31)

From this is directly follows that the oscillation frequency, and thus also
the frequency of the radiation is the most important factor in determining
the power. Low frequency radiation, such as radio waves (107 Hz), contain
much less power compared to high frequency radiation such as X-rays (1018

Hz). Also the power of the radiation emitted by the typical 60 Hz of an AC
network is negligible. Although Eq. 10.31 has been derived for EM waves
emitted by an oscillating dipole the result is similar for any other source of
electromagnetic waves.



Chapter 11

Deriving Feynman equation for
a retarded electrical field

This chapter is written by Linley Vion, Maxime Nemoz, and colleagues in
December 2022. The goal was to provide a background to the rather ad-
hoc presentation of Eq. 10.21 during the lecture and in the lecture notes.
I thank them sincerely for their nice work and present the text without
further alterations.

11.1 Introduction

In the universe, every entity seems to move at a finite speed. Whether it
is stars, rockets or even light. Let us consider light as an electromagnetic
wave and the speed of light (in vacuum), the highest amongst every par-
ticle/wave in the Universe [1]. It wouldn’t make sense to assume that an
electrical field, which propagates as an electromagnetic wave, would face a
different reality. So it is to be considered that electrical fields take time to
propagate through space. As presented in Feynman Lectures on Physics
Volume I and II, an approximation for the equation of a retarded electrical
field is given in simplified and understandable terms (at this point in the
book) [2]. But unfortunately, no demonstration of this equation was found
and the explanation of each term seemed not precise enough to allow one to
derive the equation just from its interpretation. On top of that, the equa-
tion for retarded potentials that could have been derived looked too far in
their notation to be directly linked to Feynman’s equation. Hence, in this
constant need for explanations, this equation will be derived and explained.
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11.2 The retarded electrical field equation

Presenting the equation To begin with, the equation that was evoked
in the introduction is the following:

E⃗ = − q

4πϵ0

[
r̂′

r′2
+

r′

c

d

dt

(
r̂′

r′2

)
+

1

c2
d2r̂′

dt2

]
tr

(11.1)

This equation describes the electrical field produced by a moving point
charge in vacuum, with a speed v ≪ c. The electrical charge of the point
charge is q, ϵ0 is the vacuum permittivity and r̂′ is the unitary vector that
points towards the position of the point charge at tr′ , the time where the
field was ”emitted”, with length r′. Finally, the minus sign in front of
the equation can be explained as such: the E⃗-field is emitted towards the
observer but expressed by vectors pointing at the charge (see Fig. 11.1). It
is then logical to invert their direction, using a minus.

Figure 11.1: For a moving charge, the electric field points radially from
the present position of the charge [3].

Deriving the equation Now, the equation will be derived using a limited
development to the second order of the E⃗-field to make the second and the
third term appear because the advised eye of the reader will have noticed
that the first term corresponds to Coulomb’s law. The development is :

E⃗tr = E⃗tr′
+∆t

d

dt
E⃗tr′

+ (∆t)2
d2

dt2
E⃗tr′

(11.2)
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with ∆t the time the point charge had to move. It corresponds to the time
the information emitted from the point charge took to reach the observer.
Considering r′ the distance at that time between the point charge and the
observer and c the speed of propagation of the E⃗-field in vacuum: ∆t = r′/c.
Then the three terms that will be developed separately become :

E⃗tr = E⃗tr′
+

r′

c

d

dt
E⃗tr′

+

(
r′

c

)2
d2

dt2
E⃗tr′

(11.3)

The first term is quite simple and can be expressed without further
calculations :

E⃗tr′
= − q

4πϵ0

r̂′

r′2
(11.4)

Now, the second term just requires to be fully expressed and can be
found in Eq.(11.1) without further calculations :

r′

c

d

dt
E⃗tr′

= −r′

c

d

dt

(
q

4πϵ0

r̂′

r′2

)
= −r′

c

q

4πϵ0

d

dt

(
r̂′

r′2

)
(11.5)

It follows from the fact that q is a point charge, so it has a constant
charge. The third term requires more calculations, which will be realised
now. The physical assumptions/arguments will be explained in time. The
first one is, once again, considering that the only term considered time-
dependent will be the distance to the point charge and the unitary vector.
The term containing the permittivity and the charge will be omitted here,
to simplify the calculations :

d2

dt2

(
r̂′

r′2

)
=

d

dt

(
dr̂′

dt
r′2 − 2r′ dr

′

dt
r̂′

r′4

)

=
1

r′2
d2r̂′

dt2
− 2

r′3

(
d2r′

dt2
r̂′ + 2

dr′

dt

dr̂′

dt

)
+

6

r′4

(
dr′

dt

)2

r̂′

It gives when multiplied by ∆t2 :

1

c2
d2r̂′

dt2
− 2

r′c2

(
d2r′

dt2
r̂′ + 2

dr′

dt

dr̂′

dt

)
+

6

r′2c2

(
dr′

dt

)2

r̂′ (11.6)

The two terms depending on 1/r′ and 1/r′2 respectively are considered
higher terms of development. Indeed, the limit of these terms when divided
by r′2 is 0, not because of the 1/r′ or 1/r′2 but because of the first and
second derivatives contained in those terms. When the radius variation
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tends to 0 (being equivalent to ∆t → 0), the derivatives tend to 0 faster,
allowing these terms to be contained in o(∆t2). Using Eq.(11.6) the third
and last term of Eq.(11.3) becomes :

− 1

c2
q

4πϵ0

d2r̂′

dt2
+ o(∆t2) (11.7)

The equation for the retarded electrical field is then :

E⃗ = − q

4πϵ0

[
r̂′

r′2
+

r′

c

d

dt

(
r̂′

r′2

)
+

1

c2
d2r̂′

dt2

]
+ o(∆t2) (11.8)

where o(∆t2) is neglected in Eq.(11.1). This demonstrate Eq.(11.1).

Explanation and meaning of each term The first term, as stated
before, corresponds to Coulomb’s Law. It is the expression of the electric
field for a point charge q seen many times before. The second term describes
how the field will have changed (or here how much did the source move)
during the time it took for the field to reach the observer. It is why this term
can be found equal to the variation in time (∆t) times the variation of the
field through time. The third term is the contribution to the electric field
due to the acceleration of the point charge. This acceleration is creating
electromagnetic waves (or electromagnetic radiation also called EMR).

11.3 Conclusion

Please note that the considerations made here are not perfectly rigorous but
rather coming from a physical understanding of the situation for a point
charge moving way slower than c, allowing us to compose the o(∆t2) as it
was done in Eq. (11.7). Nevertheless, the equation, under the considera-
tions stated above, represents a good approximation of the retarded electric
field. The notation makes it easier to use and understand when compared
to retarded potential derived equation for both the electric field and the
magnetic field [4][5].



Chapter 12

Special relativity

There are various accounts on the origin and development of the theory
of special relativity. Some give all the credit to Albert Einstein. Others,
including Einstein himself, highlight that after the completion and inter-
pretation of Maxwell’s equations, it was only a matter of logical deduction
to arrive at special relativity. In this lecture we will follow the second ap-
proach and thus start with the problems posed by Maxwell’s equations and
how the resolution of these problems led to the theory of special relativity.

The first problem of Maxwell’s equations (Eq. 1-4) is that they are not
invariant under Galilean transformation, which is in stark contrast to
the other physical laws known at this point and especially with respect to
Newton’s laws. The second problem is that electromagnetic waves, or light,
requires no medium to travel in and that the speed of light is independent
of the reference frame. Also this was completely different from any other
known wave phenomena, like sound waves or waves in fluids. Alterations
to Maxwell’s equations were proposed to solve these problems, but these
changes all predicted new phenomena that were not observed. Furthermore,
many experiments and especially the Michelson-Morley interferometer
confirmed that the speed of light is independent of the reference frame and
that either the earth has no velocity relative to the medium (ether) or that
no medium is needed.

The Galilean transformations for a reference frame moving with velocity
u along the x-direction are

x′ = x− ut, y′ = y, z′ = z, t′ = t (12.1)

where the prime indicates observables in the moving reference frame. Hen-
drik Lorentz noted that if one instead uses the transformations below, then
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Maxwell’s equations are invariant

x′ =
x− ut√
1− u2/c2

, y′ = y, z′ = z, t′ =
t− ux/c2√
1− u2/c2

(12.2)

where c is the speed of light in vacuum. These are known a the Lorentz
transformations and their peculiarity is that the space and time coordi-
nates become mixed. This was considered a curiosity by many, but Poincaré
pointed out that there are no coincidences in physics and this stimulated
Einstein to state that all laws are unchanged under Lorentz trans-
formation. This means that also Newton’s equations have to be adjusted.
Similarly, while others considered alternative solutions, Einstein simply pos-
tulated that there is no ether and the speed of light is the same for
all inertial observers.

As a reminder, an inertial reference frame is a reference frame which
is not accelerating and thus moving with constant velocity. In such a refer-
nce frame it is impossible to perform any experiment or observation to find
out that it is is moving.

In the following sections we will discuss some of the consequences of these
postulates and how they lead to a new notion of space and time. Here it is
interesting to note that already Leibniz disagreed with the Newtonian idea
of time as something absolute and universal, and was the opinion that also
time should be treated as something relative and on the same footing as
the spatial dimensions.

12.1 Time dilation and simultaneity

Let us consider a clock illustrated in Figure 12.1 based on an emitter/detector
of a light pulse on one side and a mirror opposite to this at a distance L
from the source/detector. A time unit is defined as the time it takes for
a light pulse to go from the emitter, be reflected by the mirror, and be
detected. For a stationary clock, or in the reference frame S ′ of a clock
moving with velocity u along x̂, the total time is (∆t =)2t = 2L

c
, whereby

the ∆ will be partially dropped in the following.
On the other hand, for a stationary observer, the mirror will have moved

to the right while the light pulse is travelling from the source to the mirror.
If we call the time it takes for the light pulse to reach the mirror t′ then
the mirror will have moved the distance ut′. Applying Pythagoras to the
triangle formed by the source to mirror spacing L, light path ct′, and clock
movement we obtain

(ct′)2 = L2 + (ut′)2
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Figure 12.1: (a) A light clock at rest in the S ′ system. (b) The same clock,
moving through the S system. From Feynman lectures.

and thus

t′ =
L√

c2 − u2

which can be rewritten as

t′ =
L/c√

1− u2/c2
(12.3)

The same argument can be applied to the path from the mirror to the
detector and the total time thus becomes 2t′. Comparing this to the time
in the reference frame of the clock we obtain

∆t′ =
∆t√

1− u2/c2
= γ∆t (12.4)

Thus the stationary observer will claim that the moving clock runs slower as
the clock in her reference frame. In other wordsmoving clocks runs slow.
This is valid for any type of clock and also for biological or fundamental
processes. If not, one would be able to detect from the difference in time on
difference clocks that one is moving. It is thus really time that is slowing
down in a moving frame with respect to the stationary one. Of course, the
moving observer will claim that the stationary clocks run slow.

This time dilation is routinely applied to fast moving satellites where it
needs to be taken into account that their electronic clock moves slower as
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the ones on earth. It can also be observed in the decay of particles such as
muons. These have only an average life time of 2 × 10−6s but can travel
several kilometres because their internal clock runs slow.

In Eq. 12.4 the factor γ was introduced because we will encounter this
factor many times. It is defined as

γ =
1√

1− u2/c2
(12.5)

Note that by definition γ ≥ 1 and approaches unity for u ≪ c.
A rather counterintuitive consequence of the fact that the speed of light

is the same for all observers is that events that are simultaneous in
one inertial frame are not necessarily simultaneous in another.
This directly follows from the Lorentz transformations but can also be seen
by considering two light pulses that are emitted at the same time from
the centre of a box in the direction of motion of the box and the opposite
direction. In the inertial frame of the box, the two pulses will hit the edges
of the box at the same time. However, for a stationary observer, the front
of the box will have slightly moved away from the light pulse and the back
of the box will have slightly moved towards the pulse. Thus the distance
the pulse needs to travel is shorter for the latter and the event of the light
pulse hitting the back of the box takes place before the event of the light
pulse hitting the front of the box.

The two observers will thus disagree on the simultaneity of the events.
A third observer moving in the same direction of the box, but with higher
velocity, will even claim that the order of the events is reversed compared
to the stationary observer. It is not the question who is right and who
is wrong; all three observers are correct, but the “truth” depends on the
reference frame. Although entirely valid in physics, this relativity of truth
is often abused in other domains and especially politics. We will come back
to this point, not the political one, in our later discussion of space-time
intervals.

12.2 Lorentz contraction

Now we consider the same light clock as in the previous section, but turned
on its side. Thus the light travels along the same direction as the motion
of the clock. The time for a round trip of the light pulse in the reference
frame of the moving clock S ′ is:

∆t′ = 2
L

c
(12.6)
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Where L is length in the frame moving with the clock, or when the clock
is stationary.

For an external observer in a stationary reference frame S the time to
go from the source to the mirror is increased because the latter moves away
from the light pulse. Furthermore, we have to use the length as it appears
to the external observed L′. The first part of the trajectory thus becomes

∆t1 =
L′ + u∆t1

c
=

L′

c− u

On the other hand, the time between reflection from the mirror and detec-
tion is shortened because the detector moves towards the light pulse:

∆t2 =
L′ − u∆t2

c
=

L′

c+ u

The total time for a round trip is the sum of both and thus

∆t = ∆t1 +∆t2 = 2
L′

c

1

1− u2/c2
= 2

L′

c
γ2 (12.7)

Where γ is defined as in Eq. 12.5.
To be able to compare the expressions for the two inertial frames we

have to take the time dilation into account. However, we have to be careful
and rewrite Eq. 12.4 to get how the time in S ′ appears in the stationary
reference frame. We thus get that ∆t′ = ∆t

γ
. Comparing the expressions

for ∆t and ∆t′ yields

∆t′ = 2
L

c
=

∆t

γ
= 2

L′

c
γ (12.8)

And thus for the relation between the stationary length L and how it ap-
pears to a stationary observer when the object is moving L′:

L′ =
L

γ
(12.9)

This means that moving objects appear shorter, or contracted, in the sta-
tionary reference frame. For the observer in S ′ the length is L and objects
in S appear contracted along the direction of travel.

From the Lorentz transformation, here repeated with the γ term,

x′ = γ(x− ut), y′ = y, z′ = z, t′ = γ(t− u

c2
x) (12.10)
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it is directly clear that the dimensions orthogonal to the direction of travel
are not affected. This can also be pictured from the idea of drawing a
line on a wall from a (very rapidly) moving train. For a stationary train
this mark would be at a given hight. If the vertical dimension would be
contracted, then from the moving train this mark would be lower. However,
from the frame of the train the wall appears to be moving and would thus
be contracted and the line would be made higher. The only way to resolve
this contradiction is by having no contraction or expansion in the
directions perpendicular to the velocity.

12.3 Velocity addition

In classical Newtonian physics, velocities are added vectorial. Thus if one
throws a ball with 10 m/s in a train that moves with 50 m/s, a stationary
observer would say the ball travels with 60 (or 40) m/s, depending on the
direction it is thrown. In special relativity this no longer holds as it would
lead to objects travelling faster as the speed of light. The velocity addition
this becomes slightly more complex.

Let us consider a particle that moves with a velocity v = dx
dt

in reference
frame S. What would be its velocity v′ in a frame S ′ that moves with
velocity u along the x-direction? Using the LT in Eq. 12.10 we can obtain
dx′ and dt′

dx′ = γ(dx− udt) (12.11)

dt′ = γ(dt− u

c2
dx) (12.12)

The velocity in S ′ thus becomes

v′ =
dx′

dt′
=

dx− udt

dt− u/c2dx
=

dx
dt

− u

1− u/c2 dx
dt

=
v − u

1− uv/c2
(12.13)

Which is the Einstein velocity addition rule. It can easily be verified
that if v = c then also v′ = c and thus that the speed of light is the same
for all observers.

Due to time dilation also the orthogonal velocity component changes
even though dy′ = dy. In S we have vy =

dy
dt

and in S ′ this becomes

v′y =
dy′

dt′
=

dy

γdt
=

vy
γ

(12.14)
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Instead of the time dilation in Eq. 12.4 one gets the same result using the
LT and setting dx = 0, i.e. setting vx = 0. If the parallel component of the
velocity is not zero, then we have to take this into account and thus get

v′y =
dy′

dt′
=

dy

γ(dt− u
c2
dx)

=
vy

γ(1− u
c2
vx)

(12.15)

where vx = dx
dt
. This is the more general expression often found in textbooks,

which with vx = 0 reduces to Eq. 12.14. Note that one should use the γ
for the moving frame (u) and not for the particle (v). That the apparent
reduction of the speed of light for vy = c is found in the component parallel
to u is left for the reader to verify.

12.4 Geometry of space-time

As mentioned above, one of the peculiarities of the Lorentz transformation
is that space and time coordinates are mixed. This is similar to the mixing
of the x and y coordinates in a classical rotation by an angle θ:

x′ = x cos θ + y sin θ, y′ = y cos θ − x sin θ, z′ = z

To understand such a rotation, it is essential to consider all the relevant
coordinates (x, y, z) to define a point is space. Along similar lines, the LT
drives us to combine space and time in a single coordinate system called
space-time. Here a point with (x, y, z, t) is called an event, which is thus
described by a four-vector. In order to have the same units for all four
coordinates, mostly ct is used instead of t and an event is thus defines by
(x, y, z, ct). This is often referred to as Minkowski space-time.

A typical space-time diagram is shown in Figure 12.2. The y and z
axes are not drawn for simplicity. They extend orthogonal to both x and ct
and each other, forming a rather hard to draw hyper cube. The light line
should always have a slope of unity in all such diagrams and this helps us
to consider how to draw a moving inertial frame S ′ in the same diagram.
The x′ axis should obtain some time contribution and thus be lifted away
from the x axis, whereas the time axis should obtain some x component.
If we would now just rotate the coordinate system, the light line would no
longer have unity slope with regard to x′ and ct′. Therefore the time axis
ct′ has to also rotate towards the light line as illustrated in Figure 12.2.

The coordinates of an event (A) can now be determined in both reference
frames, whereby one has to remember to read the coordinates by going
orthogonal to the axis in the relevant coordinate system; i.e. parallel to the
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x

ct

x’

ct’

light

A B

Figure 12.2: Space-time diagram with light line and transformation to mov-
ing inertial system S ′.

other axis. It also directly becomes visible that two events A and B that
are simultaneous in S are not simultaneous in S ′.

Although useful to illustrate general ideas, such diagrams are not used
much to actually calculate transformations between inertial systems. An
important role in such transformations is played by the space-time in-
terval. Similar to the distance between two points in “ordinary space”
(
√
x2 + y2 + z2), the space-time interval (or just interval for short) between

two events is the same in all coordinate systems. Due to the type of “rota-
tion” illustrated in Figure 12.2 the sign of the time and space coordinates
have to be opposite in the summation. We use here the convention of
Poincaré where time is positive and space negative, but one can also find
the opposite. A space-time interval is then defined as√

c2t2 − x2 − y2 − z2 = constant (12.16)

Here it should be realised that the (x, y, z, ct) coordinates are taken in
reference to the first event placed at the origin of the coordinate system.
Alternatively all coordinates can be replaced by a displacement; i.e. t = dt,
x = dx etc.

The sum under the square root in Eq. 12.16 can be positive or negative,
and thus the interval can be real or imaginary, or zero. If the sum is negative
and the interval imaginary we call it space-like. If the interval is real, it is
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ct
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past

future

present

present

world line

Figure 12.3: Space-time diagram with light cones and world line and dif-
ferent regions indicated.

called time-like, and when it is zero then it is light-like. The origin of the
space-time diagram in Figure 12.3 is the “here and now” and is taken as a
reference for the intervals. The time-like intervals are separated in negative
and positive time and are called the “past” and “future” respectively. The
now can be influenced by the past and can have information about it. The
now can be influenced by the now, but it is not possible to have knowledge
about it. The space-like intervals are all classified as the “present” and it is
neither possible for the now to have information about it, nor to influence
it, and vice versa. If an event happens in the present we can only know
about it, or be influenced by it, in the future. The zero intervals separate
the time- and space-like intervals in form the light cones. That they are
cones becomes clear if we also consider the orthogonal space axis.

The world line of an object or particle (or person) can move in both
spatial directions, but only forward along the time axis. The slope should of
course never be less that unity. The world line forms a collection of “nows”
and for every point the past, present, and future can be defined.

The classification in time- and space-like intervals has a further impor-
tant function, namely it allows us to rapidly say how events will look in
another reference frame. If the interval is real, and thus time-like, an in-
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ertial system exists in which the two events occur at the same point. This
is more trivial than it seems and we experience it in every day life. In the
reference frame of the train, its departure in one city and its arrival in the
next occur at the same point, whereas in the stationary frame of the earth
these are events separated in space and time. On the other hand, if an
interval is imaginary, and thus space-like, an inertial system exists in which
the events happen at the same time. This we already discussed above and
is typically not experienced in everyday life.

12.5 Mass and energy

A wide range of experiments, based for example on the relationship between
mass and radius in a magnetic field of Eq. 7.11, showed that the mass of
a particle increases when it is accelerated to a velocity close to the speed
of light. Several early experimental results are shown in Figure 12.4, and
more recent experiments allowed to approach velocities around 0.99c. Thus
the mass increases with velocity and the relationship is

m =
m0√

1− v2/c2
= γm0 (12.17)

Here m0 is the mass at zero velocity, or the rest mass.
The same result can also be derived from symmetry considerations in a

collision between particles with the same mass and velocity and changing
the frame of reference. However, the experimental results leave no doubt
about the validity of Eq. 12.17 and are here regarded as sufficient evidence.
The main consequence of this increase in mass is that it becomes impossible
to accelerate an object with finite rest mass to the speed of light. Almost all
energy invested in accelerating the object will go into increasing the mass.
Because elementary particles, like electrons and muons, have such low m0

they can achieve speeds within a fraction of c.
In a first approximation one can now use all the laws of kinematics

and mechanics from earlier semesters, but replacing the mass by Eq. 12.17.
For example the momentum becomes p⃗ = mv⃗ = γm0v⃗. Conservation of
momentum still works, but means that both the mass and velocity can
change. These changes to Newton’s laws don’t form the core the of this
lecture and will not be treated in detail.

The dependency of mass on velocity also has far reaching consequences
for our understanding of energy. For example, an increase of temperature is
understood as an increase of velocity of the atoms, which means that their
mass increases. To obtain more insight we can make a binomial expansion
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Figure 12.4: Increase of mass versus velocity for several experiments. Solid
line according to Eq. 12.17

of Eq. 12.17 and obtain

m =
m0√

1− v2/c2
= m0

(
1 +

1

2

v2

c2
+

3

8

v4

c4
+ ...

)
≈ m0 +

1

2
m0v

2

(
1

c2

)
(12.18)

Where terms with c−4 or higher are ignored in the last step. The last term
is the kinetic energy divided by c2 and we can thus say that an increase in
mass is an increase in energy (divided by c2)

∆m = ∆Ekin

(
1

c2

)
.

Einstein considered it illogical that only the increase in mass should be
related to energy and thus postulated his famous expression on the equiv-
alence of mass and energy

E = mc2 ≈ m0c
2 +

1

2
m0v

2 (12.19)

where Eq. 12.18 is used in the last step. The first term m0c
2 is often

referred to as the rest energy, whereas the second one is the well known
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kinetic energy. Thus a change in energy can be related to a change in
kinetic energy, but also to a change in rest mass m0. This is experimentally
observed in annihilation experiments where all mass is turned into energy
in the form of EM waves, but also in nuclear fission where the generated
energy is the same as the mass lost (times c2).

Before making the link back to the previous chapters on electromag-
netism, just one last remark on the difference between invariant and
conserved quantities. Invariant means that the quantity is the same in all
inertial systems, whereas conserved means that it is the same before and
after some process. For example, rest mass is invariant, but not conserved;
energy is conserved, but not invariant; velocity is neither invariant nor con-
served; and charge is both invariant and conserved. This last point we will
use in the next section.

12.6 Relativistic electrodynamics

From the previous chapters we know that a moving charge creates an E- and
B-field for a stationary observer. However, in the reference frame moving
with the charge there will only be an E-field. Because Maxwell’s equations
are Lorentz invariant there is no conflict, nor do we need to add new terms.
It just means that E⃗ and B⃗ are the same thing, but just with a different
name depending on the inertial system. Another way of putting it is that
E⃗ transforms into B⃗ and vice versa. In the lecture an example will be
given how the law of Biot-Savart can be obtained from considering the rest
frame of a moving charge and the relativistic transformation of the E-field
of a neutral wire. Here we will directly jump to the generalisation of such
transformations.

The fundamental idea of using fields is that their origin is irrelevant.
We can thus take the simplest example and the obtained results will be
valid for all fields. For the E-field the simplest example is the parallel
plate capacitor. As expressed in Eq. 3.5 and further discussion, the E-field
between two oppositely charged plates is E = σ

ϵ0
and perpendicular to the

plates. Thus for the capacitor illustrated in Figure 12.5 the field is

E⃗0 =
σ0

ϵ0
ŷ (12.20)

with σ0 = |σ+| = |σ−|. This is in the rest frame of the capacitor which we
call S0.

Now we consider the same capacitor, but from an inertial system S
moving to the right with v0. In this case the length L0 is Lorentz contracted



12.6. RELATIVISTIC ELECTRODYNAMICS 125

x

y

z
d

L0
w

σ+

σ−

E

(S) v0

Figure 12.5: Parallel plate capacitor in S0 and frame S moving to the right
with v0.

and thus L = L0

γ0
, with γ as defined in Eq. 12.5, but with v0 instead of

u. Because charge is invariant, the charge density is thus increased when
regarded from S and becomes σ = γ0σ0. With this the E-field in S becomes

E⃗ =
γ0σ0

ϵ0
ŷ = γ0E⃗0 (12.21)

If we turn the plates in the xy-plane we get the same result for the z
component and in general

E⃗⊥ = γ0E⃗0⊥ (12.22)

For the parallel, or x, component we turn the plates in the yz-plane. In this
case the distance between the plates is Lorentz contracted, but because the
E-field is independent of d there is no change. We can thus state that

E⃗|| = E⃗0|| (12.23)

This gives us only information about the transformation of the E-field be-
tween different reference frames. If we also want to include the B-field,
we have to start from S, where the moving surface charge density causes
a B⃗. Therefore, we introduce a third inertial system S ′ as illustrated in
Figure 12.6 that moves with v with respect to S.

The charge density moving with v0 to the left from the point of view of
S can be considered as a surface current J⃗ = ±σv0x̂. For the top plate we
have negative charge moving to the left and thus J⃗ to the right and for the
bottom plate the current is in the opposite direction. Using the right-hand
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Figure 12.6: Three inertial system: S moves with v0 with respect to S0, S
′

moves with v with respect to S and thus v′ with respect to S0.

rule and the result of one of the exercises we get a magnetic field between
the plates along the negative z direction

B⃗ = −µ0σv0ẑ = By (12.24)

In the following the vector notation will be simplified by the subscript in-
dicating the direction. We now have the E- and B-field in S.

The next step is to determine the fields in S ′. Along the same lines
as argued before these are E ′

y = σ′

ϵ0
and B′

z = −µ0σ
′v′. Where v′ is the

velocity relative to S0 and σ′ can be obtained from σ0 using this velocity.
Using Eq. 12.13 we get that

v′ =
v + v0

1 + vv0/c2

and we can use this to define the γ′ for this frame

γ′ =
1√

1− v′2/c2

Thus

σ′ = γ′σ0 =
γ′

γ0
σ
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and based on the expressions above

E ′
y =

γ′

γ0

σ

ϵ0
, B′

z = − γ′

γ0
µ0σv

′

The problematic term is γ′

γ0
because we want to express things in the tran-

sition from S to S ′, which is defined by γ. With some rewriting we obtain
that

γ′

γ0
= γ

(
1 +

vv0
c2

)
and keeping in mind that 1

c2
= ϵ0µ0 we can write the field transformations

for this geometry:

E ′
y = γ

(
1 +

vv0
c2

) σ

ϵ0
= γ

(
Ey −

v

c2ϵ0µ0

Bz

)
= γ(Ey − vBz)

(12.25)

B′
z = −γ

(
1 +

vv0
c2

)
µ0σ

(
v + v0

1 + vv0/c2

)
= γ(Bz − µ0ϵ0vEy) = γ(Bz −

v

c2
Ey)

(12.26)

We thus directly see that the E- and B-fields transform into each other.
For the other perpendicular component we again rotate the plates in the

xy-plane. If we rotate such that Ez is positive then also By will be along
the positive y-direction and By = µ0σv0. The rest of the derivation is the
same as above and we only get a sign change

E ′
z = γ(Ez + vBy) (12.27)

B′
y = γ(Bz +

v

c2
Ez) (12.28)

For the E-field we have already derived the transformation of the parallel
component. For the parallel B-field we have to use another configuration
then the parallel plate capacitor and we consider a solenoid with its axis
along x̂. With a current I and n windings per unit length we get that
Bx = µ0nI in S. In S ′ the solenoid will be Lorentz contracted and the
density of the windings will thus change to n′ = γn. However, due to time
dilation also the current (dQ

dt
) will change and I ′ = I

γ
put together these two

contributions cancel. We thus have

E ′
x = Ex (12.29)

B′
x = Bx (12.30)

This gives us all the field transformations, considering that v⃗ = vx̂.
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These transformations can be expressed in various ways and the explicit
expressions given above are often the most useful. However sometimes a
vector notation can be clearer. Again taking v⃗ = vx̂ this becomes

E ′
x = Ex (12.31)

E ′
y = γ(E⃗ + v⃗ × B⃗)y (12.32)

E ′
z = γ(E⃗ + v⃗ × B⃗)z (12.33)

B′
x = Bx (12.34)

B′
y = γ(B⃗ − v⃗ × E⃗

c2
)y (12.35)

B′
z = γ(B⃗ − v⃗ × E⃗

c2
)z (12.36)

Where the subscript again indicate the relevant component. This combi-
nation of E⃗ and B⃗ is the generalised electromagnetic field and together it
can be expressed using an antisymmetric second rank tensor. However, this
goes beyond the content of this course.

Finally we consider two special cases, namely that either B⃗ = 0 or E⃗ = 0
in S. In the first case we can ignore the B terms in the transformations
above and we get

B⃗′ = γ
v

c2
(Ezŷ − Eyẑ) =

v

c2
(E ′

zŷ − E ′
yẑ)

and thus with v⃗ = vx̂ this yields

B⃗′ = − 1

c2
(v⃗ × E⃗ ′) (12.37)

Similarly, for the second case we can ignore the E terms

E⃗ ′ = −γv(Bzŷ −Byẑ) = v(B′
yẑ −B′

zŷ)

and thus

E⃗ ′ = v⃗ × B⃗′ (12.38)

This last expression we already used in the chapter on induction, but we
didn’t justify its validity.
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Various end stuff

This script has been written under substantial time pressure and any reader
might recognise this. Although care has been taken to avoid any mistakes,
I can’t guarantee the absence of typos and other errors. Any comments in
this respect are more than welcome. At this point I thank Mauro, Stefan,
and Andrew for proof-reading parts of the manuscript.

It should be realised that this script is not meant to replace a proper text
book and I have no claim with regard to completeness. Many topics would
deserve a more in-depth treatment and there are excellent texts that do
exactly this. My only aim is to provide an overview of my lecture as given
at this level and covering the knowledge that I require from my students.

Lastly, many figures in this script have been taken from a variety of
sources and I have not been as strict as I should have been listing these
sources. This script is only meant for distribution with the relevant stu-
dents at the EPFL and not for any further distribution or commercial gain.
However, if anyone feels that their copyright has been inflicted I kindly ask
them to contact me and the issue will be fixed immediately.
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