Semaine 1 16-20/09 2023

Mécanique générale, classe inversée.

Exercice d'application corrigé en amphi mardi

Séance de karting

Lou fait du karting pour la première fois. Son kart a une vitesse maximale v_{max} de 10 m/s. Elle roule en ligne droite. Prudente, elle appuye progressivement sur l'accélérateur, si bien que son accélération augmente linéairement avec le temps. $a = \gamma t$ avec γ constante.

 $a = \gamma t$ avec γ constante. $L = 30 \mu$

De l'arrêt, il faut 30 m au kart de Lou pour atteindre $v_{\rm max}$, ensuite il roule à vitesse constante.

- 1- Quelle est la durée de la phase d'accélération?
- 2– Que vaut γ ?
- 3– Quelle est la valeur maximale de l'accélération?

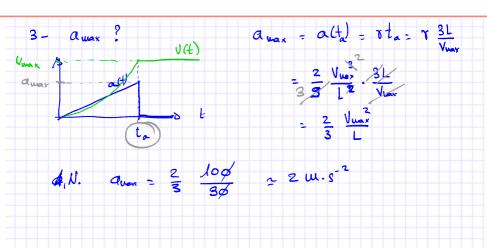
2

Refaire la dévardre
$$a(t)$$
 $O(t)$: primitive de $a(t)$
 $a = 8t \Rightarrow O(t) = \frac{1}{2} \times t^2 + V_0$ $at = 0 \times 0 \Rightarrow 0 \Rightarrow 0$
 $O(t) = \frac{1}{2} \times t^2 \Rightarrow x(t) = \frac{1}{6} \times t^3 + x_0$ $at = 0 \times 0 \Rightarrow 0 \Rightarrow 0$
 $O(t) = \frac{1}{2} \times t^2$; $x(t) = \frac{1}{6} \times t^2$ On chardre t_a

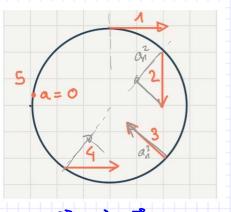
en t_a $V(t_a) = V_{uax}$ of $x(t_a) = L$

$$\begin{cases} \frac{1}{2} \times t_a^2 = V_{uax} & 11 \\ \frac{1}{6} \times t_a = L & 12 \end{cases}$$
 $1 \times t_a = L$

$$\begin{cases} \frac{1}{6} \times t_a = L & 12 \\ \frac{1}{6} \times t_a = L & 12 \end{cases}$$
 $1 \times t_a = L \Rightarrow t_a = \frac{3L}{V_{uax}}$


A.N.
$$t_a = \frac{3L}{V_{\text{max}}} = \frac{3 \times 30}{10} = 9s$$

A.N. $t_a = \frac{3L}{V_{\text{max}}} = \frac{3 \times 30}{10} = 9s$

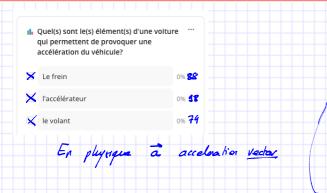

A.N. $t_a = \frac{3L}{V_{\text{max}}} = \frac{3 \times 30}{10} = 9s$

A.N. $t_a = \frac{3L}{V_{\text{max}}} = \frac{3 \times 30}{10} = \frac{3L}{2} = \frac{1}{2} \frac{1$

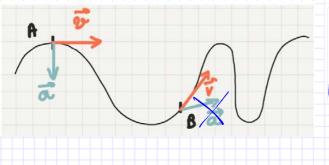
_

-6

■ Une voiture roule sur une piste circulaire horizontale. On représente son vecteur accélération (vue de dessus) en 5 points du trajet. En quel point la vitesse de la voiture est-elle la plus grande ?

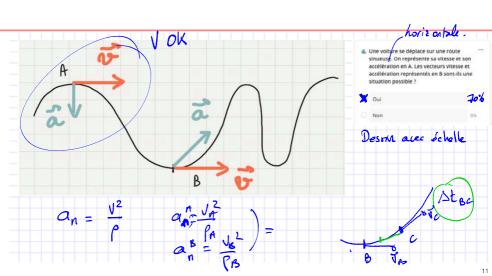

> On ne peut pas répondre, c'est le vecteur accélération qui est représenté

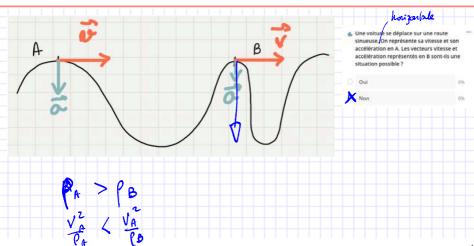
3

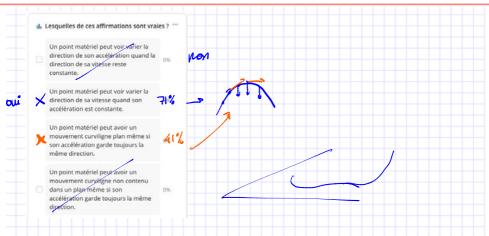

0.96

10

68%

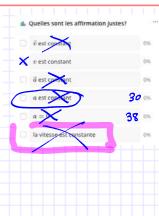


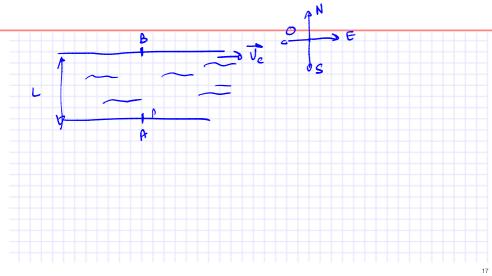

pasde sontie de vante V

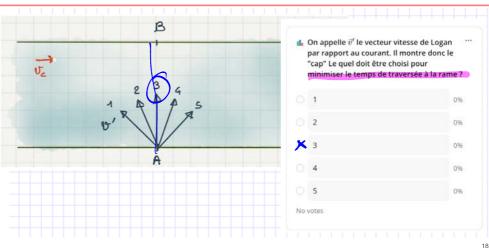


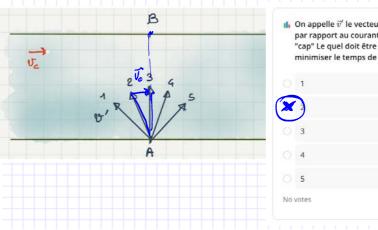
III. Une voiture se déplace sur une route horizontale. On représente son vecteur vitesse et son vecteur accélération en A. Est-ce que la représentation des vecteurs vitesse et accélération en B correspond à une situation possible ?

	Oui	0%
0	Non	0%






Matt roule en voiture sur une petite route de campagne avec le contrôle automatique de vitesse si bien qu'il reste à exactement 50 km/h sur son trajet qui serpente dans la campagne.


On appelle \vec{v} la vitesse et \vec{a} l'accélération

$$a_n = \frac{v^L}{c}$$
 $v^2 = cte$
 $change$
 $a_n = \frac{d|v|}{dt} = 0$

 $\mathbf{I}_{\mathbf{I}}$ On appelle \vec{v}' le vecteur vitesse de Logan par rapport au courant. Il montre donc le "cap" Le quel doit être choisi pour minimiser le temps de course sur la rive ?

0% 0.96 096

0%