Exercices

Exercice 1 Dérivations

Calculer les dérivées par rapport au temps (t) des fonctions suivantes :

1.
$$\cos(t)$$

4.
$$ln(t)$$

7.
$$\sin(t)\cos(t)$$

Classe inversée

$$2. \sin(t)$$

5.
$$\sqrt{t} = t^{\frac{1}{2}}$$

8.
$$t\cos(t)$$

9. $t\cos(t)\sin(t)$

3.
$$\tan(t) = \frac{\sin(t)}{\cos(t)}$$

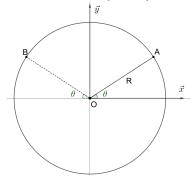
6.
$$t^{\alpha} \ (\alpha \neq 0)$$

10.
$$\sin(t^2)$$

Exercice 2 Direction les vecteurs!

On considère les vecteurs \overrightarrow{OA} et \overrightarrow{OB} suivants (A et B sur un cercle de rayon R) :

- a) Exprimer les composantes de \overrightarrow{OA} et \overrightarrow{OB} en fonction de R et θ .
- b) Représenter $\vec{u} = \overrightarrow{OA} + \overrightarrow{OB}$ et $\vec{v} = \overrightarrow{OA} \overrightarrow{OB}$.
- c) Exprimer les composantes de \vec{u} et \vec{v}
- d) Refaire le dessin avec $\theta = \frac{3\pi}{4}$ et $\theta = -\frac{\pi}{3}$



Exercice 3 Dérivations, on part à la dérive

Soit $\theta(t) = \omega t$ une fonction du temps.

Calculer les dérivées par rapport au temps des fonctions :

1.
$$\cos(\theta)$$

4.
$$e^{i\theta}$$

2.
$$\sin(\theta)$$

5.
$$\sin(\theta)\cos(\theta)$$

3.
$$tan(\theta)$$

Exercice 4 Les vecteurs, c'est la base

Soient les vecteurs $\overrightarrow{u} \begin{vmatrix} \cos \theta \\ \sin \theta \end{vmatrix}$ et $\overrightarrow{v} \begin{vmatrix} -\sin \theta \\ \cos \theta \end{vmatrix}$ en coordonnées cartésiennes.

- a) Représenter \vec{u} et \vec{v} pour $\theta = \frac{\pi}{6}; \frac{\pi}{4}; \frac{\pi}{3}; \frac{\pi}{2}; \frac{4\pi}{3}; \pi; -\frac{3\pi}{4}$ et $-\frac{\pi}{4}$
- b) Calculer $\|\vec{u}\|$ et $\|\vec{v}\|$
- c) Montrer que $\vec{u} \perp \vec{v}$

Exercice 5 Analyse dimensionnelle

1. A l'aide de l'analyse dimensionnelle, vérifier l'exactitude de la formule suivante : Chemin x parcouru durant le temps t par un point matériel d'accélèration a, de vitesse initiale v_0 et de position initiale x_0 :

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

2. Quelle es la bonne formule pour la portée D d'un projectile lancé à la vitesse v_0 sous un angle α par rapport à l'horizontale, avec g accélèration de la pesanteur :

(a)
$$D = \frac{g}{v_0} \sin 2\alpha$$

(a)
$$D = \frac{g^2}{v_0} \sin 2\alpha$$

(b)
$$D = \frac{v_0}{g} \sin 2\alpha$$

(b)
$$D = \frac{v_0^2}{q} \sin 2\alpha$$

Exercice 6 Dérivations, le retour

Soit θ une fonction du temps $\theta(t)$ quelconque. On notera $\dot{\theta}(t) = \frac{d\theta(t)}{dt}$ la dérivée de θ par rapport au temps.

Calculer la dérivée par rapport au temps de f(t) pour :

(Attention, on n'a pas explicité $\theta(t)$, il est ici implicite que θ est une fonction du temps t)

1.
$$\cos(\theta)$$

$$5. e^{i\theta}$$

2.
$$\sin(\theta)$$

6.
$$\sin(\theta)\cos(\theta)$$

3.
$$tan(\theta)$$

7.
$$\theta^{\alpha}$$

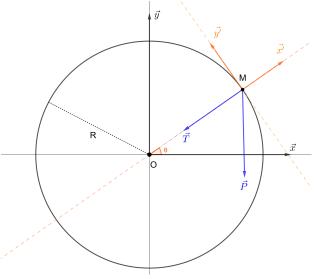
4.
$$ln(\theta)$$

8.
$$\theta \cos(\theta) \sin(\theta)$$

Exercice 7 Savoir se projeter

Soit M sur un cercle de rayon R. Soient les vecteurs \vec{T} pointant vers O et \vec{P} parallèle à O_y avec $||\vec{T}|| = T$ et $||\vec{P}|| = P$.

- a) Donner les composantes des vecteurs $\overrightarrow{OM}, \overrightarrow{P}$ et \overrightarrow{T} en fonction de R, T, P et θ .
- b) Donner les composantes de \vec{P} et \vec{T} dans le repère (M, x', y')



Physique générale I : mécanique Classe inversée Prof. C. Hébert Série 0: 13/09/2024

Exercice 8 Repère, distance et vitesse

On veut étudier le mouvement d'un point P se déplaçant sur une table.

- a) Combien de paramètres sont nécessaires pour repérer la position d'un point sur la table?
- b) Comment peut-on décrire le mouvement du point P?
- c) Soient deux points A et C situés sur la trajectoire du point P. Exprimez la distance entre A et B: celle-ci est-elle la distance parcourue par P?
- d) Quelle est la vitesse de P entre A et B? Comment l'appelle-t-on? Existe-t-il une relation entre cette vitesse et les vitesses de P en A et en B?