
Exercices

Exercice 1 Examen 2018

La station spatiale internationale est un satellite tournant autour de la Terre. Les spationautes sont ravitaillés périodiquement par une navette lancée par une fusée. On appellera G la constante de gravitation universelle et M la masse de la Terre. Après la libération par la fusée, la navette de masse m est placée sur une orbite circulaire C_1 de rayon R_1 , qui est plus petite que l'orbite circulaire C_2 de rayon R_2 de la station spatiale.

- 1. Démontrez que la vitesse d'un satellite sur une orbite circulaire est constante.
- 2. Exprimez la vitesse v_1 de la navette sur l'orbite circulaire C_1 en fonction des données du problème.
- 3. Donnez l'expression de l'énergie mécanique E_1 sur l'orbite C_1 en fonction de G, m, M, et R_1 . La navette rejoint ensuite l'orbite C_2 grâce à l'allumage d'un moteur.
- 4. Calculer le travail W_{12} de la force de gravitation \vec{F} qui s'exerce sur la navette quand celle-ci passe de l'orbite C_1 à l'orbite C_2 . En pratique, pour atteindre l'orbite circulaire C_2 , il faut d'abord passer par une orbite de transfert qui est elliptique, comme indiqué en pointillé sur le schéma ci-dessous.

- 5. La navette est sur l'orbite de transfert. Exprimez la vitesse v_B de la navette au point B en fonction de sa vitesse v_A au point A.
- 6. Déterminez l'expression de l'énergie mécanique E_T sur l'orbite de transfert en fonction de G, m, M, R_1 et R_2 .
- 7. Exprimez la vitesse $v_A = v_1 + \Delta v_1$ qu'il faut communiquer à la navette pour passer de l'orbite circulaire C_1 à l'orbite de transfert. Le résultat sera exprimé en fonction de E_T , E_1 , et m.
- 8. La variation de vitesse Δv_B de la navette en B est-elle positive ou négative? Justifiez votre réponse sans calcul.