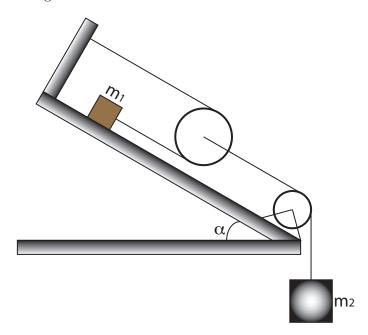
Exercices

Exercice 1

On considère le montage suivant :

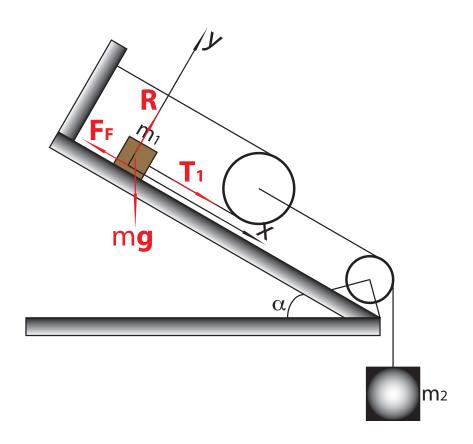


On néglige les frottements dans les poulies mais pas ceux entre le bloc de bois et la table. Les poulies sont sans masse. Les coefficients de frottement statique et dynamique sont respectivement μ_s et μ_c . Les réponses sont donner en fonction des données m_1 , m_2 , α , μ_s et μ_c .

- 1. Quelle doit être la masse m_2 minimale pour mettre le système en mouvement? Exprimer m_2 en fonction des autres données.
- 2. On suppose maintenant que m_2 est égale à deux fois cette valeur minimale trouvée au point 1. Donner l'accélération de chacune des masses :

Solutions

Solution 1



1. Les forces agissant sur m_1 sont : \vec{F}_F , $m_1\vec{g}$, \vec{T}_1 et \vec{R} . Le système tant immobile, la somme des forces est nulle. La projection des forces dans le système d'axes Oxy donne :

$$m_1 \vec{g} = \begin{pmatrix} m_1 g \sin \alpha \\ -m_1 g \cos \alpha \end{pmatrix}$$
 $\vec{R} = \begin{pmatrix} 0 \\ R \end{pmatrix}$ $\vec{T}_1 = \begin{pmatrix} T_1 \\ 0 \end{pmatrix}$ $\vec{F}_F = \begin{pmatrix} -F_F \\ 0 \end{pmatrix}$

Sur Oy, $\sum \vec{F} = \vec{0}$ donne $R = m_1 g \cos \alpha$, dont on tire la force de frottements limite :

$$F_{F,lim} = \mu_s R = \mu m_1 g \cos \alpha$$

Sur Ox, $\sum \vec{F} = \vec{0}$ donne $m_1 g \sin \alpha + T_1 - F_F = 0$, et on obtient la valeur de T_1 :

$$T_1 = \mu_s m_1 g \cos \alpha - m_1 g \sin \alpha$$

On regarde maintenant ce qui se passe pour m_2 :

$$\sum \vec{F} = 0 \Rightarrow \vec{T}_2 + m_2 \vec{g} = \vec{0}$$

En projetant sur l'axe Oz, on obtient :

$$T_2 - m_2 g = 0$$

on en tire l'expression de la tension dans le fil retenant la masse $m_2: T_2 = m_2 g$

Une corde transmet les tensions, et on considère les poulies sans masse. Il vient alors :

$$T_2 = 2T_1$$

et on en tire une deuxième expression pour T_1 :

$$T_1 = \frac{T_2}{2} = \frac{m_2 g}{2}$$

En combinant les deux expressions de T_1 , il vient

$$\frac{m_2 g}{2} = \mu_s m_1 g \cos \alpha - m_1 g \sin \alpha$$

et donc, au final:

$$m_2 = 2m_1(\mu_s \cos \alpha - \sin \alpha)$$

Remarque : si α est trop grand, même avec $m_2 = 0$, la masse m_1 tombe...

2. On suppose $m_2 = 4m_1(\mu_s \cos \alpha - \sin \alpha)$. Le système étant en mouvement, on a $\sum \vec{F} = m\vec{a}$ sur chacune des masses. Puisque le système glisse, $|\vec{F}_F| = \mu_c R$. L'expression de l'accélération pour chaque masse est :

$$\vec{a}_1 = \begin{pmatrix} a_1 \\ 0 \end{pmatrix} \qquad \qquad \vec{a}_2 = a_2 \vec{e}_z$$

et une considération géométrique du système nous donne

$$a_1 = -2a_2 \tag{1}$$

Sur m_2 , la seconde loi de Newton donne $m_2\vec{a}_2=m_2\vec{g}+\vec{T}_2$, que l'on projette sur Oz :

$$m_2 a_2 = -m_2 g + T_2 (2)$$

La transmission des tensions dans les cordes donne

$$T_2 = 2T_1 \tag{3}$$

Sur m_1 , la seconde loi de Newton donne $m_1\vec{a}_1 = m_1\vec{g} + \vec{R} + \vec{F}_F + \vec{T}_1$, que l'on projette dans le repère Oxy:

$$\begin{pmatrix} m_1 a_1 \\ 0 \end{pmatrix} = \begin{pmatrix} m_1 g \sin \alpha \\ -m_1 g \cos \alpha \end{pmatrix} + \begin{pmatrix} 0 \\ R \end{pmatrix} + \begin{pmatrix} -\mu_c R \\ 0 \end{pmatrix} + \begin{pmatrix} T_1 \\ 0 \end{pmatrix}$$

Sur Oy, nous obtenons alors $R = m_1 g \cos \alpha$, et sur Ox, nous avons

$$m_1 a_1 = m_1 g \sin \alpha - \mu_c R + T_1 \tag{4}$$

Il y a donc quatre équations à quatre inconnues : a_1 , a_2 , T_1 et T_2 . La combinaison de (2) et (3) permet de trouver T_1 :

$$m_2 a_2 = -m_2 g + T_2 = -m_2 g + 2T_1$$

 $\Rightarrow T_1 = \frac{1}{2} (m_2 a_2 + m_2 g)$

Cette dernière équation peut être injectée dans (4) pour obtenir :

$$m_1 a_1 = m_1 g \sin \alpha - \mu_c m_1 g \cos \alpha + \frac{1}{2} (m_2 a_2 + m_2 g)$$

En réarrangeant les termes de cette équation, on trouve

$$m_1 a_1 - \frac{1}{2} m_2 a_2 = m_1 g \sin \alpha - \mu_c m_1 g \cos \alpha + \frac{1}{2} m_2 g$$

et donc, finalement en remplaçant a_2 et m2:

$$a_1 = g \frac{(2\mu_s - \mu_c)\cos\alpha - \sin\alpha}{1 + \mu_s\cos\alpha - \sin\alpha}$$