Exercices

Exercice 1

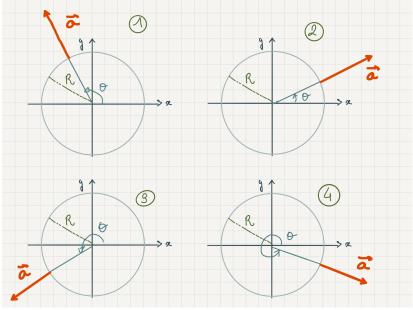
Une compagnie automobile propose des voitures dont la carrosserie, moulée à haute pression est faite de 9,35 kg de fer. Pour célébrer sa centième année d'existence, la société a prévu de couler une carrosserie, mais en or. Quelle masse d'or est alors nécessaire?

Données : La masse volumique du fer est de $\rho_{Fe} = 7.9$ g/cm³ et la masse volumique de l'or est $\rho_{Au}=19,3~g/cm^3$

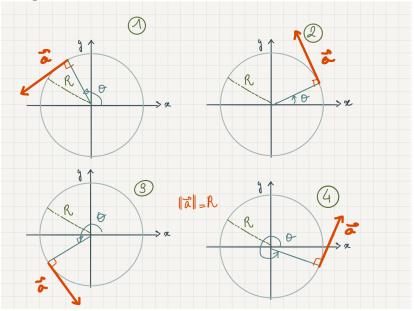
Exercice 2 Le Prototype International du Kilogramme est un alliage de 90% de Platine et 10% d'Iridium. C'est un cylindre mesurant précisément 39,0 mm de hauteur pour 39,0 mm de diamètre. Quelle est la masse volumique du matériau, donnée en kg/m³?

Exercice 3 Un message nerveux dans le corps humain se déplace à une vitesse d'environ 100 m·s⁻¹. Si vous tapez votre orteil contre le pied de la table le soir chez vous, estimez le temps que met l'influx nerveux pour aller de votre orteil à votre cerveau.

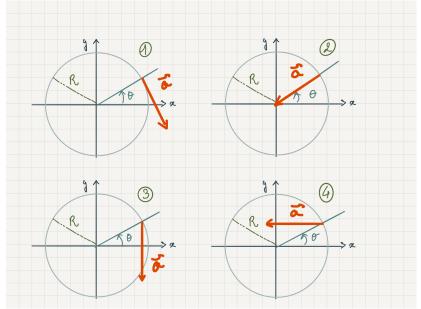
Exercice 4 Exprimer les composantes du vecteur \vec{a} en fonction de R et θ dans les 4 configurations suivantes:



Exercice 5 Exprimer les composantes du vecteur \vec{a} en fonction de R et θ dans les 4 configurations suivantes :



Exercice 6 Exprimer les composantes du vecteur \vec{a} en fonction de R et θ dans les 4 configurations suivantes :



Réponses

- 1. 22.8 kg
- 2. $21500 \text{ kg} \cdot \text{m}^{-3}$
- 3. $t \simeq 17 \text{ ms}$
- 4. $\vec{a} = (R\cos\theta, R\sin\theta)$ dans les quatre cas.
- 5. $\vec{a} = (-R\sin\theta, R\cos\theta)$ dans les quatre cas. $1 \vec{a} = (R\sin\theta, -R\cos\theta)$; $2 \vec{a} = (-R\cos\theta, -R\sin\theta)$; $3 \vec{a} = (0, -R)$; $4 \vec{a} = (-R, 0)$.

Solutions

Solution 1 On sait que $m = \rho V$, et pour l'or ou le fer le volume est le même. Alors :

$$m_{Fe} = \rho_{Fe} V \tag{1}$$

$$m_{Au} = \rho_{Au}V \tag{2}$$

En égalant les deux expressions du volume, on en déduit :

$$m_{Au} = m_{Fe} * \frac{\rho_{Au}}{\rho_{Fe}} = 22.8kg$$
 (3)

Remarque: Faites toujours une résolution analytique avant l'application numérique.

Solution 2

$$V_{cylindre} = h\pi R^2 \tag{4}$$

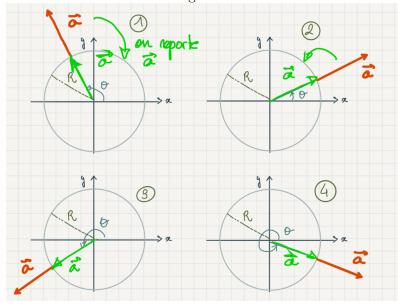
$$\rho = \frac{m}{V_{cylindre}} = \frac{1}{3.9 * 10^{-3} * \pi * \frac{3.9}{2}^2 * 10^{-6}} = 21.5 * 10^3 kg \cdot m^{-3}$$
 (5)

Remarque : Certaines indications peuvent être superflues (ici le pourcentage de chaque métal).

Solution 3 Distance orteil-cerveau $\simeq 1.7$ m, donc:

$$t = \frac{d}{v} = \frac{1.7}{100} = 17ms \tag{6}$$

Solution 4 On rapporte \vec{a} au centre du cercle, dans tous les cas \vec{a} part du centre, pointe sur le cercle et θ mesure l'angle entre Ox et \vec{a} .



Donc $\vec{a} = (R \cos \theta, R \sin \theta)$ dans les quatre cas.

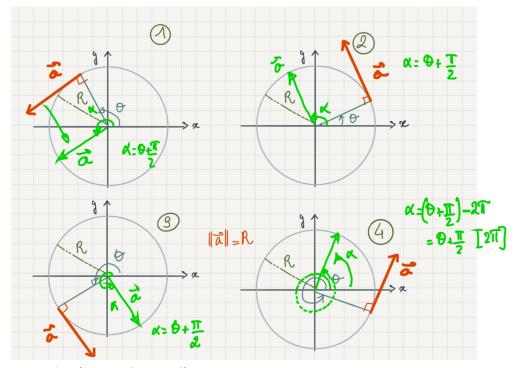
Solution 5 On rapporte \vec{a} au centre du cercle, il fera alors un angle α avec $Ox : \vec{a} = (R\cos\alpha, R\sin\alpha)$

En se reliant les angles, on a : $\alpha = \theta + \pi/2$

Or on sait que:

$$\cos(\theta + \pi/2) = -\sin\theta\tag{7}$$

$$\sin(\theta + \pi/2) = \cos\theta \tag{8}$$



Donc $\vec{a} = (-R\sin\theta, R\cos\theta)$ dans les quatre cas.

Remarque : On remarque que les relations restent les mêmes quel que soit le quadrant du cercle trigonométrique.

Le vecteur \vec{a} est toujours tangent au cercle et pointe dans le sens trigo positif. Un schéma fait pour un vecteur dans le 1er quadrant fonctionne aussi dans les autres heureusement!

Solution 6

(1 et 2) : Ici aussi on ramène \vec{a} au centre du cercle, on repère sa position pour un angle α et on cherche le lien entre θ et α :

$$\mathbf{1}: \vec{a} = (R\cos\alpha, R\sin\alpha) = (R\cos(\pi/2 - \theta), R\sin(\pi/2 - \theta)) = (R\sin\theta, -R\cos\theta) \quad (9)$$

$$\mathbf{2}: \vec{a} = (R\cos\alpha, R\sin\alpha) = (R\cos(\pi+\theta), R\sin(\pi+\theta)) = (-R\cos\theta, -R\sin\theta) \tag{10}$$

3: Seulement une composante sur
$$\vec{e}_y$$
: $\vec{a} = (0, -R)$

4: Seulement une composante sur
$$\vec{e}_x$$
: $\vec{a} = (-R, 0)$ (12)

