II. Référentiel accélérés

Prof. Cécile Hébert

1er septembre 2022

Plan du cours

- I Cinématique
- II Référentiel accélérés
- III Lois de Newton
- IV Balistique effet d'une force constante et uniforme
- V Forces; application des lois de Newton
- VI Travail, Energie, principes de conservation
- VII Chocs, systèmes de masse variable
- VIII Oscillateur harmonique
 - IX Moment cinétique; Gravitation
 - X Solide indéformable
 - XI Application du solide indéformable

II. Référentiel accélérés

Table des matières

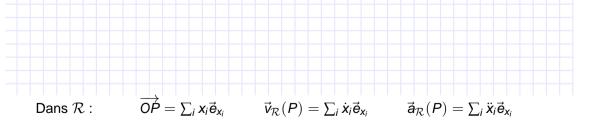
- 1. Introduction
- 2. Position vitesse et accélération
- 3. Analyse et cas particuliers

1. Introduction et notation

Soient un référentiel \mathcal{R} fixe, muni du repère cartésien $(O, \vec{x}_1, \vec{x}_2, \vec{x}_3)$

un référentiel \mathcal{R}' muni du repère cartésien $(A, \vec{y}_1, \vec{y}_2, \vec{y}_3)$ en mouvement dans \mathcal{R} .

On notera \vec{e}_{x_i} respectivement \vec{e}_{y_i} les vecteurs unitaires de ces deux repères.



Dans \mathcal{R}' : $\overrightarrow{AP} = \sum_i y_i \vec{e}_{y_i}$ $\vec{v}_{\mathcal{R}'}(P) = \sum_i \dot{y}_i \vec{e}_{y_i}$ $\vec{a}_{\mathcal{R}'}(P) = \sum_i \ddot{y}_i \vec{e}_{y_i}$

On peut séparer le mouvement de \mathcal{R}' dans \mathcal{R} en deux composantes : une rotation et une translation.

La translation donne le mouvement de A dans \mathcal{R} et la rotation la rotation des axes (y_j) par rapport aux axes (x_i) . On appelle $\vec{\omega}$ le vecteur rotation.

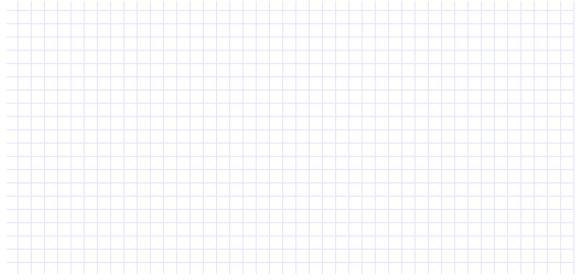
Les vecteurs \vec{e}_{y_i} changent dans \mathcal{R} . On obtient leur dérivée par :

$$rac{\mathrm{d}}{\mathrm{d}t} \vec{\mathbf{e}}_{y_j} = \vec{\omega} \wedge \vec{\mathbf{e}}_{y_j}$$

II. Référentiel accélérés 2. Position vitesse et accélération

2. Position, vitesse et accélération

II. Référentiel accélérés 2. Position vitesse et accélération



Résumé:

$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$$

$$ec{v}_{\mathcal{R}}(P) = ec{v}_{\mathcal{R}}(A) + ec{v}_{\mathcal{R}'}(P) + ec{\omega} \wedge \overrightarrow{AP}$$

$$\vec{a}_{\mathcal{R}}(\textit{P}) = \vec{a}_{\mathcal{R}'}(\textit{P}) + \vec{a}_{\mathcal{R}}(\textit{A}) + \dot{\vec{\omega}} \wedge \overrightarrow{\textit{AP}} + \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{\textit{AP}}) + 2\vec{\omega} \wedge \vec{v}_{\mathcal{R}'}(\textit{P})$$

3. Analyse et cas particuliers

Cas particulier 1 : \mathcal{R}' a un mouvement de translation uniforme dans \mathcal{R}

$$ec{v}_{\mathcal{R}}(P) = ec{v}_{\mathcal{R}}(A) + ec{v}_{\mathcal{R}'}(P) + ec{\omega} \wedge \overrightarrow{AP}$$

$$\vec{a}_{\mathcal{R}}(P) = \vec{a}_{\mathcal{R}'}(P) + \vec{a}_{\mathcal{R}}(A) + \dot{\vec{\omega}} \wedge \overrightarrow{AP} + \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{AP}) + 2\vec{\omega} \wedge \vec{v}_{\mathcal{R}'}(P)$$

Cas particulier 1 : \mathcal{R}' a un mouvement de translation uniforme dans \mathcal{R}

$$\vec{\mathsf{v}}_{\mathcal{R}}(\mathsf{P}) = \vec{\mathsf{v}}_{\mathcal{R}}(\mathsf{A}) + \vec{\mathsf{v}}_{\mathcal{R}'}(\mathsf{P})$$

$$ec{\mathsf{a}}_\mathcal{R}(P) = ec{\mathsf{a}}_{\mathcal{R}'}(P)$$

Cas particulier 2:

 \mathcal{R}' a un mouvement de rotation uniforme dans \mathcal{R} avec $\mathsf{A} = \mathsf{O}$ et P fixe dans \mathcal{R}'

$$\vec{v}_{\mathcal{R}}(P) = \vec{v}_{\mathcal{R}}(A) + \vec{v}_{\mathcal{R}'}(P) + \vec{\omega} \wedge \overrightarrow{AP}$$

$$\vec{a}_{\mathcal{R}}(P) = \vec{a}_{\mathcal{R}'}(P) + \vec{a}_{\mathcal{R}}(A) + \dot{\vec{\omega}} \wedge \overrightarrow{AP} + \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{AP}) + 2\vec{\omega} \wedge \vec{v}_{\mathcal{R}'}(P)$$

Cas particulier 2:

 \mathcal{R}' a un mouvement de rotation uniforme dans \mathcal{R} avec A=O et P fixe dans \mathcal{R}' P a donc un mouvement circulaire uniforme dans \mathcal{R} .

$$\vec{\mathsf{v}}_{\mathcal{R}}(\mathsf{P}) = \vec{\omega} \wedge \overrightarrow{\mathsf{OP}}$$

$$ec{\mathsf{a}}_\mathcal{R}(\mathsf{P}) = ec{\omega} \wedge (ec{\omega} \wedge \overrightarrow{\mathsf{OP}})$$

Cas particulier 3 : \mathcal{R}' a un mouvement de rotation uniforme dans \mathcal{R} avec A = O

$$\vec{v}_{\mathcal{R}}(P) = \vec{v}_{\mathcal{R}}(A) + \vec{v}_{\mathcal{R}'}(P) + \vec{\omega} \wedge \overrightarrow{AP}$$

$$\vec{a}_{\mathcal{R}}(P) = \vec{a}_{\mathcal{R}'}(P) + \vec{a}_{\mathcal{R}}(A) + \dot{\vec{\omega}} \wedge \overrightarrow{AP} + \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{AP}) + 2\vec{\omega} \wedge \vec{v}_{\mathcal{R}'}(P)$$

Cas particulier 3 : \mathcal{R}' a un mouvement de rotation uniforme dans \mathcal{R} avec A = O

$$\vec{\mathbf{v}}_{\mathcal{R}}(\mathbf{P}) = \vec{\mathbf{v}}_{\mathcal{R}'}(\mathbf{P}) + \vec{\omega} \wedge \overrightarrow{\mathsf{OP}}$$

$$\vec{a}_{\mathcal{R}}(P) = \vec{a}_{\mathcal{R}'}(P) + \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{OP}) + 2\vec{\omega} \wedge \vec{v}_{\mathcal{R}'}(P)$$

Nomenclature dans le cas général

$$\vec{\mathbf{a}}_{\mathcal{R}}(P) = \vec{\mathbf{a}}_{\mathcal{R}'}(P) + \vec{\mathbf{a}}_{\mathcal{R}}(A) + \dot{\vec{\omega}} \wedge \overrightarrow{AP} + \vec{\omega} \wedge (\vec{\omega} \wedge \overrightarrow{AP}) + 2\vec{\omega} \wedge \vec{v}_{\mathcal{R}'}(P)$$