X - Dynamique du solide indéformable

Prof. Cécile Hébert

27 octobre 2021

Plan du cours

- I Cinématique
- II Référentiel accélérés
- III Lois de Newton
- IV Balistique effet d'une force constante et uniforme
- V Forces; application des lois de Newton
- VI Travail, Energie, principes de conservation
- VII Chocs, systèmes de masse variable
- VIII Oscillateur harmonique
 - IX Moment cinétique; Gravitation
 - X Solide indéformable
 - XI Application du solide indéformable

Table des matières

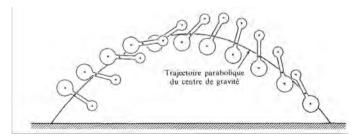
- 1 Introduction. Du système de points au solide indéformable.
- 2 Centre de masse et lois de Newton
- 3 Statique
- 4 Energie (cinétique) de rotation
- 5 Moment d'inertie d'un solide par rapport à un axe
- 6 Moment cinétique d'un solide
- 7 Solide qui roule
- 8 Tenseur d'inertie (hors programme)

X-1. Introduction. Du système de points au solide indéformable.

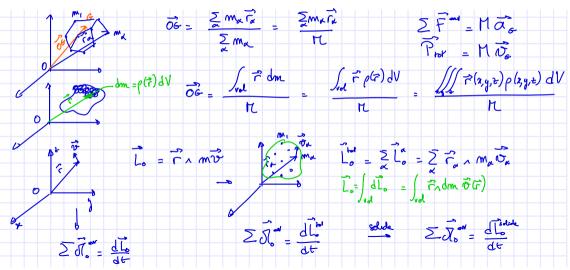
Un solide indéformable peut avoir un mouvement

- de translation
- de rotation

Il va falloir mettre de nouveaux concepts en place pour le mouvement de rotation!



2 - Centre de masse et lois de Newton



5

Quantité de mouvement et 2ème Loi de Newton pour un solide :

$$ec{P}_{
m tot} = M ec{v}_G$$
 } fushfre l'approxivation
$$\sum ec{F}^{
m ext} = M ec{a}_G$$
 \Rightarrow de la mécanique du pont

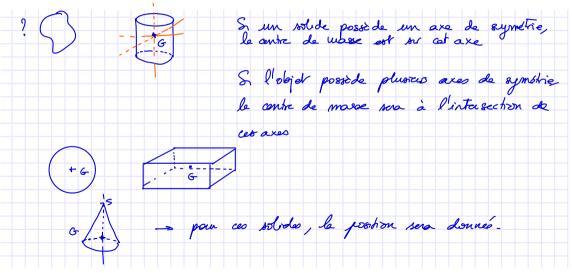
Théorème du moment cinétique pour un solide

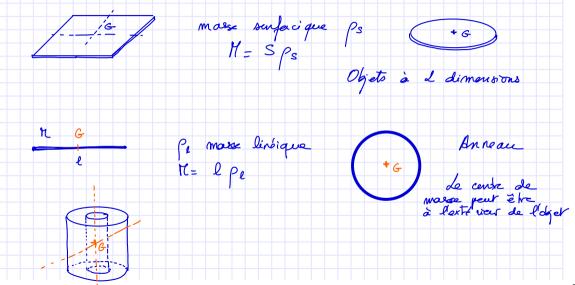
$$\vec{\mathcal{M}}_O^{\text{ext}} = \frac{\mathrm{d}\vec{\mathcal{L}}_O}{\mathrm{d}t}$$

Important dans tous les cas : le poids s'applique au centre de masse.

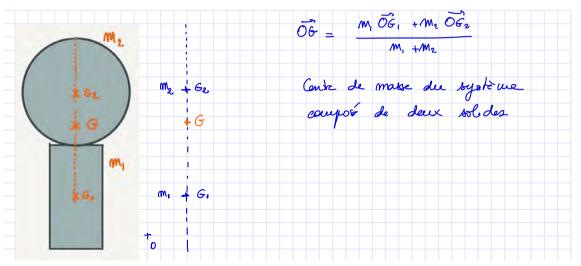
6

Détermination du centre de masse d'un solide

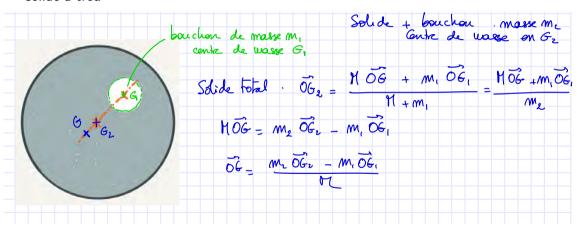




Superposition de deux solides :



solide à trou



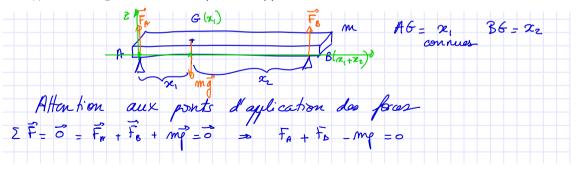
Chercher le c.d.m. entre le solide sans trou et un "trou" de masse négative égale à la masse enlevée au solide.

3 - Statique

Les conditions sont alors :

$$ec{F}^{
m ext} = ec{0} \qquad ec{M}_O^{
m ext} = ec{0}$$

Exemple : poutre (non homogène!) de masse m sur 2 supports. Déterminer les forces F_A en A et F_B en B exercées par les supports



X - Dynamique du solide indéformable 3 - Statique

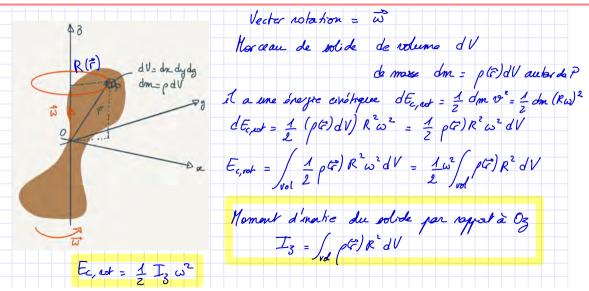
$$F_A = mg \frac{x_2}{x_1 + x_2}$$

$$F_B = mg \frac{x_1}{x_1 + x_2}$$

4 - Energie (cinétique) de rotation



X - Dynamique du solide indéformable 4 - Energie (cinétique) de rotation



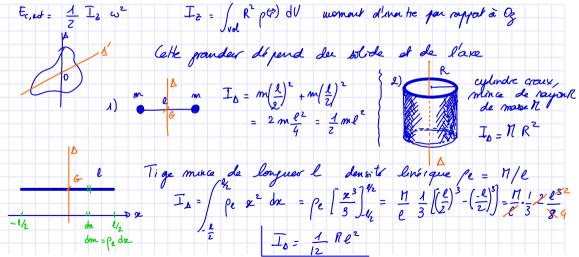
Ré sumé

$$E_{C,\text{rot}} = \frac{1}{2}\omega^2 \int_{\text{vol}} R^2 \rho(r) d\vec{r} = \frac{1}{2}\omega^2 I_z$$

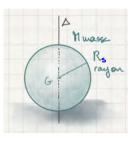
Avec I_z moment d'inertie du solide par rapport à l'axe (Oz)

$$I_{z} = \int_{\text{vol}} R^{2} \rho(r) d\vec{r}$$

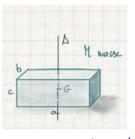
5 - Moment d'inertie d'un solide par rapport à un axe



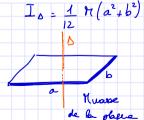
Solides usuels

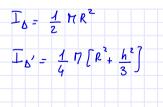


Solida plans homogènes



$$I_0 = \frac{2}{5} \pi R_s^2$$



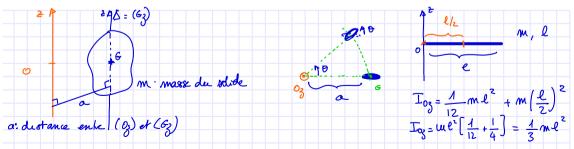


Théorème de Steiner :

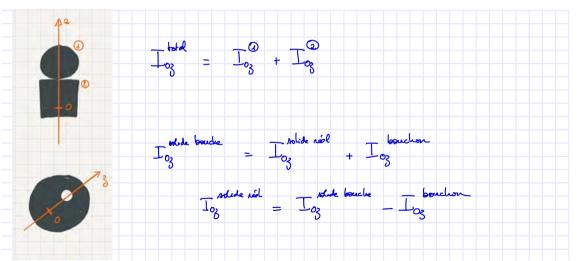
Si on a deux axes parallèles (Oz) et (Gz) distants de a, avec G centre de masse. Si I_{Gz} est le moment d'inertie par rapport à (Gz) alors

$$I_{Oz} = I_{Gz} + ma^2$$

 I_{Oz} moment d'inertie par rapport à (Oz)



Solides composés et solides à trous



cylindre crow wasse It of rayon R roule soms plisson laché soms vitesse mitrale en A an charche OB A B Forces: Mg , réaction R FE follements vitase du point d'application de $\vec{F_F}$ est rull $W_{\vec{F_F}} = 0$ $W_{\vec{R}}^{\circ} = 0$ Seule force qui borraille. pirids » consura hon de Em = Ep + Ectors + Ecotombordo $E_{c,trans} = E_{c} = \frac{1}{2} M \sigma_{6}^{2}$; $E_{rot} = \frac{1}{2} I_{6e} \omega^{2}$ $I_{6e} = M R^{2}$ $v_{6} = R \omega$ $E_{m,n} = E_{m_0} \Rightarrow E_{RA} + E_{GA} + E_{nd,n} = E_{R.B} + E_{GB} + E_{nd,B}$ $\text{Mgh} + 0 + 0 = 0 + \frac{1}{2} \text{Mo}_0^2 + \frac{1}{2} \text{To}_0^2 + \frac{1}{2} \text{Mo}_0^2 + \frac{1$ Hgh = 2 1 Hoz OB = Vgh Objet qui glesse som roch ve = Vzgh

6 - Moment cinétique d'un solide.

Rappel : quantité de mouvement et 2ème Loi de Newton pour un solide :

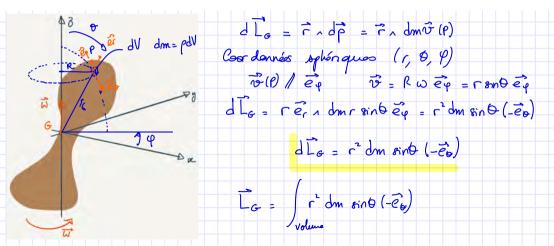
$$\vec{P}_{\mathrm{tot}} = M \vec{v}_{G}$$

$$\sum \vec{F}^{\mathrm{ext}} = M \vec{a}_G$$

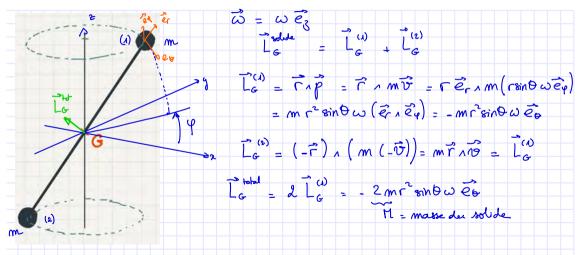
Théorème du moment cinétique pour un solide

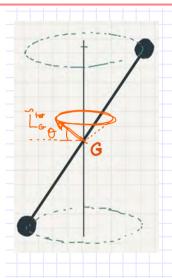
$$\vec{\mathcal{M}}_O^{\text{ext}} = \frac{\mathrm{d}\vec{\mathcal{L}}_O}{\mathrm{d}t}$$

Soit un solide en rotation autour d'un axe passant par G. On place l'axe (Gz) de manière que ce soit l'axe de rotation. Le vecteur rotation est alors $\vec{\omega} = \omega \vec{e}_z$



Cas simple : "haltère" en rotation, dont la tige a une masse négligeable.





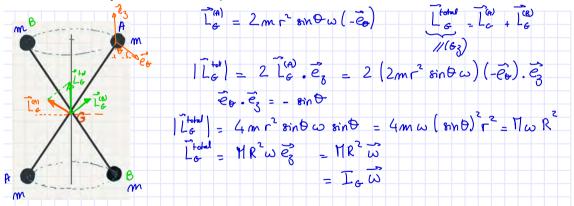
Ré sumé

dors de la rotation du sol de autour de (6-3) le moment cirétique décret un cône

La direction du vecteur La change

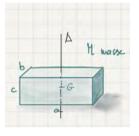
La rotation demande d'exercer un mouour pan être mantenue ?

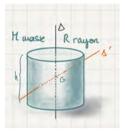
En général, le moment cinétique n'est pas parallèle à l'axe de rotation. Sauf si il y a une certaine symétrie dans la répartition de la masse :



Dans certains cas $\vec{L}_G//\vec{\omega}$. Alors : $\vec{L}_G = I_{Gz}\vec{\omega}$

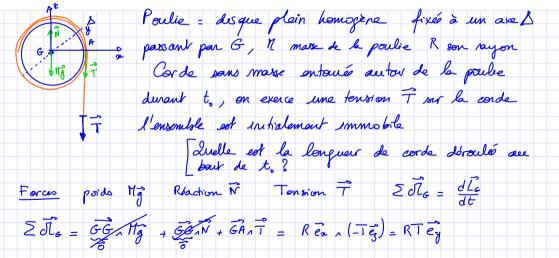
Exemples de cas symétriques :





Pour ces solides il existe des axes de symétrie tols que pour une notation autor de cet axe $\overline{L_6} = \overline{L_{63}} \, \overline{\omega}$ Axe principal d'inentie Tout solide admot au moins 3 axes principaux d'inentie Peur une notation auter d'un axe principal d'inente, $\overline{L_6} = \overline{L_{63}} \, \overline{\omega}$

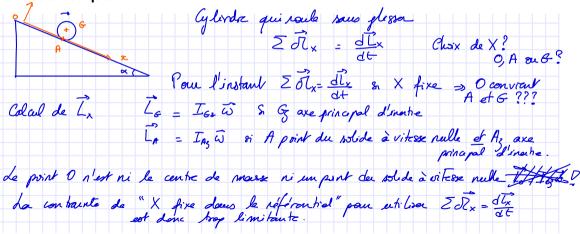
Exemple



X - Dynamique du solide indéformable 6 - Moment cinétique d'un solide

7 - Solide qui roule

Problématique



Parfois, on souhaite utiliser un point non fixe pour étudier le mouvement.

A um point quelconque de
$$\mathcal{R}$$
, non fixe \Rightarrow $\overrightarrow{\mathcal{O}}_{R}(A) \neq \overrightarrow{\mathcal{O}}$

$$\sum \overrightarrow{\mathcal{I}}_{A} \stackrel{?}{=} \frac{d\overrightarrow{\mathcal{I}}_{A}}{dt} \stackrel{?}{=} 0 \text{ fixe } \sum \overrightarrow{\mathcal{S}}_{S} = \frac{d\overrightarrow{\mathcal{I}}_{S}}{dt}$$

$$\overrightarrow{\mathcal{L}}_{A} = \int \overrightarrow{AP}_{A} dm \overrightarrow{\mathcal{O}}_{R}(P) = \int (\overrightarrow{AO} + \overrightarrow{OP}_{A}) dm \overrightarrow{\mathcal{O}}_{R}(P) = \int \overrightarrow{AO}_{A} dm \overrightarrow{\mathcal{O}}_{R}(P) + \int \overrightarrow{OP}_{A} dm \overrightarrow{\mathcal{O}}_{R}(P)$$

$$= \overrightarrow{AO}_{A} \int dm \overrightarrow{\mathcal{O}}_{R}(P) + \overrightarrow{\mathcal{L}}_{S} = -\overrightarrow{OA}_{A} \overrightarrow{P}^{M} + \overrightarrow{\mathcal{L}}_{S}$$

$$\frac{d\overrightarrow{\mathcal{L}}_{A}}{dt} = -\left[\frac{d\overrightarrow{OA}}{dt} \xrightarrow{P}^{P} + \overrightarrow{OA}_{A} \frac{d\overrightarrow{P}^{M}}{dt}\right] + \frac{d\overrightarrow{\mathcal{L}}_{S}}{dt} = -\overrightarrow{\mathcal{O}}_{R}(A)_{A} \overrightarrow{P}^{M} - \overrightarrow{OA}_{A} \xrightarrow{Z} \overrightarrow{F}^{M} + \overrightarrow{Z}\overrightarrow{\mathcal{J}}_{S}$$

$$\frac{d\overrightarrow{\mathcal{L}}_{A}}{dt} = -\overrightarrow{\mathcal{O}}_{R}(A)_{A} (\overrightarrow{\mathcal{M}}_{R}(G)) + \overrightarrow{\mathcal{O}}_{A} \overrightarrow{\mathcal{O}}_{R}(G) + \overrightarrow{\mathcal{D}}_{R}(G) + \overrightarrow{\mathcal{O}}_{R}(G) + \overrightarrow{\mathcal{O}}_{R}(G) + \overrightarrow{\mathcal{O}}_{R}(G) + \overrightarrow{\mathcal{O}}_{R}(G)$$

$$\frac{d\overrightarrow{\mathcal{L}}_{A}}{dt} = -\overrightarrow{\mathcal{O}}_{R}(A)_{A} (\overrightarrow{\mathcal{M}}_{R}(G)) + \overrightarrow{\mathcal{O}}_{R}(G) + \overrightarrow{\mathcal{O}}_{R}(G) + \overrightarrow{\mathcal{O}}_{R}(G) + \overrightarrow{\mathcal{O}}_{R}(G)$$

$$\frac{d\vec{L}_{A}}{dt} = \vec{Z} \cdot \vec{D}_{A} - M \cdot \vec{D}_{R}(A) \cdot \vec{D}_{R}(G) \quad \text{formula yindrale}$$

$$\vec{O}_{R}(A) \cdot \vec{O}_{R}(G) = \vec{O} \quad \text{s. A fixe daws } R$$

$$= S \cdot A \quad \text{od le earlie de wasse } G$$

$$= S \cdot \vec{D}_{R}(A) \quad \text{od chive aire } \vec{a} \cdot \vec{O}_{R}(G)$$

$$\frac{d\vec{L}_{O}}{dt} = \vec{Z} \cdot \vec{N}_{O}$$

En résumé :

Pour pouvoir utiliser

$$\vec{M}_A^{\text{ext}} = \frac{\mathrm{d}\vec{L}_A}{\mathrm{d}t}$$

Il faut que A soit fixe dans le référentiel, ou confondu avec le c.d.m. ou se déplace à une vitesse colinéaire à celle du c.d.m.

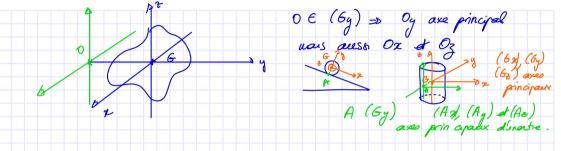
• Pour pouvoir calculer $ec{\mathcal{L}}_A$ avec $ec{\mathcal{L}}_A = \mathit{I}_{Az} ec{\omega}$

Il faut que (Az) soit un axe principal d'inertie

ET que

A = G OU A est un point du solide à vitesse nulle.

(O, x, y, z) peuvent-ils être axes principaux d'inertie?

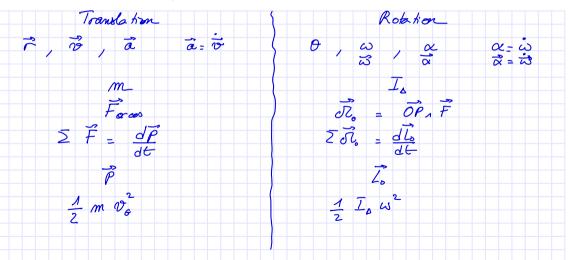


Oui, si (G, x, y, z) sont axes principaux d'inertie et si O appartient à un axe principal d'inertie.

Dans ce cas, pour une rotation autour de (Oz):

$$\vec{\omega} = \omega \vec{e}_z$$
 et $\vec{L}_O = I_{Oz}\vec{\omega}$.

Comparaison translation / rotation



8 - Tenseur d'inertie (hors programme)

Cas ou l'axe de rotation passe par G, centre de masse :

En fait, de manière générale :

$$\vec{L}_G = \underline{I}_G \vec{\omega}$$

avec:

$$\underline{I} = \begin{bmatrix} \int (y^2 + z^2) dm & -\int xydm & -\int xzdm \\ -\int xydm & \int (x^2 + z^2) dm & -\int yzdm \\ -\int xzdm & -\int yzdm & \int (x^2 + y^2) dm \end{bmatrix}$$

 \underline{I} est le tenseur d'inertie, il dépend de l'origine et des axes choisis.

$$\underline{I} = \begin{bmatrix} \int (y^2 + z^2) dm & -\int xydm & -\int xzdm \\ -\int xydm & \int (x^2 + z^2) dm & -\int yzdm \\ -\int xzdm & -\int yzdm & \int (x^2 + y^2) dm \end{bmatrix}$$

