IV - Balistique

Prof. Cécile Hébert

28 mai 2021

Plan du cours

- I Cinématique
- II Référentiel accélérés
- III Lois de Newton
- IV Balistique effet d'une force constante et uniforme
- V Bilan des forces ; application des lois de Newton
- VI Travail, Energie, principes de conservation
- VII Chocs, systèmes de masse variable
- VIII Oscillateur harmonique
 - IX Moment cinétique ; Gravitation
 - X Solide indéformable
 - XI Application du solide indéformable

Table des matières

- 1 Poids d'un objet
- 2 Cas d'un lancer vertical (1 dimension)
- 3 Cas général
- 4 Trajectoire, hauteur maximale, point d'impact
- 5 Portée maximale ou atteindre une cible
- 6 Temps de vol
- 7 Parabole de sureté
- 8 Effet de la rotation de la Terre

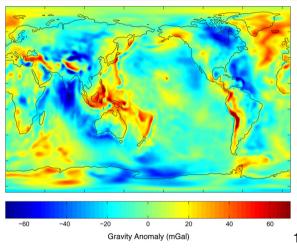
1 - Poids d'un objet

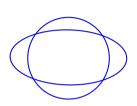
À l'échelle du laboratoire, la Terre est plate et l'accélération de la pesanteur \vec{g} dirigée vers le bas.

La force qui s'exerce sur une masse m est son poids \vec{P}

$$\vec{P}=m\vec{g}$$

la masse est une propriété intrinsèque du corps. Le poids dépend du lieu (le poids d'un cosmonaute n'est pas le même sur Terre et sur la lune...)

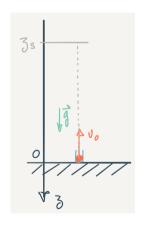




1 Gal = 1 cm·s⁻² = 10^{-5} w.s⁻²

Anomalie de g par rapport à l'ellipsoide applati.

2 - Cas d'un lancer vertical (1 dimension)



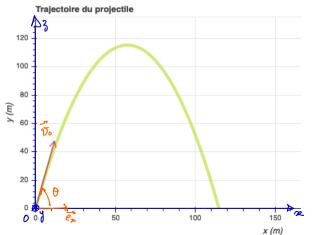
IV - Balistique 2 - Cas d'un lancer vertical (1 dimension)

$$3(t)$$
? $0_3(t) = gt - v.$ $3(t) = \frac{1}{2}gt^2 - v.t + 3.$
 $at = 0 \ 3(0) = 3. = 0$
 $3(t) = \frac{1}{2}gt^2 - v.t$
 $at = 0 \ 3(t) = -\frac{1}{2}gt^2 + v.t$
 $at = 0 \ 3(t) = -\frac{1}{2}gt^2 + v.t$

1 - Choisire un rapère et sly tonir?

2 - "formulo" dépendent de rapère chois

3 - Cas général



Conditions in trales,

à to
$$\vec{r}_s = \vec{r}(s) = \vec{o} \mid \vec{o}$$
 $\vec{v}(s) = \vec{v}_s \mid \vec{o}$
 $\vec{v}(s) = \vec{v}_s \mid \vec{o}$

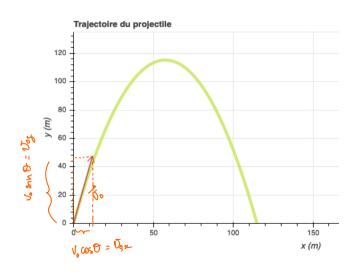
A, B & C constants direct pration.

$$\vec{v} = \vec{v} + c$$

$$\vec{v} = \vec{v} = \vec{v} = \vec{v} = \vec{v} = c$$

$$\vec{v} = \vec{v} + c$$

$$\vec{v} =$$



$$\vec{a} \begin{vmatrix} 0 \\ 0 \\ -g \end{vmatrix}$$

$$\vec{v} \begin{vmatrix} v_0 \cos \theta \\ 0 \\ -gt + v_0 \sin \theta \end{vmatrix}$$

$$\vec{r} \begin{vmatrix} (v_0 \cos \theta)t \\ 0 \\ -\frac{1}{2}gt^2 + (v_0 \sin \theta) \end{vmatrix}$$

l'équation horaix de movement

4 - Trajectoire, hauteur maximale, point d'impact

Chercher la trajectoire, c'est chercher z en fonction de x

$$\begin{vmatrix} 0 & v_0 \cos \theta \\ 0 & v_0 \cos \theta \\ -g & \begin{vmatrix} v_0 \cos \theta \\ 0 & -gt + v_0 \sin \theta \end{vmatrix} = \frac{v(v_0 \cos \theta)t}{v_0 \cos \theta} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \sin \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \sin \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \sin \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \sin \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \sin \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

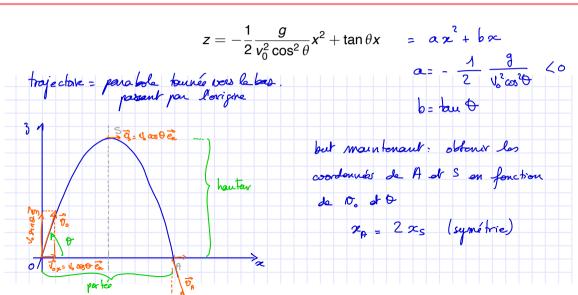
$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$

$$\begin{vmatrix} v_0 \cos \theta \\ v_0 \cos \theta \end{vmatrix} = \frac{v(t)}{v_0 \cos \theta}$$



Sommet S:

$$S \left| \begin{array}{c} \frac{\mathit{v}_0^2}{g} \sin \theta \cos \theta \\ 0 \\ \frac{\mathit{v}_0^2}{2g} \sin^2 \theta \end{array} \right.$$

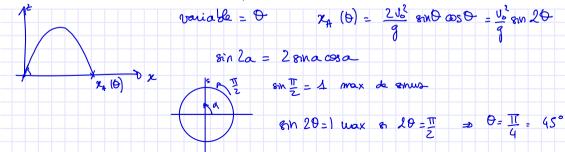
Point d'impact A

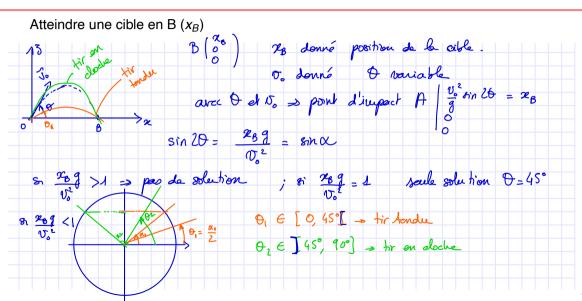
$$\begin{array}{c|c} A & 2\frac{v_0^2}{g} \sin \theta \cos \theta \\ 0 & 0 \end{array}$$

5 - Portée maximale ou atteindre une cible

On veut lancer le plus *loin* possible. A est le point d'impact :

sible. A est le point d'im
$$A \begin{vmatrix} 2\frac{v_0^2}{g} \sin \theta \cos \theta \\ 0 \\ 0 \end{vmatrix}$$





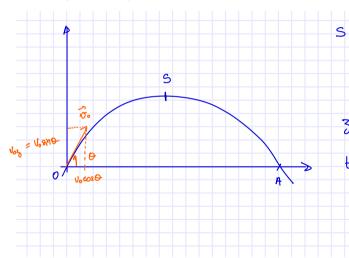
6 - Temps de vol

À quel temps t_A l'objet est-il en A?

$$\vec{r_A} \begin{vmatrix} (v_0 \cos \theta) t_A \\ 0 \\ -\frac{1}{2} g t_A^2 + (v_0 \sin \theta) t_A \end{vmatrix} = \begin{vmatrix} \frac{2v_0^2}{g} \sin \theta \cos \theta \\ 0 \\ 0 \end{vmatrix}$$

$$t_A = 2\left(\frac{v_0}{a}\right)\sin\theta. = 2 t_s$$

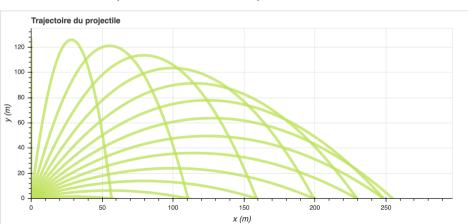
Analyse conceptuelle



S |
$$\frac{U_0}{g}$$
 and $\cos \phi$ | $t_p = \frac{2 V_0}{g}$ sin θ | $\frac{V_0^2 \sin^2 \theta}{2g}$ | $\frac{V_0^2}{2g}$ | $\frac{2g}{g}$ | $\frac{2}{g}$ | \frac

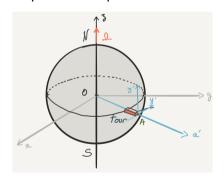
7 - Parabole de sureté

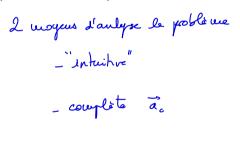
Parabole de sureté. Pour une vitesse initiale v_0 donnée, un projectile ne peut pas atteindre les points en dehors de la parabole de sureté.



8 - Effet de la rotation de la Terre : pierre qui tombe d'une tour

On considère qu'on lâche une pierre d'une hauteur *h* depuis une tour située à l'équateur. De quelle distance et dans quelle direction la pierre est-elle déviée ?

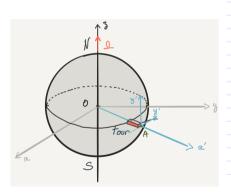


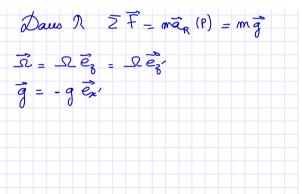


Calcul "intuitif", ne prenant en compte que les vitesses de rotations :

Calcul complet

On prend un repère $\mathcal{R}(O,x,y,z)$ fixe avec O centre de la Terre et un repère lié à la tour $\mathcal{R}'(A,x',y',z')$. A est le sommet de la tour (point d'où on lâche la pierre).





IV - Balistique 8 - Effet de la rotation de la Terre

$$\vec{a}_{R}(P) = \vec{a}_{R'}(P) + \vec{a}_{R}(A) + \vec{D}_{A}(\vec{R}_{A} + \vec{D}_{A}(\vec{R}_{A} + \vec{P}_{A}) + 2\vec{D}_{A}\vec{v}_{R'}(P)$$

$$\vec{a}_{A}(\vec{R}_{A}\vec{v}_{A}) = \vec{a}_{R}(P) - \vec{D}_{A}(\vec{D}_{A}\vec{v}_{P}) - 2\vec{D}_{A}\vec{v}_{R'}(P)$$

$$\vec{a}_{R'}(P) = \vec{q} - \vec{D}_{A}(\vec{D}_{A}\vec{v}_{P}) - 2\vec{D}_{A}\vec{v}_{R'}(P)$$

$$\vec{a}_{R'}(P) = \vec{q} - \vec{D}_{A}(\vec{D}_{A}\vec{v}_{P}) - 2\vec{D}_{A}\vec{v}_{R'}(P)$$

$$\vec{a}_{R'}(P) = -\vec{q}_{A}\vec{e}_{R'} - 2\vec{D}_{A}\vec{v}_{R'}(P)$$

IV - Balistique 8 - Effet de la rotation de la Terre

IV - Balistique 8 - Effet de la rotation de la Terre

$$\dot{z}' = 0 \implies \delta' = de = \delta'(t=0) = 0 \qquad \delta' = 0 \qquad \text{pao de dovinhon N-S}$$

$$\dot{z}' = -q_{\text{eff}}t + 2 \text{ By nightgeable davant gefft} \implies \dot{z}' = -q_{\text{eff}}t$$

$$\dot{y}' = -2 \Omega z'$$

$$\dot{z}' = -2 \Omega z'$$

$$\dot{$$

Ferdinand Reich 1799-1882

Expérience en 1833 ; $h = 158 \text{m} \lambda = 51^{\circ}$

