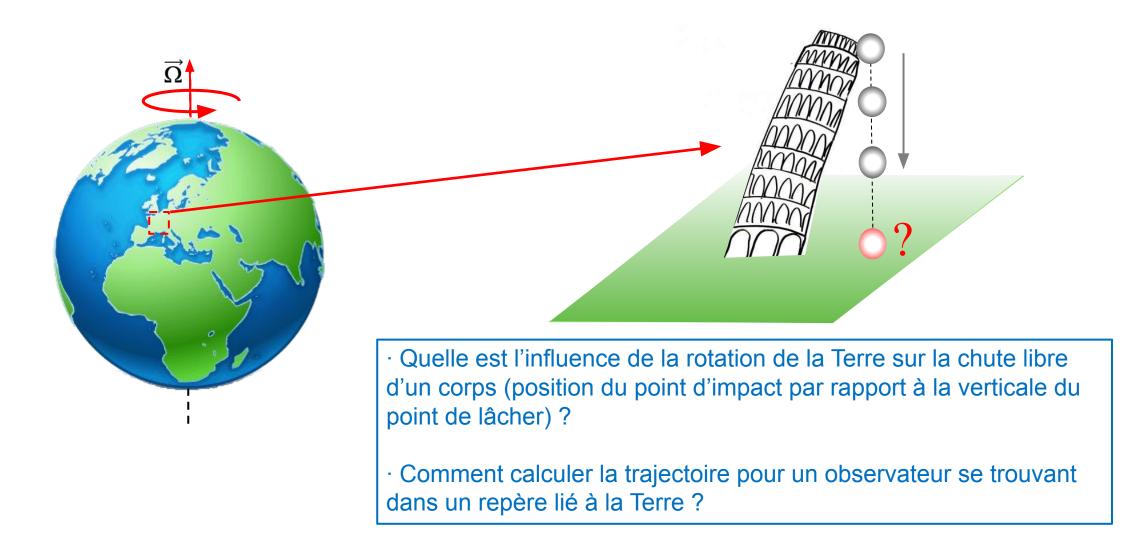
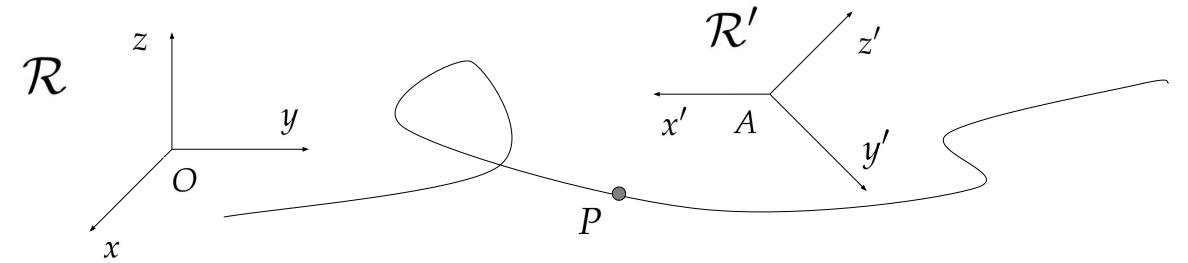
Week 4 – Part 1


- 5. 2nd loi de Newton dans un référentiel non galiléen Coriolis
 - 5.1. Force centrifuge et \vec{g} apparent
 - 5.2. Force de Coriolis et chute libre

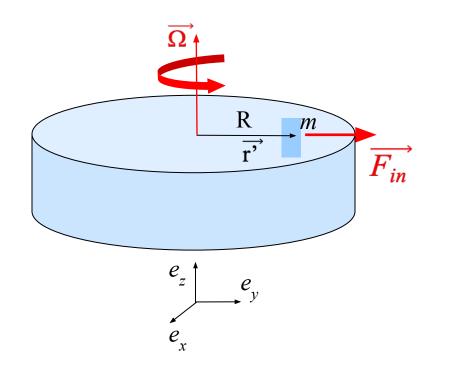

5. 2nd loi de Newton dans un référentiel non galiléen – Coriolis

La Terre est en rotation uniforme autour d'un axe passant par les pôles

⇒ La Terre n'est donc pas, par définition, un référentiel galiléen

5.1 Rappel: formule de l'accélération dans un référentiel non-galiléen

$$\overrightarrow{a}_{\mathcal{R}}(P) = \overrightarrow{a}_{\mathcal{R}'}(P) + \overrightarrow{a}_{\mathcal{R}}(A)$$


$$+ \overrightarrow{\Omega} \times \overrightarrow{AP} \qquad \text{acc. tangentielle}$$

$$+ \overrightarrow{\Omega} \times \left(\overrightarrow{\Omega} \times \overrightarrow{AP}\right) \qquad \text{acc. centripète}$$

$$+ 2\overrightarrow{\Omega} \times \overrightarrow{AP} \qquad \text{acc. Coriolis}$$

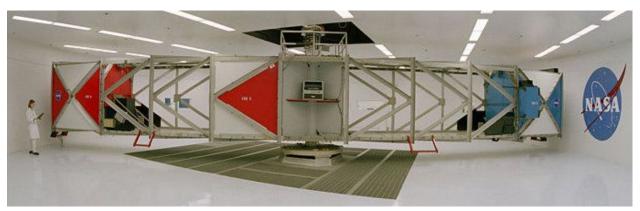
■ Cas d'un objet immobile dans un référentiel en rotation uniforme : $\overrightarrow{v} = \overrightarrow{0}$ et $\overrightarrow{\Omega} = \overrightarrow{\text{cte}}$

Si l'objet est immobile (v' = 0) alors la force de Coriolis est nulle. En revanche, l'objet est soumis à la <u>force d'inertie</u>, appelée aussi <u>force centrifuge</u>.

$$\overrightarrow{F_{in}} = -m\overrightarrow{\Omega} \wedge (\overrightarrow{\Omega} \wedge \overrightarrow{r'}) \quad \text{Force centrifuge}$$

$$\overrightarrow{\Omega} \wedge \overrightarrow{r'} = -(\Omega R) \overrightarrow{e_x}$$

$$-\overrightarrow{\Omega} \wedge -(\Omega R) \overrightarrow{e_x} = \Omega^2 R \overrightarrow{e_y}$$


$$\overrightarrow{F_{in}} = m\Omega^2 R \overrightarrow{e_y}$$

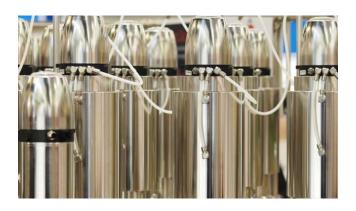
<u>Application numérique</u>: pour une vitesse de rotation de 1 tour par seconde, un rayon de 1 m, et une masse de 100 kg, alors F_{in} = 3944 N soit ~ 4g

■ Application de la force centrifuge : entraînement des astronautes

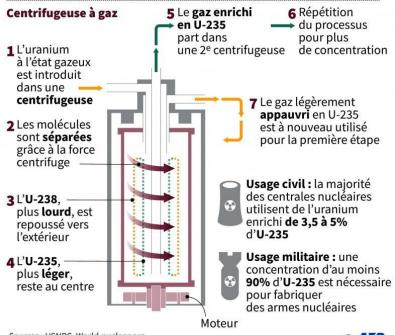
Centrifugeuse à la Cité des étoiles (Russie)

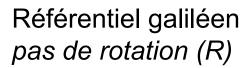
Centrifugeuse "20g" NASA

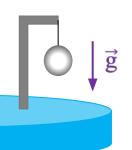
Quelques minutes à 3 ou 4 g


Autres applications de la force centrifuge

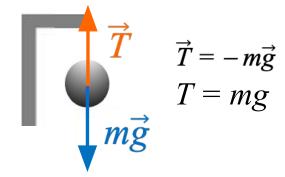
Jus de fruits


Extrait du plasma sanguin




Combustible nucléaire

- L'énergie nucléaire est produite à partir d'uranium 235, qui représente seulement 0,7% de l'uranium naturel, le reste étant de l'uranium 238
- ▶ le processus d'enrichissement augmente la proportion d'U-235 en le séparant de l'U-238



■ Référentiel en rotation et influence sur le poids : g apparent

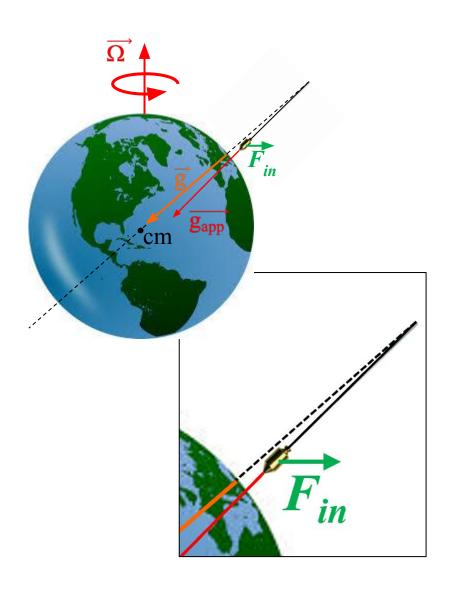
$$m\vec{a} = 0 = \vec{T} + m\vec{g}$$

Référentiel non-galiléen en rotation (R')

Le fil à plomb indique une direction différente de celle de \vec{g} .

L'intensité de la force de tention T n'est plus égale au poids.

La force extérieure qui s'applique sur la masse m est $m\overrightarrow{g_{app}}$, avec $\overrightarrow{g_{app}}$ le poids apparent ou effectif.

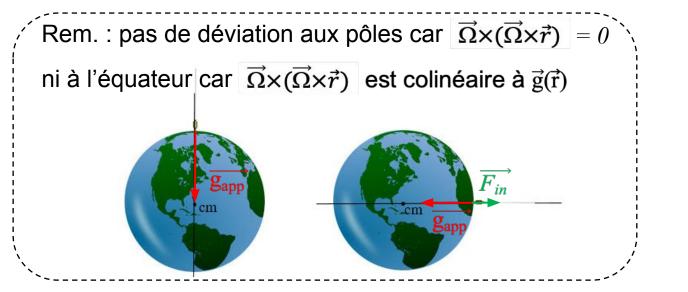

la masse est immobile dans R'

Pour un objet immobile dans R' (v'=0)

$$\overrightarrow{F_{in}} = -m\overrightarrow{\Omega}^{\wedge}(\overrightarrow{\Omega}^{\wedge}\overrightarrow{r'})$$
 centrifuge

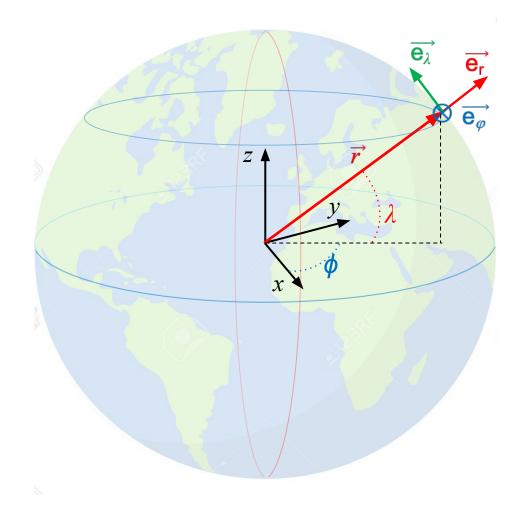
$$0 = \overrightarrow{F_{ext,avec\ g}} - m\overrightarrow{\Omega}^{\wedge}(\overrightarrow{\Omega}^{\wedge}\overrightarrow{r'})$$

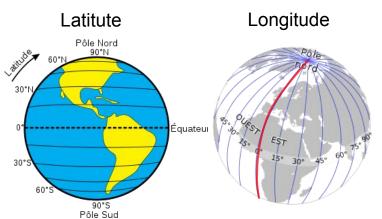
■ g apparent sur la Terre


Un fil à plomb ne pointe pas exactement en direction du centre de la Terre en raison de la rotation de celle-ci qui induit une force centrifuge.

Soit $\vec{g}(\vec{r})$ l'accélération due au champ de gravitation, alors $\vec{g}(\vec{r})$ apparent est donné par :

$$\overrightarrow{g_{app}}(\vec{r}) = \vec{g}(\vec{r}) - \overrightarrow{\Omega} \times (\overrightarrow{\Omega} \times \vec{r})$$

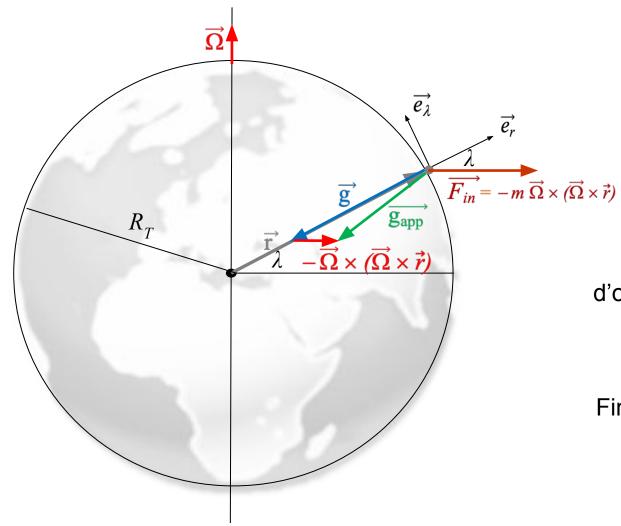

$$F_{in}$$

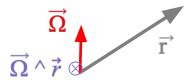

Rem : dans ce qui suit on utilisera la notation \vec{r} , \vec{v} , et \vec{a} pour le référentiel Terre (R')

Système de coordonnées terrestres : coordonnées géographiques

On définit un point sur la Terre par

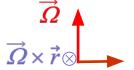
- l'<u>altitude</u> $h (r = R_{Terre} + h)$ définie par rapport au niveau de la mer
- la <u>latitude</u> λ *définie par rapport à l'équateur (\lambda = 0^{\circ})*
- la <u>longitude</u> ϕ définie par rapport au méridien de Greenwich ($\phi = 0^{\circ}$)


Observatoire de Greenwich (Londres)

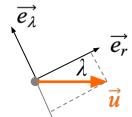

Wikipediawww.wikipedia.org

■ Cacul de g apparent

$$\overrightarrow{\mathbf{g}_{\mathrm{app}}} = -g \overrightarrow{e_r} - \overrightarrow{\Omega} \wedge (\overrightarrow{\Omega} \wedge \overrightarrow{r})$$

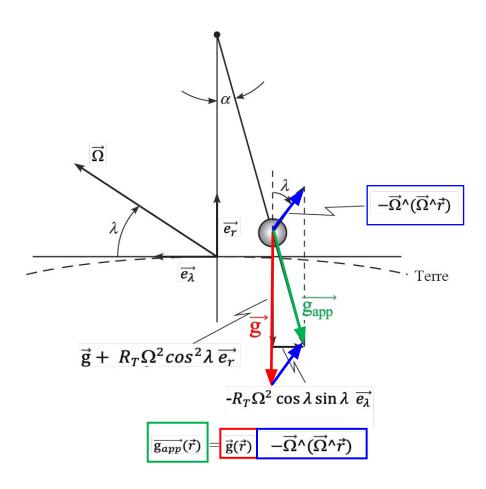


On cherche à exprimer $-\overrightarrow{\Omega} \wedge (\overrightarrow{\Omega} \wedge \overrightarrow{r})$ dans la base $\overrightarrow{e_r} \overrightarrow{e_\lambda}$


$$|\overrightarrow{\Omega} \wedge \overrightarrow{r}| = \Omega R_T \sin(\pi/2 - \lambda) = \Omega R_T \cos \lambda$$

$$-\overrightarrow{\Omega} \wedge (\overrightarrow{\Omega} \wedge \overrightarrow{r})$$
 $\overrightarrow{\Omega} \times \overrightarrow{r} \otimes$

$$\left| -\overrightarrow{\Omega} \wedge (\overrightarrow{\Omega} \wedge \overrightarrow{r}) \right| = \Omega \Omega R_T \cos \lambda \sin(\pi/2) = \Omega^2 R_T \cos \lambda$$


d'où
$$-\overrightarrow{\Omega} \wedge (\overrightarrow{\Omega} \wedge \overrightarrow{r}) = \Omega^2 R_T \cos \lambda \overrightarrow{u}$$
 \overrightarrow{u} vecteur unitaire
$$\overrightarrow{u} = -\sin \lambda \overrightarrow{e_\lambda} + \cos \lambda \overrightarrow{e_r}$$

Finalement

$$\overrightarrow{\mathbf{g}_{\mathrm{app}}} = -g \overrightarrow{e_r} + \Omega^2 R_T \cos \lambda \left[-\sin \lambda \overrightarrow{e_\lambda} + \cos \lambda \overrightarrow{e_r} \right]$$
$$= \left[-g + \Omega^2 R_T \cos^2 \lambda \right] \overrightarrow{e_r} - \Omega^2 R_T \cos \lambda \sin \lambda \overrightarrow{e_\lambda}$$

■ Cacul de g apparent

Le fil à plomb indique la direction de $\overrightarrow{g_{app}}$

La déviation est vers le Sud dans l'hémisphère nord La déviation est nulle à l'équateur et aux pôles

La tension T détermine l'intensité de $\overrightarrow{g_{app}}$

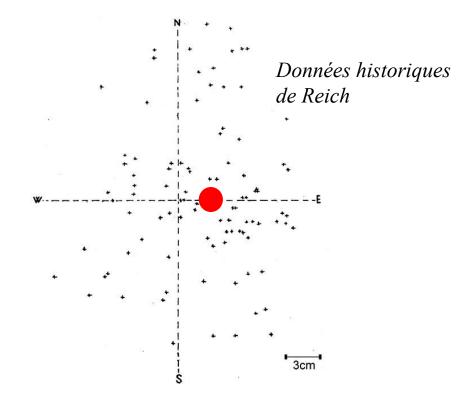
$$g_{pol} = 9.81 \frac{m}{s^2} et g_{\acute{e}q} = 9.78 \frac{m}{s^2}$$

Déviation : angle α entre \overrightarrow{g} et $\overrightarrow{g_{app}}$

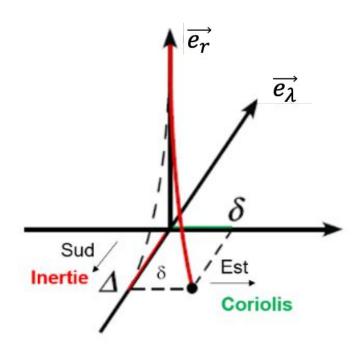
$$\tan \alpha = \frac{R_T \Omega^2 \cos \lambda \sin \lambda}{g - R_T \Omega^2 \cos^2 \lambda} \approx 1.7 \cdot 10^{-3} \sin(2\lambda)$$

5.2. Force de Coriolis et chute libre

Corps en chute libre

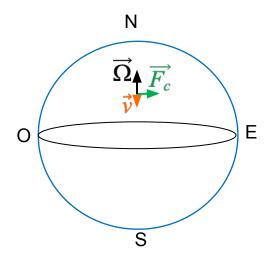

En 1833, Reich fait une expérience qui consiste à laisser tomber une bille dans un puits de mine d'une profondeur de 158 m. Il observe une déviation moyenne vers l'Est de 2,8 cm du point d'impact par rapport à la verticale du point de lâcher donnée par un fil à plomb.

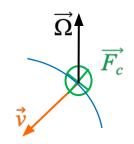
puits de mine


Ferdinand Reich 1799 - 1882

<u>Source</u>: J.G.Hagen, La rotation de la terre, ses preuves mécaniques anciennes et nouvelles, Tipografia Poliglotta Vaticana, Roma (1911)

5.2. Force de Coriolis et chute libre


■ Déviation vers l'Est


Hémisphère nord

Déviation due à la force de Coriolis

Force de Coriolis : $\overrightarrow{F_c} = -2 \ m \ \overrightarrow{\Omega} \times \overrightarrow{v}$

 \vec{v} à t=0 dirigée selon $\overrightarrow{g_{app}}$

 $\overrightarrow{F_c}$ orientée vers l'Est

La force de Coriolis a pour conséquence une déviation vers l'Est du point de chute dans l'hémisphère nord (ou Sud)

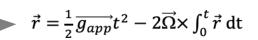
5.2. Force de Coriolis et chute libre

Calcul de la déviation vers l'Est

Dans ce calcul, on applique la 2nd loi de Newton modifiée pour tenir compte de la rotation de la Terre en ajoutant la force d'inertie (incluse dans g_{ann}) et la force de Coriolis

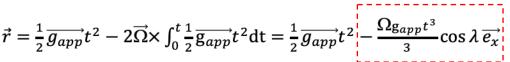
$$m\vec{a}' = \sum_{Force\ de\ Coriolis} \vec{F}_{ext} + \vec{F}_{Cor} + \vec{F}_{in}$$
 $Force\ de\ Coriolis}$
 $m\vec{a} = m\overrightarrow{g_{app}} + \overrightarrow{F_c}$ la force d'inertie (centrifuge)
 $avec\ \overrightarrow{F_c} = -2\ m\ \overrightarrow{\Omega} \times \vec{v} = -2\ m\ \overrightarrow{\Omega} \times (\frac{d\vec{r}}{dt})$
 $\vec{a} = \frac{d^2\vec{r}}{dt^2} = \overrightarrow{g_{app}} - 2\ \overrightarrow{\Omega} \times (\frac{d\vec{r}}{dt})$

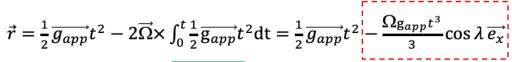
- On intègre une 1ère fois :


$$\vec{v} = \frac{d\vec{r}}{dt} = \overrightarrow{g_{app}}t - 2\overrightarrow{\Omega} \times \vec{r} + \overrightarrow{cte}$$

$$avec \overrightarrow{cte} = \overrightarrow{0} car \overrightarrow{v}(t=0) = \overrightarrow{0}$$

- On intègre une 2ème fois:


$$\vec{r} = \frac{1}{2} \overrightarrow{g_{app}} t^2 - 2 \overrightarrow{\Omega} \times \int_0^t \vec{r} \, dt + \overrightarrow{cte}$$


on pose
$$\vec{r} = \vec{0}$$
 à $t = 0$ d'où $\vec{cte} = \vec{0}$

on suppose que la déviation latérale due à Coriolis est faible par rapport à la hauteur de chute :

$$\vec{r} \approx \frac{1}{2} \overrightarrow{g_{app}} t^2$$

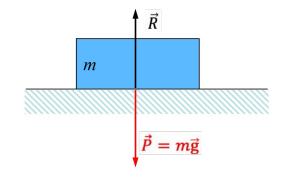
La déviation est suivant - $\overrightarrow{e_x}$ c'est à dire vers l'Est

$$\delta = -\frac{\Omega g_{app} t^3}{3} \cos \lambda = \frac{2}{3} \Omega h t \cos \lambda \quad \text{car} \quad t^2 \approx \frac{2h}{g_{app}}$$

Le calcul donne 2,6 cm pour 158 m de chute libre, soit très proche de la valeur expérimentale mesurée par Reich (2,8 cm)

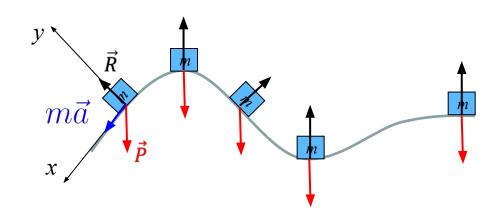
Week 4 – Part 2

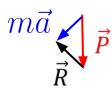
6. Bilan des forces : application des lois de Newton


- 6.1. Réaction d'un support
- 6.2. Mobile sur un plan incliné sans frottement
- 6.3. Force de frottement sec
- 6.4. Mobile sur un plan incliné avec frottement

6.1. Réaction d'un support

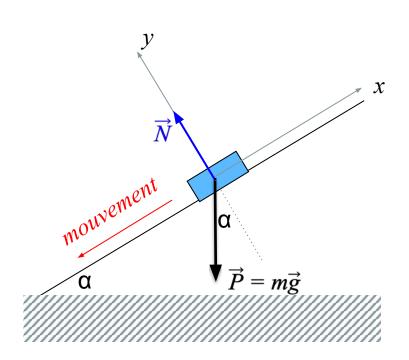
■ Réaction d'une surface sur un objet


Objet immobile


2nd loi de Newton :
$$m\vec{a} = \sum \overrightarrow{F_{ext}} = \vec{P} + \vec{R}$$

Pas de mouvement
$$\Rightarrow$$
 $\vec{a} = \vec{0} \Rightarrow \vec{R} + \vec{P} = \vec{0} \Rightarrow \vec{R} = -\vec{P}$

Objet mobile


Objet en mouvement accéléré $\Rightarrow m\vec{a} = \vec{R} + \vec{P}$

La force de **réaction** \vec{R} d'une surface sur un objet est toujours **normale** au support (elle est souvent appelée \vec{N})

6.2. Mobile sur un plan incliné sans frottement

■ Mobile en chute libre

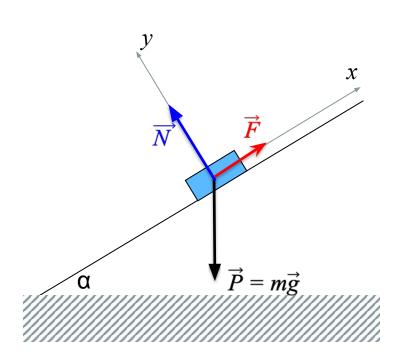
2nd loi de Newton :
$$m\vec{a} = \sum \overrightarrow{F_{ext}} = \vec{P} + \vec{N}$$

on projette
$$\begin{cases} ma_x = -mg\sin\alpha + 0\\ ma_y = 0 = -mg\cos\alpha + N \end{cases}$$

$$avec\ a_y = 0\ car\ mouvement\ suivant\ Ox$$

on trouve

$$a_{x} = -g \sin \alpha$$


$$N = mg \cos \alpha$$

L'accélération correspond à la composante de \vec{g} parallèle au plan incliné

N est la force de réaction du plan sur le mobile

6.2. Mobile sur un plan incliné sans frottement

■ Mobile en équilibre avec une force de maintien

$$2^{
m nd}$$
 loi de Newton : $mec{a}=\sum \overrightarrow{F_{ext}}=ec{P}+ec{N}+ec{F}$

A l'équilibre (pas de mouvement), l'accélération est nulle :

$$\vec{0} = \sum \vec{F_{ext}} = \vec{P} + \vec{N} + \vec{F}$$

on projette
$$\begin{cases} ma_x = 0 = - \ mg \ sin\alpha + 0 + F \\ ma_y = 0 = - \ mg \ cos\alpha + N + 0 \end{cases}$$

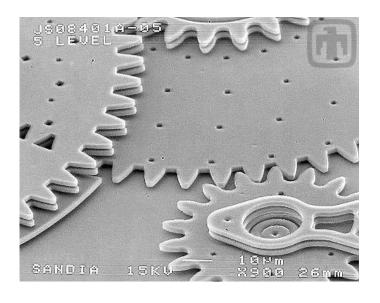
on trouve

$$F = mg \sin \alpha$$

$$N = mg \cos \alpha$$

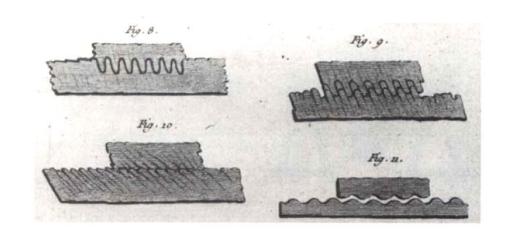
Force qui retient le mobile en équilibre

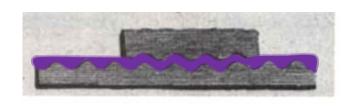
Réaction du support

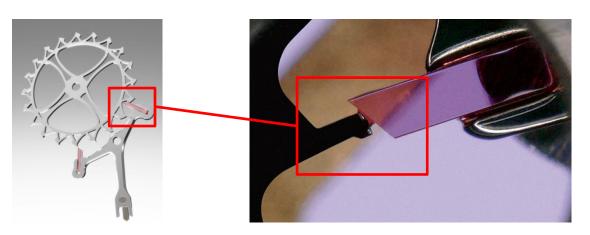

■ Frottement entre deux surfaces

La science des frottements s'appelle <u>la tribologie</u>

L'origine du frottement fait intervenir plusieurs facteurs couvrant un large spectre de paramètres physiques :

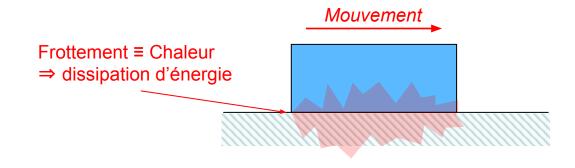

- · Rugosité des surfaces
- Elasticité
- Plasticité
- · Chimie des surfaces




■ Frottement entre deux surfaces

Dès le 18^{ème} siècle, Belidor et Coulomb associent la force de frottement d'un objet sur un autre à la rugosité des surfaces respectives.

Remarque : on peut réduire les forces de frottement sec avec un lubrifiant.



https://www.rolex.com/fr/about-rolex-watches/science-friction.html

■ Frottement entre deux surfaces

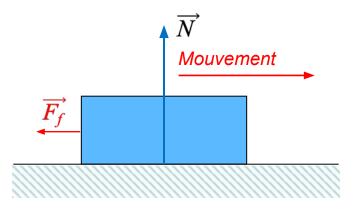
Observation: « résistance » au déplacement ⇒ dissipation d'énergie

<u>Caractéristiques de la force de frottement sec :</u>


- différente si l'objet est en mouvement ou à l'arrêt
- proportionnelle à la force de réaction (plus on appuie sur l'objet, plus le frottement est grand)
- opposée au déplacement

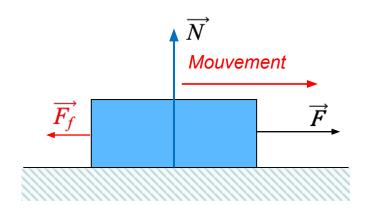
■ Frottement entre deux surfaces

Observations


⇒ La force de frottement ne dépend en théorie pas de l'aire de contact :

$$F_f = cte \times pression \times S = cte \times N/S \times S = cte \times N$$

Le facteur de propotionalité entre F_f et N est appelé coefficient de frottement sec et est généralement noté μ


■ Frottement entre deux surfaces

Il existe deux types de coefficient de frottement :

- Un coefficient de *frottement statique* qui détermine la force de frottement maximale avant la mise en mouvement d'un objet immobile.
- Un coefficient de *frottement dynamique (ou cinétique)* qui détermine la force de frottement qui s'exerce pendant le déplacement.

■ Coefficients de frottement dynamique et statique

Frottement dynamique (cinétique)

La force de frottement F_f est proportionnelle à la réaction N de la surface sur l'objet et s'oppose toujours au déplacement. Elle est donnée par la formule suivante :

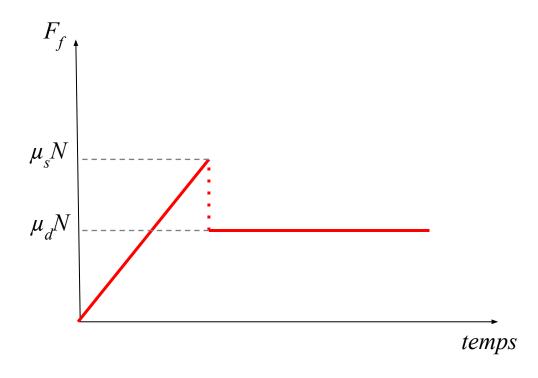
$$||F_f|| = \mu_d \, ||N||$$
 avec μ_d coefficient de frottement dynamique (cinétique)

Frottement statique

L'objet reste immobile alors qu'on lui applique une force \vec{F} colinéaire à la direction du mouvement souhaité. Dans ce cas, nous avons $\vec{F_f} = -\vec{F}$ jusqu'à ce que l'objet se mette en mouvement (décrochage). Au décrochage, nous avons $||F_f|| = \mu_s \, ||N||$, avec μ_s coefficient de frottement statique.

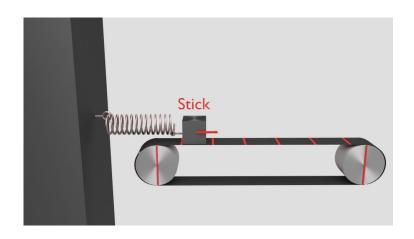
$$||F_f|| \leq \mu_s \, ||N||$$
 avec μ_s coefficient de frottement statique

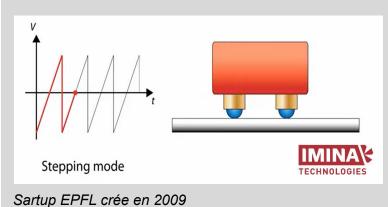
Lorsque l'objet décroche (mise en mouvement) $\Rightarrow ||F_f|| = \mu_s ||N||$

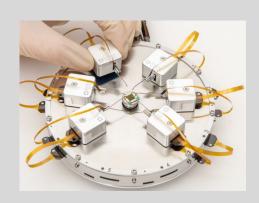

■ Coefficients de frottement dynamique et statique

Matériaux	$\mu_{_S}$	μ_d
Acier sur glace	0.1	0.05
Acier sur acier, sec	0.6	0.4
Acier sur acier, lubrifié	0.1	0.05
Bois sur bois	0.5	0.3
Téflon sur acier	0.04	0.04
Chaussures sur glace	0.1	0.05
Bottes de montagne sur rocher	1.0	0.8
Pneus de voiture sur béton sec	1.0	0.7
Caoutchouc sur asphalte	0.6	0.4

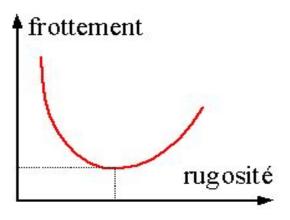
■ Coefficients de frottement dynamique et statique

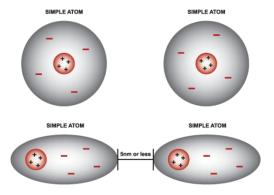

Expérience



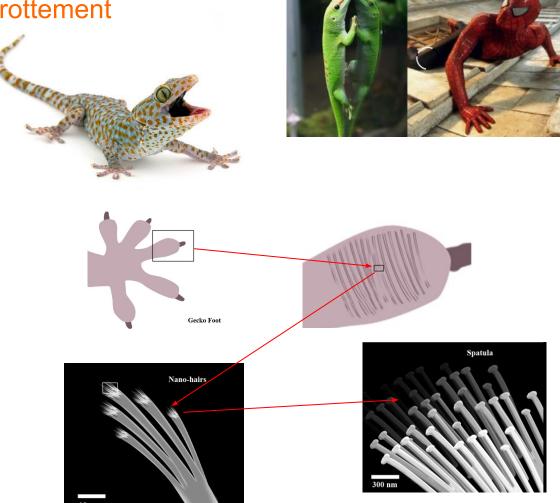

■ Coefficients de frottement dynamique et statique

Application: « stick and slip »



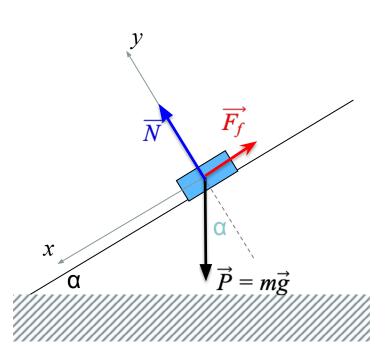

■ Coefficient de frottement statique « géant »


Information scientifique : rugosité de surface et frottement



Pourquoi le frottement augmente lorsque la rugosité diminue? Interactions entre atomes ⇒ « collage moléculaire »

Forces de van der Waals



6.4. Mobile sur un plan incliné avec frottement

■ Mobile en équilibre sous l'effet d'un frottement sec

pas de mouvement

$$2^{
m nd}$$
 loi de Newton : $m\vec{a}=\sum \overrightarrow{F_{ext}}=\vec{P}+\vec{N}+\vec{F}_f$

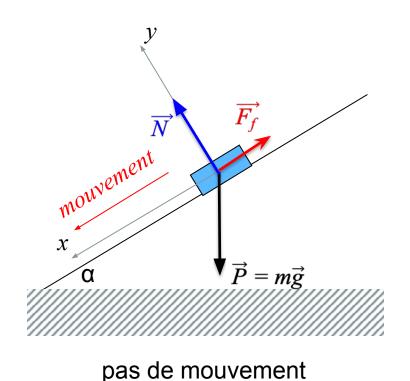
force de frottement qui "retient" le mobile avec un coefficient de frottement statique

Avant le décrochage, il n'y a pas de mouvement et l'accélération est donc nulle :

$$\vec{0} = \sum \vec{F_{ext}} = \vec{P} + \vec{N} + \vec{F}_f$$

On projette sur les axes
$$Ox$$
, Oy :
$$\begin{cases} ma_x = 0 = mg \sin \alpha + 0 - F_f \\ ma_y = 0 = -mg \cos \alpha + N + 0 \end{cases}$$

Finalement:


$$N=mg \; cos \alpha$$
 force de réaction du support $F_f=mg \; sin \alpha$ force de frottement

Coefficient de frottement :
$$F_f = mg \sin \alpha = \mu_s N = \mu_s \ mg \cos \alpha$$
 au point de décrochage

soit
$$\mu_s = tan \alpha$$

6.4. Mobile sur un plan incliné avec frottement

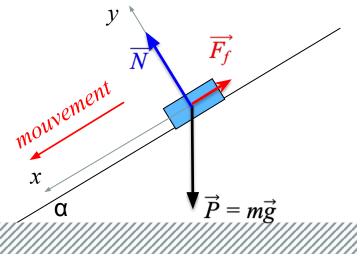
■ Décrochage d'un mobile sur un plan incliné avec frottement sec

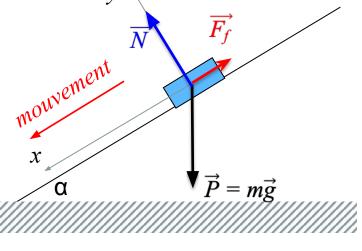
<u>Décrochage</u>

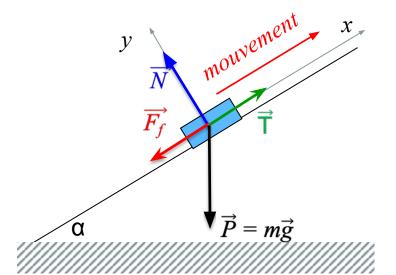
Lorsque le mobile décroche, alors $a_{_{X}} > 0 \Rightarrow mg \ sin \alpha > F_{_{f}}$

⇒ décrochage quand la composante du poids selon *Ox* devient plus grande que la force de frottement maximum

La force de frottement statique au moment du décrochage est


$$F_f = \mu_s N = \mu_s mg \cos \alpha$$


Condition de décrochage : $\alpha > arctan(\mu_s)$


 $\alpha_{lim} = arctan(\mu_s)$: angle limite pour le décrochage

6.4. Mobile sur un plan incliné avec frottement

■ Glissement sur un plan incliné avec frottement sec

A) Mobile lâché sans vitesse pour un angle $\alpha > \alpha_{lim}$

B) Mobile tiré à vitesse constante (**a** = **0**)

$$2^{\rm nd} \ {\rm loi} \ {\rm de \ Newton} : m\vec{a} = \sum \overrightarrow{F_{ext}} = \vec{P} + \vec{N} + \vec{T} + \overrightarrow{F_f}$$
 on projette
$$\begin{cases} 0 = - \ mg \ sin\alpha + 0 + T - F_f \\ 0 = - \ mg \ cos\alpha + N + 0 \Rightarrow N = mg \ cos\alpha \end{cases}$$
 Et finalement
$$T = mg \ (sin\alpha + \mu_d \ cos\alpha)$$