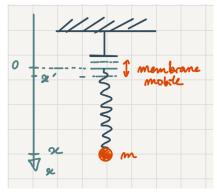
Exercice 1



On considère la manip d'auditoire : un oscillateur amorti et forcé constitué d'une masse m, d'un ressort de raideur k et longueur au repos l_0 et subissant un frottement fluide de constante b_l .

L'oscillateur est entraîné par une membrane déplacée autour de sa position moyenne en $a_e \cos(\omega t)$.

Le montage est représenté ci contre, ainsi que le repère utilisé. L'origine du repère est prise à la position moyenne de la membrane. La membrane a donc une position $x'(t) = a_e \cos(\omega_e t)$

La masse est représentée par la position x(t).

- 1. montrer que l'allongement du ressort est donné par $x-x'-l_0$
- 2. en déduire que l'équation différentielle du mouvement de la masse m dans le repère choisi s'écrit :

$$\ddot{x} + \frac{b_l}{m}\dot{x} + \frac{k}{m}x = \frac{k}{m}a_e\cos(\omega_e t) + \frac{kl_0}{m} + g$$

3. montrer qu'en prenant un nouveau repère (A, X) d'origine A tel que $x_A = l_0 + mg/k$ l'équation différentielle devient :

$$\ddot{X} + \frac{b_l}{m}\dot{X} + \frac{k}{m}X = \frac{k}{m}a_e\cos(\omega_e t)$$

X correspond donc à la position de la masse autour de A, obtenu quand la masse est à l'équilibre et la membrane d'excitation en O. On s'intéresse maintenant au mouvement de m dans ce nouveau repère.

- 4. Montrer qu'on obtient l'équation différentielle générique du cours en posant $2\gamma=b_l/m,\,\Omega_0^2=k/m$ et $F_0=ka_e$
- 5. rappeler la forme que prend la solution X(t), appelée aussi "réponse" en régime permanent.
- 6. Montrer que pour $\omega_e \to 0$ l'amplitude de la réponse $A(\omega_e)$ est égale à a_e
- 7. Montrer que pour $\omega_e \to \infty$, $A(\omega_e) \to 0$
- 8. On appelle amplitude relative de la réponse $A_r = \frac{A(\omega_e)}{a_e}$. Montrer que

$$A_r = \frac{\Omega_0^2}{\sqrt{(\omega_e^2 - \Omega_0^2)^2 + 4\gamma^2 \omega_e^2}}$$

(Vous avez le droit d'utiliser la formule trouvée dans la vidéo "analyse du régime permanent pour $A(\omega_e)$, mais justifiez-le)

Version du 20 novembre 2021

9. Application numérique : on prend $k=15\frac{N}{m},\,m=0,19kg$ (ces valeurs correspondent à peu près à la manip d'amphi). On considère trois valeurs pour $b_l:b_{l,air}=0,02~kg\cdot s^{-1},\,b_{l,fluide}=0,05~kg\cdot s^{-1},\,b_{l,eau}=0,3~kg\cdot s^{-1}$

Calculer Ω_0 , ω (pseudopulsation) et ω_{res} pour ces trois cas.

Calculer pour chacun des trois cas l'amplitude relative A_r pour trois valeurs de la pulsation d'excitation ω_e , valant respectivement $0, 1\omega_{\rm res}, \omega_{\rm res}$ et $10 \omega_{\rm res}$

Exercice 2

Une masse m=2 kg est accrochée à un ressort. Les frottements secs et fluides sont ici négligés. Le système est forcé par une force externe donnée par $F=3\sin(2\pi t)$ où F est en N et t en s.

Le ressort est de constante $k = 20 \text{ N} \cdot \text{m}^{-1}$. Déterminer

- 1. La pulsation propre du système
- 2. La pulsation de résonance
- 3. La pulsation du système forcé.
- 4. L'amplitude des oscillations

Solutions

Solution 1 Solution de l'AN:

Dans tous les cas $\Omega_0 = 8.885 \text{ 1/s}$, soit $T_0 = 1.41Hz$

	Air	Fluide	Eave	Unit
be	0,02	0,05	0,3	bp.5-6
γ	0,0526	0,132	0,789	5-1
ω	8,885	8,884	8,85	3-1
لاس	8,875	8 >883	8,815	8-1
Ara We=0)	1,01	1,01	1,01	
Are We = 1	84,4	33, 3	5,65	
Are W = 10	0,01	901	901	

On remarque que même avec un amortissement déjà assez important (eau), la pseudopulsation et la pulsation de résonnance restent très proche de la pulsation propre.

Pour les trois fluides, l'amplitude relative à 1/10 de la pulsation de résonnance est la même, et à peu près égale à l'amplitude d'excitation, et pour les 3 fluides l'amplitude relative à 10 fois la pulsation de résonnance est proche de 0. Par contre l'amplitude relative à la résonnance n'a rien à voir!

Solution 2

- 1. $3,16 \text{ rad} \cdot \text{s}^{-1}$
- 2. $3,16~{\rm rad\cdot s^{-1}}$ (on retrouve la même car $\gamma=0$
- 3. $6,28 \text{ rad} \cdot \text{s}^{-1}$
- 4.5, 1 cm