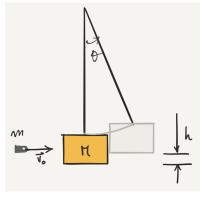

Exercices

Exercice 1 Un duel de choc

Soient deux lutteurs suisses de masse m_1 et m_2 . Les deux combattants se percutent avec des vitesses $\vec{v_1}$ et $\vec{v_2}$ suivant le schéma présenté ci-contre.



- a) Calculez la vitesse $\vec{v_3}$ (norme et angle β) en sachant qu'après le choc les deux lutteurs restent en contact.
- b) Calculez l'énergie dissipée lors du choc. Pour quelle valeur de α l'énergie dissipée est-elle maximale ?

Exercice 2 Un bloc pare-balle


On utilise un pendule balistique pour mesurer la vitesse d'une balle de masse m tirée par un pistolet. La balle est tiré dans un bloc de bois de masse M suspendu à une ficelle, initialement immobile. Elle s'encastre dans le bloc, le pendule monte alors d'une hauteur h.

- 1. Montrer que la mesure de h permet de mesurer v_0 connaissant m et M.
- 2. On suppose $m \ll M$. Montrer que presque toute l'énergie cinétique de la balle est dissipée dans le choc.

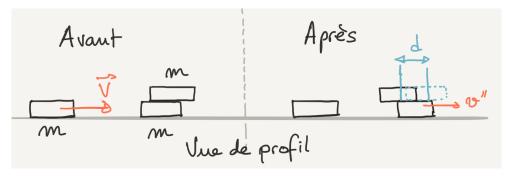
Exercice 3 La calotte glaciaire se détache

Un bloc de bois de masse M est posé en équilibre au sommet d'une demissphère de rayon R. Il peut glisser sans frottements. Une bille de masse m, reliée à un fil de longueur R (schéma) est lâchée d'un angle θ_1 . Le choc avec M est parfaitement élastique.

- 1. Déterminer l'angle θ auquel la masse M quitte la calotte sphérique.
- 2. On suppose $\theta_1 = 90^{\circ}$. Pour quelle valeur limite de m le bloc décolle-t-il immédiatement, sans commencer à glisser le long de la sphère?

Exercice 4 Un exercice qui nous laisse sur le carreau

Dans cet exercice, on cherche des conditions de "carreau" lors d'un choc élastique. On dit qu'il y a "carreau" lorsqu'un palet lancé sur un autre palet reste immobile après le choc. On fait les expériences sur une table à coussin d'air parfaitement horizontale; les palets (des cylindres plats) y glissent sans aucun frottement. On considère les palets comme des objets solides sans rotation.


- 1. Un palet de masse M est lancé à la vitesse \vec{V} contre un autre palet de masse m_a . Montrez que pour qu'il y ait carreau, il faut que les palets aient la même masse $(m_a = M)$.
- 2. On lance maintenant le palet de masse M contre deux palets de même masse m_b . Ces deux palets sont disposés symétriquement, de sorte qu'après le choc ils partent de chaque côté avec une vitesse de même norme v et faisant le même angle α avec la direction du lancer.

Calculer la valeur de la masse m_b pour qu'il y ait carreau. On exprimera m_b en fonction des données du problème.

m	٠.																																																																
m	h	•	•	•	• •	•	٠.	•	•	• •	•	٠	• •	٠.	•	٠	•	• •	•	•	٠	٠	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	•	 •	•	٠	٠	•	٠	٠	•	•	•	٠	•	 ٠	٠	• •	 ٠	٠	• •	 	•	•	•	٠	٠	٠	• •	• •	•

3. On empile maintenant deux palets cibles, de même masse m, comme indiqué sur le schéma ci-dessous : le palet supérieur est légèrement décalé sur la droite par rapport à celui du dessous. Il y a un frottement solide entre ces deux palets, avec μ_c le coefficient de frottement cinétique. On lance sur l'empilement un palet de masse m à la vitesse \vec{V} et on constate que c'est à nouveau un carreau .

Après le choc, les deux palets cibles sont toujours empilés et se déplacent à la vitesse v'' dans la direction du lancer. On observe aussi que le palet supérieur s'est décalé vers la gauche d'une distance d par rapport à sa position initiale sur le palet inférieur.

(a)	Exprimez v'' en fonction des données du problème.
	v"
(b)	On prend comme système l'ensemble des 3 palets. Le choc est-il élastique ? Justifier.
(c)	$\hfill\Box$ Oui $\hfill\Box$ Non Calculer la variation d'énergie cinétique au cours du choc en fonction de m et $V.$
(d)	ΔE_c Calculer coefficient de frottement cinétique μ_c en fonction de V et $d.$
	μ_c