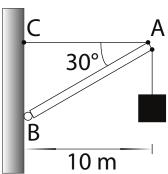
Physique Générale I Série 11: 04/12/2024

Exercices

Exercice 1 Ambiance tendue au bistrot

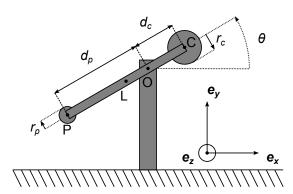
Une enseigne de bistro est accrochée comme montré sur le schéma ci-contre. AB est une poutre reliée au mur par un pivot en B. AC est un câble qui retient la poutre et l'enseigne et est aussi fixée par un câble. Les câbles sont de masse négligeables et la masse de la poutre et de l'enseigne sont 15 kg et 300 kg respectivement.



Trouvez les forces \vec{F}_B et \vec{F}_C agissant sur B et C respectivement.

Exercice 2 Être catapulté au centre du problème

On se propose d'étudier la dynamique de la catapulte représentée sur la figure ci-dessous.



La catapulte est constituée d'un levier assimilé à une tige mince homogène de masse m_l fixé à un support au point O. Le projectile est une boule pleine de masse m_p et de rayon r_p fixée à l'extrémité P du levier à une distance d_p de l'axe de rotation. Une boule pleine de masse m_c et de rayon r_c placée à l'autre extrémité C à une distance d_c de l'axe de rotation sert de contre-poids permettant d'actionner la catapulte. L'angle θ est défini comme étant l'angle entre l'horizontale \vec{e}_x et le vecteur \overrightarrow{OC} . On suppose qu'un mécanisme permet d'éjecter le projectile quand l'angle θ_e atteint la valeur désirée.

- 1. Placer sur la figure les forces agissant sur la catapulte.
- 2. Calculer les moments d'inertie par rapport à l'axe de rotation pour le projectile (I_p) , le contre-poids (I_c) et le levier (I_l) ? En déduire le moment d'inertie global I_O du système projectile+contre-poids+levier.

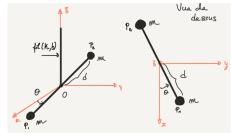
- 3. Quelle condition doit-on avoir entre m_c , d_p , m_c , d_c et m_l pour faire fonctionner la catapulte?
- 4. Donner l'équation différentielle sur $\theta(t)$ qui permet de décrire le mouvement de la catapulte en utilisant le moment d'inertie global I_O du système.
- 5. Donner la vitesse du projectile en fonction de l'angle d'éjection, sachant que l'angle initiale $\theta(t=0) = \theta_0$ et que la vitesse angulaire initiale est nulle.

Exercice 3 Balance ton Cavendish. Examen 2019

La balance de Cavendish est un instrument permettant de déterminer expérimentalement la constante de gravitation G. Elle est constituée de deux points matériels P_1 et P_2 de même masse m reliés par une tige sans masse à un fil, formant un pendant de torsion. Deux grosses sphères de masse M, S_A et S_B , peuvent être placées de manières à faire dévier le pendule dans un sous ou dans l'autre par l'effet de la gravitation.

Partie 1 : Etude du pendule de torsion

Les masses P_1 et P_2 sont reliées par une tiges sans masse de longeur 2d, et contraintes de tourner autour de O dans le plan horizontal (O, x, y).

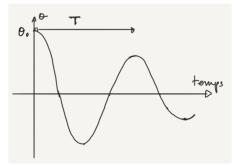


a) Calculer le moment d'inertie I_O du pendule de torsion par rapport à l'axe (Oz)

Le fil est caractérisé par deux constantes, κ et b, définies comme suit :

- le fil exerce un moment élastique dépendant de l'angle de déviation $\theta,$ donné par $\overrightarrow{M^{el}_O}=-\kappa\theta\vec{e}_z$
- et les frottements internes du fil exercent le moment $\overrightarrow{M_O^f} = -b \dot{\theta} \vec{e}_z$

On écarte le pendule de sa position d'équilibre de l'angle θ_0 et on le lâche sans lui communiquer de vitesse angulaire. On mesure l'angle de déviation en fonction du temps et on observe des oscillations décroissantes avec une pseudo période T (voir cicontre)

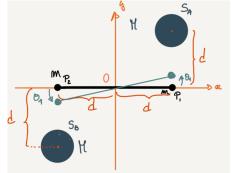


b) Etablire l'équation différentielle du mouvement sur la variable θ .

- Physique Générale I Série 11: 04/12/2024
- c) Quelle est la pulsation propre du pendule de torsion?
- d) Donner la forme générale de la solution de l'équation différentielle sans calculer les constantes d'intégration. Expliciter la pseudo-période et le facteur d'amortissement en fonction des données du problème.
- e) On suppose l'amortissement très faible $(b \approx 0)$ et on mesure T. Déterminer κ en fonction de T, m et d.

Partie 2 : Influence de la force de gravitation des 2 grosses sphères sur les deux masses ponctuelles

On amène les deux grosses sphères (S_A, S_B) de masse M, en regard des masses ponctielles (P_1, P_2) à une distance d de l'axe Ox, et on laisse le pendule s'équilibrer avec l'angle de déviation θ_1 . On suppose l'angle θ_1 très faible $(\theta \ll 1)$.



- a) Exprimer (vectoriellement) le moment $\overline{M_{O,1}^{tot}}$, par rapport à O sur le pendule, lié à la force de gravitation de S_A sur P_1 et de S_B sur P_2 .
- b) Exprimer (vectoriellement) le moment $\overrightarrow{M_{O,2}^{tot}}$ lié à la force de gravitation de S_A sur P_2 et de S_B sur P_1 .
- c) Montrer que pour un calcul d'ordre de grandeur, on peut négliger $\|\overrightarrow{M_{O,1}^{tot}}\|$ devant $\|\overrightarrow{M_{O,1}^{tot}}\|$.
- d) Exprimer l'angle θ_1 à l'équilibre en fonction de G, M, m, d et κ .
- e) Déduire l'expression de G en fontion de M, m, d, T et θ_1 , grandeurs qui sont connues ou facilement mesurables.
- f) Question subsidiaire (ne faisait pas partie de l'examen) : Utiliser les données de l'expérience pour évaluer l'ordre de grandeur de G. La période T fait 8 minutes, M = 1.5 kg, m = 15g, d = 5cm, et on mesure θ_1 grâce à la déviation du faisceau laser, soit 20 cm sur les 13,5 m de l'amphi