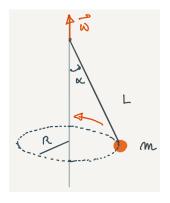
Exercices

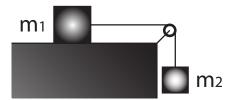

Exercice 1 Un exercice à rebondissements

Soient deux ressorts de constante de raideur k_1 et k_2 .

Donner la constante de raideur du ressort équivalent s'ils sont montés :

- 1. en parallèle;
- 2. en série.

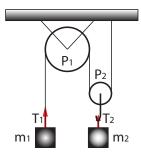
Exercice 2 Et on fait tourner les serviettes



Une masse m est attachée à une ficelle de longueur L et on la fait tourner dans un plan horizontal à vitesse angulaire ω constante.

Calculer le rayon R de la trajectoire en fonction de $L,\,\omega$ et g.

Montrer que ω doit être supérieur à une vitesse angulaire minimale pour avoir R non nul.

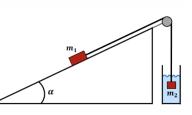

Exercice 3 La chute de Constantibloc On considère le montage suivant :

La poulie est sans masse et sans frottements. Le bloc de masse m_1 a un coefficient de frottement statique μ_s et dynamique $\mu_c < \mu_s$ avec la table.

- 1. Quelle est, en fonction de m_1 , la valeur maximale de m_2 telle que le système puisse rester immobile?
- 2. Pour cette valeur limite on suppose qu'une petite secousse met le système en mouvement. Quelle est alors l'accélération de m_1 et la tension dans la corde en fonction de m_1 ?
- 3. Si on suppose le système sans frottement, et que l'on prend $\mu_s = \mu_c = 0$ on trouve T = 0. Pourquoi?

Exercice 4 Deux poulies en valent mieux qu'une On donne le système de poulies suivant :

Les poulies sont sans masse et fonctionnent sans frottements. $m_1 = 20 \text{ kg}$ et $m_2 = 30 \text{ kg}$.


Calculer les tensions T_1 et T_2 dans les cordes et les accélérations a_1 et a_2 des deux masses.

Exercice 5 Armichède, donne-moi la force de continuer

Une masse m_1 est posée sur un plan incliné faisant un angle α avec l'horizontale. Cette masse subit une force de frottement sec avec la surface du plan incliné, ses coefficients de frottement sec statique et dynamique sont μ_s et μ_d , respectivement. Elle est attachée à l'aide d'un fil inextensible et d'une poulie sans masse à une deuxième masse m_2 plongée dans un liquide (schéma ci-contre). Cette deuxième masse subit une force \vec{F}_a due à la poussée d'Archimède et dirigée vers le haut, ainsi qu'une force de frottement visqueux $\vec{F}_v = -\beta \vec{v}$, avec \vec{v} la vitesse de la masse m_2 et β le coefficient de frottement visqueux. Le système est soumis à la pesanteur.

- 1. Faites un schéma du problème à l'équilibre en indiquant les forces présentes et le(s) repère(s) choisi(s).
- 2. Déterminez la valeur minimale de la masse m_1 pour que celle-ci descende le long du plan incliné.
- 3. On suppose maintenant la masse m_1 supérieure à la valeur trouvée au point précédent :
- a) Déterminez l'équation du mouvement de la masse m_1 .
- b) Calculez la valeur de la vitesse de la masse m_1 en fonction du temps. Quelle sera sa vitesse limite, en supposant la rampe assez longue pour qu'elle soit atteinte, et ceci avant que la masse m_2 ne sorte du liquide? On considérera l'origine du temps au moment où le système se met en mouvement : $v_0 = v(t = 0) = 0$.

Indication: Une équation du type $\frac{dx}{dt} + \lambda x = C$ a une solution de la forme $A + Be^{-\lambda t}$ où λ, A, B, C sont des constantes.

