
Exercices

Exercice 1 P.X.35

La figure ci-dessous présente une bobine à laquelle s'appliquent des forces. Calculer le moment de force au point O.

Exercice 2 C.X.11

Si vous voyez un objet en rotation devant vous, la somme des moments des forces en son centre de gravité est-elle nécessairement non nulle?

Exercice 3 P.X.1

Calculez la vitesse angulaire de la Terre qui tourne sur elle même. Quel effet cette rotation a-t-elle sur la forme de notre planète?

Exercice 4 P.X.39

Un avion est modélisé par une maquette de masse m=0,750 kg attachée par un fil au sol de sorte qu'il peut voler en faisant des cercles horizontaux d'un rayon r=30m. Le petit moteur de l'avion lui fournit une force de F=0,800 N.

- 1. Trouver le moment de force exercé par cette force au centre du cercle.
- 2. (Déterminer l'accélération angulaire de l'avion)

Exercice 5

On fait rouler divers objets en les lâchants sans vitesse en haut d'un plan incliné qui fait un angle α avec l'horizontale.

On cherche à calculer la vitesse de chaque objet lorsqu'il arrive en bas du plan incliné, la différence d'altitude entre le haut et le bas étant h les objets sont :

- 1. une sphère pleine homogène de masse M et de rayon R
- 2. un cylindre plein de masse M et de rayon R

Version du 13 décembre 2021

- 3. un cylindre creux de masse M et de rayon R, d'épaisseur négligeable.
- 4. un cylindre creux de masse M, de rayon extérieur R et intérieur R/2

Solutions

Solution 1

On trouve $M_O = -3,55 \text{ N} \cdot \text{m}$

Solution 2

Non. Dès lors que le moment cinétique est constant, sa variation est nulle et donc la somme des moments de forces est nulle. L'objet peut alors sans problèmes être en rotation.

Solution 3

 $\omega = 7,27\cdot 10^{-5}~{\rm rad\cdot s^{-1}}$. A cause de cette vitesse, la terre est un peu bombée au niveau de l'équateur et aplatie sur les pôles.

Solution 4

- 1. $M_O = 24 \text{ N} \cdot \text{m}$
- 2. ...

Solution 5

On appelle I le moment d'inertie de l'objet par rapport à un axe horizontal passant par son centre de masse.

Avec l'énergie:

$$Mgh = \frac{1}{2}Mv^2 + \frac{1}{2}I\omega^2 = \frac{1}{2}Mv^2 + \frac{1}{2}I\frac{v^2}{R^2}$$