Week 8 – Part 1

9. L'oscillateur harmonique

- 9.1. L'oscillateur harmonique modèle
- 9.2 L'oscillateur harmonique
- 9.3. L'oscillateur harmonique traitement par l'énergie
- 9.4. L'oscillateur harmonique traitement par le gradient

- Le mouvement oscillatoire est très fréquent dans la nature.
- Un système qui oscille est appelé un « oscillateur ».

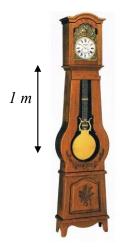
Exemples de phénomènes oscillatoires (???)

- Voix (cordes vocales)
- Pendule
- Ressort
- Montre mécanique
- Montre à quartz
- Circuit électrique RLC (radio)

Mouvement oscillatoire

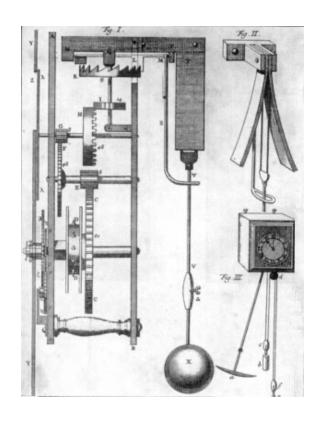
⇒ réaction d'un système soumis à une force de rappel non constante avec dissipation de l'énergie faible ou nulle

Une application des oscillateurs : l'horloge



Première horloge à pendule construite par l'horloger S. Coster en collaboration avec C. Huygens à La Haye en **1657**

précision: 10⁻³ - 10⁻⁴ s



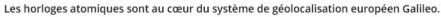
1777 : l'horloger suisse Abraham Louis Perrelet crée la première montre automatique (horloge marine) Horloge atomique basée sur des transitions interatomiques

précision : 10⁻¹⁶ - 10⁻¹⁸s

http://www.heure-exacte.net

L'horloge atomique la plus précise est neuchâteloise

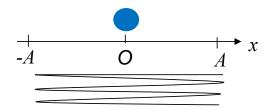
Innovation Le «Laboratoire temps fréquence» à l'Université de Neuchâtel a présenté, mercredi, un nouveau modèle 10 fois plus précis.



Horloge Atomique pour Galileo Précision 10⁻⁹ sec

Navigation Par GPS!

9.1. L'oscillateur harmonique – modèle



Par définition, un objet ponctuel se déplaçant le long d'un axe Ox présente un mouvement sinusoïdal lorsque son déplacement en fonction du temps est donné par

$$x = A \cos (\omega_0 t + \phi) = A \sin(\omega_0 t + \phi')$$

avec A amplitude du mouvement $\begin{array}{ccc} \omega_0 & & \text{pulsation} \\ \phi \left(\phi'\right) & & \text{phase} & \text{initiale (à $t=0$)} & avec & \phi' = \phi + \frac{\pi}{2} \end{array}$

déterminée par les conditions initiales

La position de la particule se répète à un intervalle de temps régulier: $\frac{période}{position}$: $\frac{2\pi}{\omega_0}$ unité: s

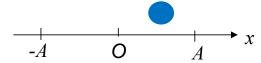
La **fréquence**
$$f_0 = \frac{1}{T_0} = \frac{\omega_0}{2\pi}$$
 unité: s⁻¹ ou H

Si ω_0 est indépendante de l'amplitude \Rightarrow oscillateur harmonique

9.1. L'oscillateur harmonique – modèle

■ La position

$$x = A \cos (\omega_0 t + \phi)$$

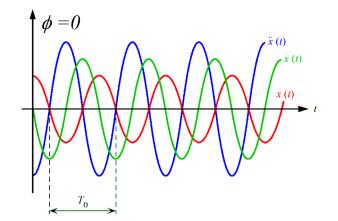


La vitesse

$$\dot{x} = v = \frac{dx}{dt} = -\omega_0 A \sin(\omega_0 t + \phi)$$

■ L'accélération

$$\ddot{x} = a = \frac{d^2x}{dt^2} = -\omega_0^2 A \cos(\omega_0 t + \phi) = -\omega_0^2 x$$



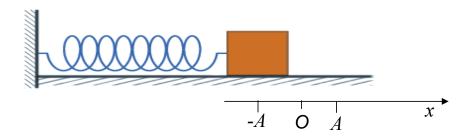
L'accélération est toujours

proportionnelle et opposée au

déplacement :

$$\ddot{x} = -\omega_0^2 x$$

■ L'oscillateur « masse et ressort » (sans la force de gravitation g)



On applique la 2nd loi de Newton : $m\vec{a} = \vec{F}$ avec $\vec{F} = -k\vec{x}$ Force de rappel du ressort

Equation du mouvement (projection sur Ox) :

$$F = ma = m\frac{d^2x}{dt^2} = -kx \implies \frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0 \quad \text{soit} \quad \ddot{x} = -\omega_0^2 \ x \qquad \begin{array}{c} \text{Equation différentielle} \\ \text{du mouvement} \end{array}$$

du mouvement

$$\omega_0^2 = \frac{k}{m}$$

$$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$$

■ L'oscillateur « masse et ressort » (sans la force de gravitation g)

On peut remarquer que la relation $\ddot{x} = -\omega_0^2 x$ est aussi obtenue en posant $x = A \cos(\omega_0 t + \phi)$

Les <u>solutions</u> de l'équation différentielle $\ddot{x} + \omega_0^2 x = 0$ sont donc de la forme :

$$x(t) = A \cos (\omega_0 t + \phi)$$

A, φ sont des constantes du mouvement qui dépendent des conditions initiales

En posant $\phi' = \phi + \frac{\pi}{2}$, nous avons:

$$x(t) = A \sin(\omega_0 t + \phi')$$

Cette forme est aussi une solution de l'équation de mouvement

Etude des solutions de l'équation de mouvement $\frac{d^2}{dt}$

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0$$

 $x(t) = x_0 \cos(\omega_0 t)$ et $x(t) = x_0 \sin(\omega_0 t)$ sont des solutions particulières qui décrivent un mouvement oscillatoire avec des conditions initiales telles que

- la masse est en $x=x_0$ à t=0 pour $x(t)=x_0\cos(\omega_0 t)$
- la masse est en x=0 à t=0 pour $x(t)=x_0\sin(\omega_0 t)$

Une autre solution serait $x(t) = x_0 \cos(\omega_0 (t - t_0))$ si la masse est en $x = x_0$ à $t = t_0$ Cette solution peut être réécrite de la façon suivante : $\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$ $x(t) = x_0 \cos(\omega_0 (t - t_0)) = x_0 \cos(\omega_0 t) \cos(\omega_0 t_0) + x_0 \sin(\omega_0 t) \sin(\omega_0 t_0)$ $= A \cos(\omega_0 t) + B \sin(\omega_0 t)$ avec $A = x_0 \cos(\omega_0 t_0)$ et $B = x_0 \sin(\omega_0 t_0)$ $= x_0 \cos(\omega_0 t + \phi)$ avec $\phi = -\omega_0 t_0$

En résumé, la solution peut s'écrire sous différentes formes :

$$x(t) = x_0 \cos(\omega_0 (t - t_0))$$

$$x(t) = A \cos(\omega_0 t) + B \sin(\omega_0 t)$$

$$x(t) = x_0 \cos(\omega_0 t + \phi) \implies \text{écriture la plus courante}$$

Toutes ces solutions sont équivalentes. Elles décrivent le mouvement d'un oscillateur harmonique. Les constantes t_0 , x_0 , ϕ , A, B, sont définies par les conditions initiales.

L'oscillateur « masse et ressort » avec la force de gravitation g

Equation de mouvement du ressort avec une masse m dans un champ de pesanteur :

Projection sur Ox de la **2**nd **loi de Newton** :

 \boldsymbol{x}

$$ma = -k x + mg = -k \left(x - \frac{mg}{k}\right)$$

or
$$\frac{mg}{k} = x_{eq}$$
 d'où $ma = -k (x - x_{eq})$

En prenant un repère O'x' tel que x'=0 corresponde à la position d'équilibre et $x' = x - x_{eq}$, nous avons :

$$ma = m \frac{d^2x'}{dt^2} = -kx'$$

 $ma = m \frac{d^2x'}{dt^2} = -kx'$

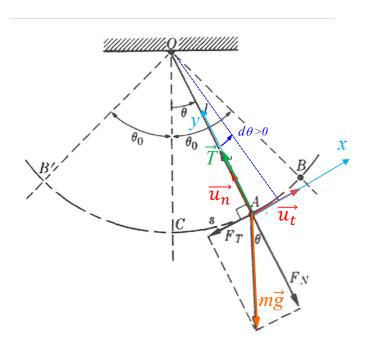
soit

$$\frac{d^2x'}{dt^2} + \omega_0^2 x' = 0$$

Equation différentielle du mouvement g n'apparait pas

La pesanteur ne fait que changer la position d'équilibre mais pas le mouvement oscillatoire !!!

■ Le pendule Système le plus simple : une masse m au bout d'un fil de longueur l



<u>Equation du mouvement – Repère de Frenet</u> :

 \vec{T} est la tension du fil (de masse négligeable) $m\vec{g}$ est le poids

 mg peut se décomposer en une force normale F_N et une force tangentielle F_T

$$2^{\rm nd}$$
 loi de Newton : $m\vec{a}=m\vec{g}+\vec{T}$

Projection sur
$$Ox: ma_T = F_T = -mg \sin \theta$$

On rappelle que pour un mouvement circulaire $a_T = R \frac{d\omega}{dt} = R \frac{d^2\theta}{dt^2}$

avec
$$R=l$$
 d'où $a_T=l\,rac{d^2 heta}{dt^2}$

■ Le pendule

$$a_T = l \frac{d^2 \theta}{dt^2}$$
 avec $ma_T = -mg \sin \theta$

Finalement
$$ml\frac{d^2\theta}{dt^2} = -mg\sin\theta \quad ou \quad \frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0$$

Pour les faibles amplitudes, c'est-à-dire pour les petits angles, alors $\sin \theta \approx \theta$

$$\frac{d^2\theta}{dt^2} + \omega_0^2 \; \theta = 0 \quad avec \quad \omega_0 = \sqrt{\frac{g}{l}}$$

Les solutions sont de la forme : $\theta = \theta_0 \cos((\omega_0 t + \phi)) (= \theta_0 \sin((\omega_0 t + \phi')))$

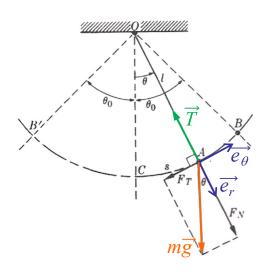
Rem. 1 : La période du pendule vaut
$$T_0 = \frac{2\pi}{\omega_0} \Rightarrow$$
 indépendante de la masse

Rem. 2 : analogie avec le ressort
$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0$$

■ Le pendule

<u>Equation du mouvement – Coordonnées polaires</u>:

Accélération en coordonnées polaires



$$a_r = \ddot{r} - r \dot{\theta}^2$$
 $r = l = cte \implies \dot{r} = 0$ $a_{\theta} = 2 \dot{r} \dot{\theta} + r \ddot{\theta}$ $d'où a_{\theta} = l\ddot{\theta}$

 2^{nd} loi de Newton (projection sur $\overrightarrow{e_{\theta}}$):

$$ml \ddot{\theta} = -mg. sin \theta$$

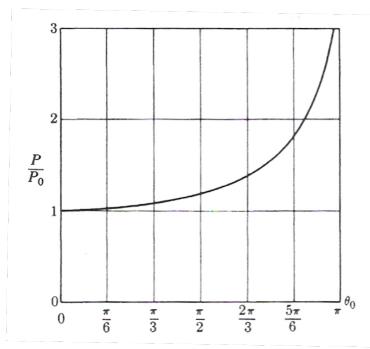
Pour de petits angles (sin $\theta \approx \theta$):

$$\ddot{ heta} + rac{g}{l} \, heta = 0$$

$$\frac{d^2\theta}{dt^2} + \omega_0^2\theta = 0 \quad avec \quad \omega_0 = \sqrt{\frac{g}{l}}$$

Le pendule Evolution de la période avec l'amplitude pour un pendule réel

L'approximation $\sin \theta \approx \theta$ n'est plus valable et la période dépend alors de l'amplitude



 \Rightarrow le pendule n'est pas un oscillateur harmonique pour les grandes amplitudes $(\theta \gtrsim 15^{\circ})$

Evolution de la période P en fonction de θ_0 (i.e. amplitude) par rapport à P_0 (période calculée pour de petits angles)

■ Energie mécanique d'un oscillateur « masse et ressort »

Energie cinétique:

$$x = A \cos (\omega_0 t + \phi)$$

$$v = \frac{dx}{dt} = -\omega_0 A \sin (\omega_0 t + \phi)$$

$$E_c = \frac{1}{2} m v^2 = \frac{1}{2} m \omega_0^2 A^2 \sin^2 (\omega_0 t + \phi)$$

$$\operatorname{or} \sin^2 \theta = 1 - \cos^2 \theta \quad \text{et} \quad x^2 = A^2 \cos^2 (\omega_0 t + \phi)$$

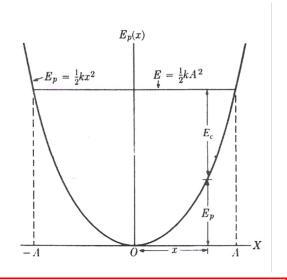
$$E_c = \frac{1}{2} m \ \omega_0^2 (A^2 - x^2)$$

L'énergie cinétique est maximum pour x=0 et nulle aux extrémités $(x=\pm A)$

Energie potentielle:

$$E_p = \frac{1}{2} k x^2 = \frac{1}{2} m \omega_0^2 x^2$$

L'énergie potentielle est nulle pour x=0 et maximum aux extrémités



$$E = E_c + E_p = \frac{1}{2} m \omega_0^2 A^2 = \frac{1}{2} kA^2$$

Energie mécanique de l'oscillateur

L'énergie mécanique est constante au cours du mouvement (pas de dissipation)

9.3. L'oscillateur harmonique – traitement par l'énergie

■ Equation du mouvement <u>à partir de l'énergie mécanique</u>

Energie potentielle :
$$E_p = \frac{1}{2}kx^2$$

Energie cinétique :
$$E_c = \frac{1}{2}m\dot{x}^2$$

Energie mécanique :
$$E=E_c+E_p=rac{1}{2}m\dot{x}^2+rac{1}{2}kx^2$$

L'énergie mécanique est constante (conservation de l'énergie) : $\frac{d}{dt}E=0$

$$\frac{d}{dt}E = 0 = \frac{1}{2}m \ 2 \ \dot{x} \ \ddot{x} + \frac{1}{2}k2 \ \dot{x} \ x = \dot{x} \ [m \ \ddot{x} + kx]$$

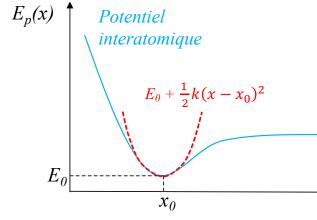
La seule solution non triviale est $m \ddot{x} + kx = 0$

soit avec
$$\omega_0 = \sqrt{\frac{k}{m}}$$
 $\Longrightarrow \frac{d^2x}{dt^2} + \omega_0^2 x = 0$ Equation différentielle de l'oscillateur harmonique

9.3. L'oscillateur harmonique – traitement par l'énergie

Equation du mouvement à partir de <u>l'énergie mécanique</u>

Approximation harmonique du potentiel interatomique



Energie potentielle:

 $E_p(x)$ présente un minimum en $x_0 \Rightarrow$ développement de Taylor autour de ce point

$$E_p(x) = E_0 + \frac{x - x_0}{1!} \left(\frac{dE_p}{dx}\right) + \frac{(x - x_0)^2}{2!} \left(\frac{d^2 E_p}{dx^2}\right) + \dots \approx E_0 + \frac{(x - x_0)^2}{2!} \left(\frac{d^2 E_p}{dx^2}\right)$$

$$E_p(x) \approx E_0 + \frac{1}{2} k(x - x_0)^2 \quad avec \quad k = \left(\frac{d^2 E_p}{dx^2}\right) \quad développement \ au \ 2^{\grave{e}me} \ ordre$$

$$courbure \ en \ x_0$$

Energie mécanique :

$$E = E_c + Ep = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}k(x - x_0)^2 + E_0$$

L'énergie mécanique est constante (si pas de dissipation) :

$$\frac{d}{dt}E = 0 = \frac{1}{2}m \ 2 \ \dot{x} \ \ddot{x} + \frac{1}{2}k \ 2 \ \dot{x} \ (x - x_0) = \dot{x} \ [m \ \ddot{x} + k(x - x_0)]$$

La seule solution non triviale est $m \ddot{x} + k(x - x_0) = 0$

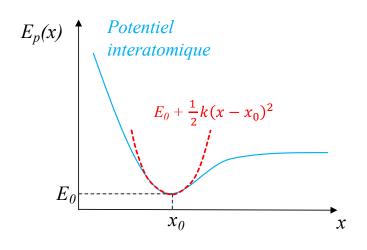
Soit avec
$$x' = x - x_0$$

et
$$\omega_0 = \sqrt{\frac{k}{m}} \implies \frac{d^2x'}{dt^2} + \omega_0^2x' = 0$$

Equation différentielle de l'oscillateur harmonique

9.4. L'oscillateur harmonique – traitement par le gradient

Equation du mouvement à partir <u>du potentiel et du gradient</u>



Potentiel du ressort (dans l'approximation parabolique) :

$$E_p(x) \approx E_0 + \frac{1}{2}k(x - x_0)^2$$
 avec $k = \left(\frac{d^2 E_p}{dx^2}\right)$

Force dérivant d'un potentiel :

$$\vec{F} = -\overrightarrow{grad}E_p = -\frac{dE_p(x)}{dx}\vec{e}_x$$

$$\vec{F} = -k(x - x_0)\vec{e}_x$$

2nd loi de Newton:
$$m \frac{d^2x}{dt^2} = -k(x-x_0)$$

soit avec
$$x' = x - x_0$$
 et $\omega_0 = \sqrt{\frac{k}{m}}$

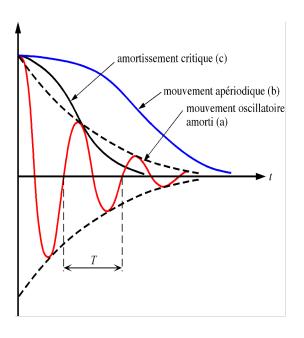
$$\frac{d^2x'}{dt^2} + \omega_0^2x' = 0$$

 $\frac{d^2x'}{dt^2} + \omega_0^2 x' = 0$ Equation différentielle de l'oscillateur harmonique

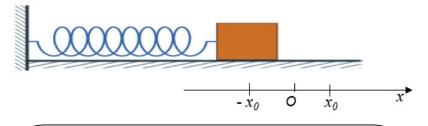
Week 8 – Part 2

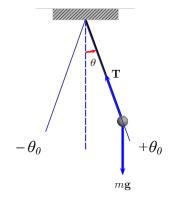
9. L'oscillateur harmonique linéaire libre

9.5. Oscillateur libre soumis à une force de frottement fluide



L'oscillateur harmonique libre





Ressort + Masse

Equation du mouvement :

$$\frac{d^2x}{dt^2} + \omega_0^2 x = 0 \quad \text{avec} \quad \omega_0 = \sqrt{\frac{k}{m}}$$

Les solutions sont de la forme :

$$x(t) = x_0 \cos(\omega_0 t + \phi) (= x_0 \sin(\omega_0 t + \phi'))$$

avec x_0 amplitude du mouvement ω_0 pulsation propre de l'oscillateur ϕ (ϕ ') phase initiale (\hat{a} t =0)

Pendule

Equation du mouvement :

$$\frac{d^2\theta}{dt^2} + \omega_0^2 \, \theta = 0 \quad avec \quad \omega_0 = \sqrt{\frac{g}{l}}$$

Approximation petits angles $(\sin \theta \approx \theta)$

Les solutions sont de la forme :

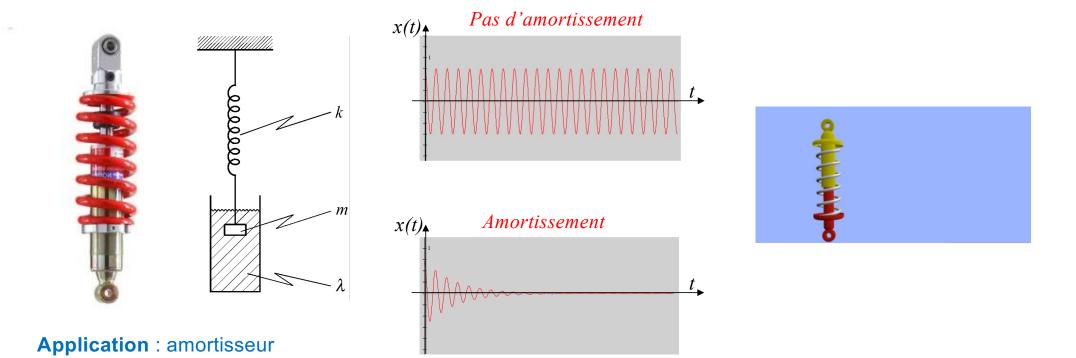
$$\theta(t) = \theta_0 \cos(\omega_0 t + \phi) (= \theta_0 \sin(\omega_0 t + \phi'))$$

avec θ_0 amplitude du mouvement ω_0 pulsation propre de l'oscillateur $\phi(\phi')$ phase initiale (à t=0)

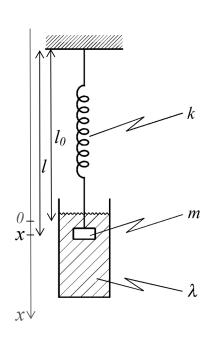
Si ω_0 est indépendante de l'amplitude \Rightarrow oscillateur harmonique

La position de la particule se répète à un intervalle de temps régulier (période) $T_0 = \frac{2\pi}{\omega_0}$

■ Amortissement d'un oscillateur



Ressort plongeant dans un liquide (sans force de gravitation)



La force de rappel du ressort est $\vec{F} = -k\vec{r}$ avec $\vec{r} = (l-l_0)\vec{e_x} = x\vec{e_x}$

La force de frottement fluide en régime laminaire est $\vec{F}_f = -K\eta \vec{v}$

2nd loi de Newton : $m\vec{a} = -k\vec{r} - K\eta\vec{v}$

(on ne tient pas compte ici de la pesanteur ni de la poussée d'Archimède pour simplifier le problème)

On projette sur $Ox: m \frac{d^2x}{dt^2} = -kx - K\eta \frac{dx}{dt}$

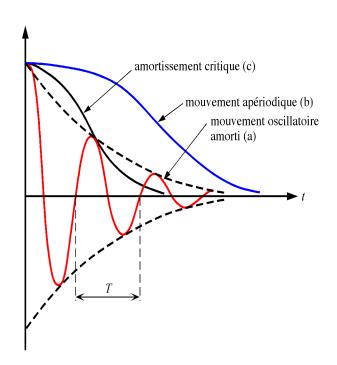
$$\frac{d^2x}{dt^2} + \frac{k}{m}x + \frac{K\eta}{m}\frac{dx}{dt} = 0$$

Et finalement

$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega_0^2 x = 0$$

 $\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega_0^2 x = 0$ avec $\begin{cases} \omega_0 = \sqrt{\frac{k}{m}} & \text{Pulsation de l'oscillateur} \\ \lambda = \frac{K\eta}{2m} & \text{Coefficient} \\ d'amortissement} \end{cases}$

■ Ressort plongeant dans un liquide (sans force de gravitation)



$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega_0^2 x = 0$$

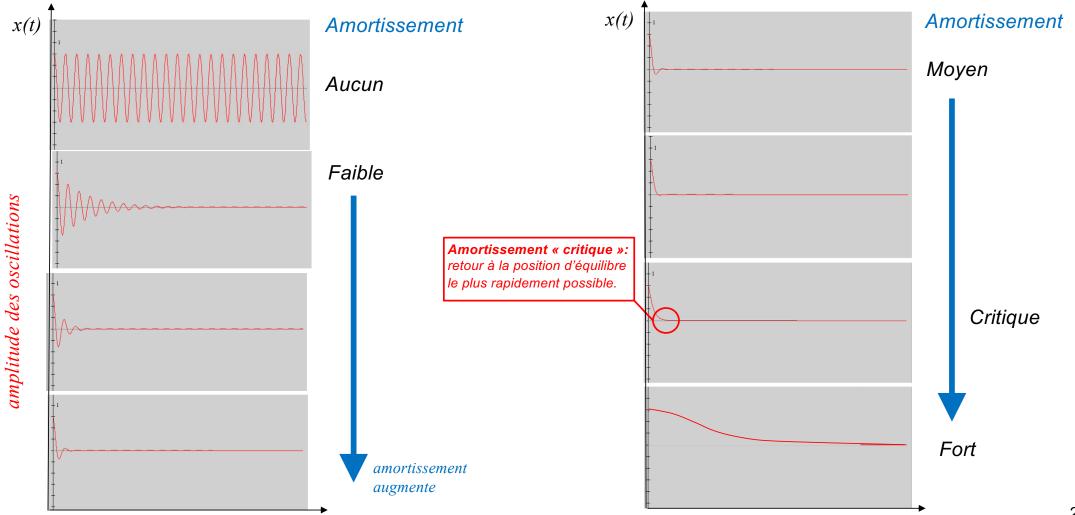
λ définit le type d'amortissement

Le coefficient d'amortissement λ définit 3 différents régimes :

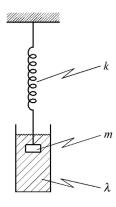
- Amortissement faible (λ < λ_c petit) : oscillations dont l'amplitude diminue continûment. La période est plus grande que celle de l'oscillateur harmonique non amorti.
- Amortissement critique pour une valeur λ_c . Correspond à un retour à la position d'équilibre le plus rapidement possible sans la moindre oscillation.
- Amortissement fort (λ > λ_c grand) : Le système n'oscille plus et revient lentement à l'équilibre.

On remarque que l'on retrouve l'équation d'un oscillateur libre pour $\lambda=0$

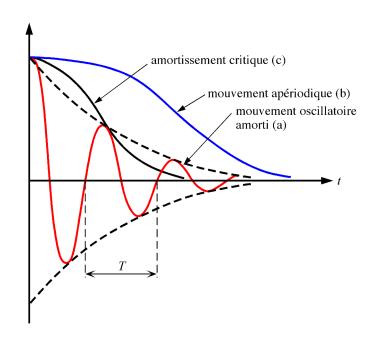
■ Ressort plongeant dans un liquide (sans force de gravitation)



■ Ressort plongeant dans un liquide (sans force de gravitation)



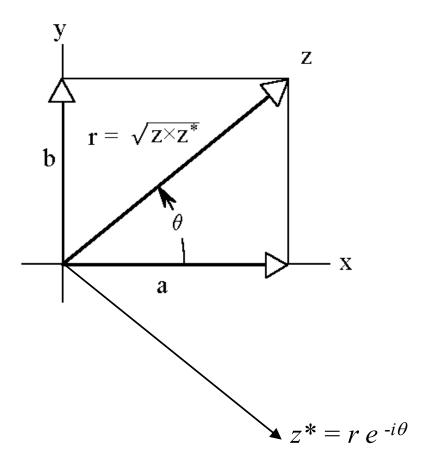
$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega_0^2 x = 0$$



Comment résoudre cette équation différentielle ?

⇒ On passe par les nombres complexes

■ Nombres complexes



Soit le nombre complexe *z* :

$$z = a + ib = r e^{i\theta}$$

Partie réelle : $\Re(z) = a = r \cos \theta$

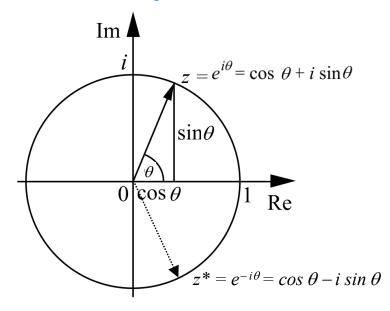
Partie imaginaire : $\Im(z) = b = r \sin \theta$

Module: $|z| = r = \sqrt{a^2 + b^2}$

Argument: $\arg(z) = \theta = \arctan(\frac{b}{a})$

Complexe conjugué : $z^* = a - ib = r e^{-i\theta}$

Nombres complexes



Soit le nombre complexe z de norme 1 :

$$z = e^{i\theta} = \cos\theta + i\sin\theta$$

$$z^* = e^{-i\theta} = \cos\theta - i\sin\theta$$

$$\cot\theta = -i\theta = \cos\theta - i\sin\theta$$

Nous pouvons alors écrire
$$x(t) = A \left[\cos (\omega t + \varphi_0) \right] = A \frac{e^{i(\omega t + \varphi_0)} + e^{-i(\omega t + \varphi_0)}}{2}$$

$$x(t) = A \cos(\omega t + \varphi_0) = C_1 e^{i\omega t} + C_2 e^{-i\omega t}$$

avec C_1 , C_2 des nombres complexes indépendants du temps

■ Nombres complexes

Résolution de l'équation différentielle du mouvement pour l'oscillateur harmonique non amorti ($\lambda=0$)

Equation du mouvement :
$$\frac{d^2x}{dt^2} + \omega_0^2x = 0$$
 (1)

On pose comme solution générale (fonction d'essai) : $x(t) = C e^{\gamma t}$

On injecte $x(t) = C e^{\gamma t}$ dans l'équation différentielle (1)

On trouve
$$\gamma^2 C e^{\gamma t} + \omega_0^2 C e^{\gamma t} = 0 \Rightarrow C e^{\gamma t} (\gamma^2 + \omega_0^2) = 0$$

La solution non-triviale est $(\gamma^2 + \omega_0^2) = 0$ soit $\gamma^2 = -\omega_0^2$

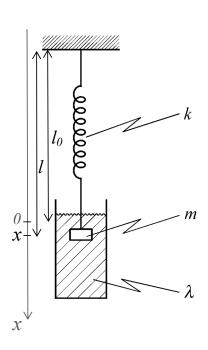
or
$$i^2 = -1$$
 donc $\gamma^2 = i^2 \omega_0^2$ et finalement $\gamma = \pm i \omega_0$ 2 solutions possible pour γ

$$x(t) = C_1 e^{i\omega_0 t} + C_2 e^{-i\omega_0 t}$$

La solution générale est une combinaison linéaire des solutions particulières avec $\gamma = +i\omega_0$ et $\gamma = -i\omega_0$

 ϕ est le déphasage défini par les conditions initiales à t=0

■ Résolution de l'éq. diff. du mouvement pour l'oscillateur libre amorti (λ≠0)



$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega_0^2 x = 0 (1) On cherche les solutions de cette équation différentielle$$

Technique de résolution :

- i) on prend une fonction d'essai du type $x(t) = C e^{\gamma t}$
- ii) on la substitue dans l'équation différentielle $(1) \Rightarrow C e^{\eta} (\gamma^2 + 2\lambda\gamma + \omega_0^2) = 0$ la solution non-triviale est $\gamma^2 + 2\lambda\gamma + \omega_0^2 = 0$

 $\gamma^2 + 2\lambda\gamma + \omega_0^2 = 0$ est une équation du second degré du type $ax^2 + bx + c = 0$

les solutions x_1, x_2 de cette équation se calculent à partir du discriminant : $\Delta = b^2 - 4ac$

$$et x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$$

■ Résolution de l'éq. diff. du mouvement pour l'oscillateur libre amorti (λ≠0)

Nous cherchons les solutions de
$$\gamma^2 + 2\lambda\gamma + \omega_0^2 = 0$$

avec
$$a = 1, b = 2\lambda, c = \omega_0^2$$

$$\Delta = b^2 - 4ac = 4\lambda^2 - 4\omega_0^2 = 4(\lambda^2 - \omega_0^2)$$

$$x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$$
soit $\begin{cases} \gamma_1 = -\lambda + (\lambda^2 - \omega_0^2)^{1/2} \\ \gamma_2 = -\lambda - (\lambda^2 - \omega_0^2)^{1/2} \end{cases}$

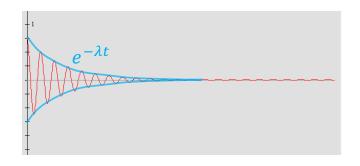
La solution générale est la somme des solutions particulières avec γ_1 et γ_2

$$x(t) = A_1 e^{\gamma_1 t} + A_2 e^{\gamma_2 t}$$
 avec A_1 et A_2 des constantes $= e^{-\lambda t} \left(A_1 e^{\sqrt{\lambda^2 - \omega_0^2} t} + A_2 e^{-\sqrt{\lambda^2 - \omega_0^2} t} \right)$

■ Amortissement faible $\lambda < \omega_0$

Nous avons
$$\gamma_{1,2} = -\lambda \pm (\lambda^2 - \omega_0^2)^{1/2}$$

avec
$$\lambda^2 - \omega_0^2 < 0$$



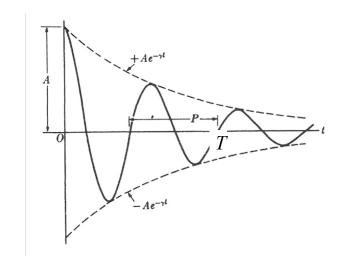
avec
$$\omega = (\omega_0^2 - \lambda^2)^{1/2}$$

Il existe donc deux valeurs pour γ : $\gamma_1 = -\lambda + i\omega$ et $\gamma_2 = -\lambda - i\omega$

La solution générale est la somme des solutions particulières γ_1 , γ_2 : $x(t) = A_1 e^{\gamma_1 t} + A_2 e^{\gamma_2 t}$

soit
$$x(t) = e^{-\lambda t} \left(A_1 e^{\mathrm{i}\omega t} + A_2 e^{-\mathrm{i}\omega t} \right)$$
 avec $\omega = (\omega_0^2 - \lambda^2)^{1/2}$

■ Amortissement faible $\lambda < \omega_0$



Solution de l'équation du mouvement :

$$x(t) = A e^{-\lambda t} \cos(\omega t + \phi)$$

$$\text{avec} \begin{tabular}{ll} $\omega = \sqrt{\omega_0^2 - \lambda^2} & \textit{pulsation} \\ $T = \frac{2\pi}{\omega} & \textit{p\'eriode} \\ $\phi & \textit{d\'ephasage} \end{tabular}$$

On détermine les constantes A et ϕ à partir des conditions initiales à t=0

Exemple de conditions initiales à t=0 : $x(0)=x_0$ et v(0)=0

$$x(0) = A \cos \phi = x_0$$

$$\Rightarrow A = \frac{x_0}{\cos \phi}$$

$$\Rightarrow \tan \phi = -\frac{\lambda}{\omega}$$

■ Amortissement fort $\lambda > \omega_0$

Nous avons
$$\gamma_{1,2} = -\lambda \pm (\lambda^2 - \omega_0^2)^{1/2}$$

avec $\lambda^2 - \omega_0^2 > 0$
soit $\gamma_{1,2} = -\lambda \pm \omega$ avec $\omega = (\lambda^2 - \omega_0^2)^{1/2}$

Il existe donc deux valeurs pour γ : $\gamma_1 = -\lambda + \omega$ et $\gamma_2 = -\lambda - \omega$

La solution générale est la somme des solutions particulières γ_1 , γ_2 : $x(t) = A_1 e^{\gamma_1 t} + A_2 e^{\gamma_2 t}$

Les solutions sont alors
$$x(t) = e^{-\lambda t} (A_1 e^{\omega t} + A_2 e^{-\omega t})$$

Mouvement apériodique (plus d'oscillations)

Les constantes sont définies par les conditions initiales à t=0

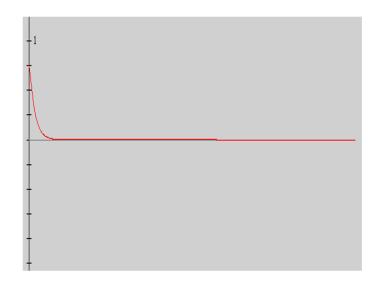
Par exemple :
$$x(0) = x_0$$
 et $v(0) = 0$

alors
$$A_1=x_0\frac{\omega+\lambda}{2\omega}, A_2=x_0\frac{\omega-\lambda}{2\omega}$$

■ Amortissement critique $\lambda = \omega_0$

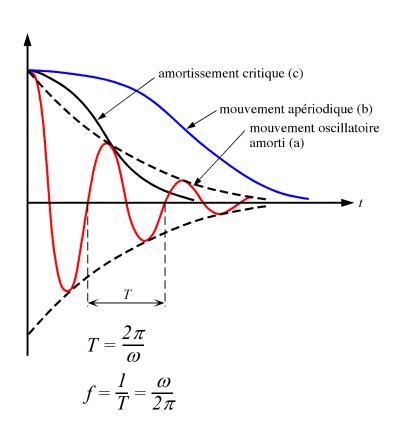
Dans ce cas particulier Δ =0, et les solutions de l'équation différentielle sont alors de la forme

$$x(t) = (A + Bt) e^{-\lambda t}$$



Amortissement critique : retour à la position d'équilibre le plus rapidement possible sans aucune oscillation

Résumé des différents régimes d'amortissement en fonction de λ $\lambda = \frac{K\eta}{2m}$ Coefficient d'amortissement



• Amortissement faible : $\lambda < \omega_0$

Mouvement oscillatoire avec amplitude décroissante et avec $\omega < \omega_0$

$$x(t) = A e^{-\lambda t} \cos(\omega t + \phi)$$

$$avec \omega = (\omega_0^2 - \lambda^2)^{1/2}$$

• Amortissement fort : $\lambda > \omega_0$

Mouvement apériodique (plus d'oscillations)

$$x(t) = e^{-\lambda t} \left(A_1 e^{\omega t} + A_2 e^{-\omega t} \right)$$

$$a = (\lambda^2 - \omega_0^2)^{1/2}$$

• Amortissement critique : $\lambda = \omega_0$

Retour à la position d'équilibre le plus rapidement possible sans aucune oscillation

$$x(t) = (A + Bt) e^{-\lambda t}$$

Application: amortisseur « dynamique »

La réponse de l'amortisseur peut-être contrôlée en tant réel (temps de réaction de quelques ms) en changeant les propriétés du fluide, c'est à dire en jouant sur le coefficient d'amortissement λ .

Pour ce faire, on applique un champ électrique dans une bobine qui crée un champ magnétique. Celui-ci ordonne des particules magnétiques présentes dans le fluide de l'amortisseur, ce qui en modifie sa viscosité, et par conséquent λ .

