Week 6 - Part 1

7. Travail; Energie, Principes de conservation

- 7.1. Introduction
- 7.2. Travail d'une force
- 7.3. Puissance

Travail et Puissance

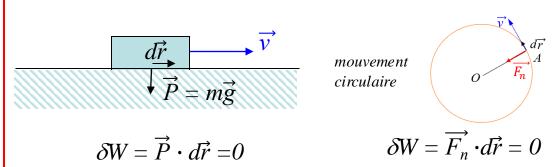
$$\delta W = \vec{F} \cdot d\vec{r}$$

Unité : [Nm] = joule [J]

soit $\delta W = F dr \cos \theta = F_t dr$

Définition: Le travail élémentaire de la force \vec{F} est le produit de la distance parcourue par la composante de cette force le long du déplacement (=la projection de la force sur la tangente à la trajectoire)

Corollaire : le travail d'une force perpendiculaire au déplacement est nul



$$P_{inst} = \frac{\delta W}{dt}$$

Unité: joule/sec [J/s] = watt [W]

La puissance instantanée est une grandeur qui fournit une information sur la dynamique du mouvement.

C'est une indication sur la « vitesse » à laquelle le travail est dépensé.

$$P_{inst} = \overrightarrow{F} \cdot \frac{d\overrightarrow{r}}{dt} = \overrightarrow{F} \cdot \overrightarrow{v}$$

La puissance moyenne pendant un intervalle Δt est

$$P_{moy} = W/\Delta t$$

Week 6 – Part 2

- 7. Travail; Energie; Principes de conservation
 - 7.4. Energie cinétique
 - 7.5. Energie potentielle
 - 7.6. Energie mécanique

7.4. Travail et Energie cinétique

Travail élémentaire :

$$P_{inst} = \frac{\delta W}{dt} = \vec{F} \cdot \frac{dl}{dt} = \vec{F} \cdot \vec{v}$$

$$\frac{\delta W}{dt} = F_t v \text{ avec } F_t = m \text{ (dv/dt)} \text{ (2ieme loi de Newton)}$$

$$d'où \delta W = m \text{ (dv/dt)} v dt = m v dv$$

soit
$$W = \int_{A}^{B} F_{t} dl = \int_{A}^{B} mv dv = \left[\frac{1}{2}mv^{2}\right]_{v_{A}}^{v_{B}} = \frac{1}{2}mv_{B}^{2} - \frac{1}{2}mv_{A}^{2}$$

Expression du travail en fonction de l'énergie cinétique :

$$W = E_{c,B} - E_{c,A}$$

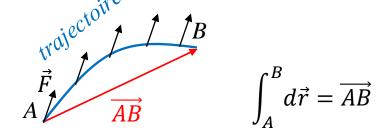
Théorème de l'énergie cinétique : quelles que soient la force F et la trajectoire parcourue, le travail de la particule de masse m correspond à la variation de la grandeur $\frac{1}{2}mv^2$ entre la fin et le début de la trajectoire.

Cette grandeur est par définition l'énergie cinétique (E_c)

7.5. Travail et Energie potentielle

Soit une force \vec{F} constante (en direction et en norme). Le travail de cette force entre un point A et un point B s'écrit :

$$W = \int_{A}^{B} \vec{F} \cdot d\vec{r} = \vec{F} \cdot \int_{A}^{B} d\vec{r} = \vec{F} \cdot \overrightarrow{AB}$$



On remarque que le travail ne dépend dans cas que de la position de A et de B, et ce, quelle que soit la trajectoire.

Le travail peut s'exprimer en fonction de la position de A et de B. On définit alors une fonction qui a la grandeur d'une énergie et dont la valeur dépend de la position :

C'est la fonction **Energie potentielle** (E_p)

7.5. Energie potentielle

L'énergie potentielle $E_p(r)$ est une grandeur physique qui dépend de la position de la particule telle que

$$W = E_{p,A} - E_{p,B} = -(E_{p,B} - E_{p,A})$$

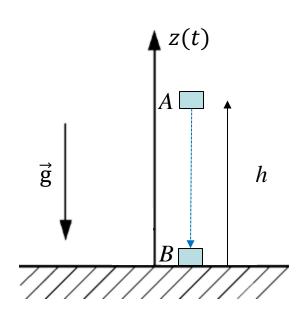
<u>Remarque</u>: contrairement à l'énergie cinétique, W correspond à la valeur de l'énergie potentielle à l'état initial moins sa valeur à l'état final

<u>Définition</u>: l'énergie potentielle E_p est une fonction de la position de la particule telle que la différence entre sa valeur prise à l'état initial et celle à l'état final est égale au travail W.

- Cette différence est indépendante du chemin parcouru.
- Elle est définie à une constante près.

7.5. Energie potentielle de pesanteur

■ Exemple 1 : énergie potentielle due au champ de pesanteur terrestre



Travail du poids :

$$W = \int_{h}^{0} m\vec{g} \cdot \vec{dz} = [-mgz]_{h}^{0} = mgh$$

$$W = -(E_{p,B} - E_{p,A}) = mgh$$

$$\begin{cases} E_{p,A} = mgh \\ E_{p,B} = 0 \end{cases}$$

Energie potentielle de pesanteur :

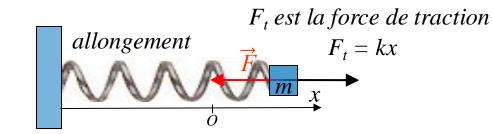
$$E_p(z) = mg \ z + cte$$

7.5. Energie potentielle d'un ressort

■ Exemple 2 : Energie potentielle d'un ressort

Déplacement élémentaire : $d\vec{l} = dx \ \overrightarrow{e_x}$

Force de rappel du ressort : $\vec{F} = -kx \vec{e_x}$



$$W = \int_{A}^{B} -kx \overrightarrow{e_{x}} \cdot dx \overrightarrow{e_{x}} = \int_{A}^{B} -kx dx = -k \left[\frac{1}{2} x^{2} \right]_{A}^{B} = -\frac{1}{2} kx_{B}^{2} + \frac{1}{2} kx_{A}^{2}$$

$$W = \frac{1}{2}kx_A^2 - \frac{1}{2}kx_B^2$$

or par définition
$$W = E_{p,A} - E_{p,B}$$

et par conséquent
$$E_p = \frac{1}{2}kx^2$$

L'énergie potentielle est nulle pour x=0

7.6. Energie mécanique - conservation

Nous avons vu que le travail pouvait se calculer à partir de deux expressions différentes :

$$W = E_{c,B} - E_{c,A}$$
 différence de l'énergie cinétique prise entre état final et état initial

$$W = E_{p,A} - E_{p,B}$$
 différence de l'énergie potentielle prise entre état initial et état final

soit
$$W = E_{c,B} - E_{c,A} = E_{p,A} - E_{p,B}$$

ou encore
$$E_{c,B} + E_{p,B} = E_{c,A} + E_{p,A}$$

Energie mécanique en *B* Energie mécanique en *A*

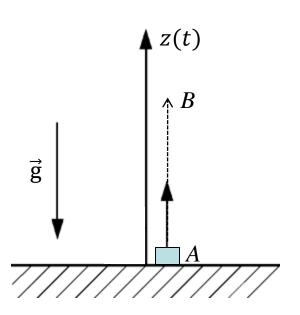
Energie mécanique :
$$E = E_c + E_p = \frac{1}{2}mv^2 + E_p = cte$$

l'énergie mécanique est constante s'il n'y a pas de dissipation d'énergie (pas de force de frottement par exemple)

Exemple: la chute libre $E = 1/2 mv^2 + mg h = cte$

■ Application de la conservation de l'énergie mécanique

Exercice 1 : calcul de la hauteur maximum à laquelle arrive une masse m lancée verticalement à la vitesse v_0 (on néglige les frottements de l'air)



$$EnA : E(A) = E_c(A) + E_p(A) = \frac{1}{2} m v_0^2 + 0$$
 (ici on prend mgz=0 pour z=0)

En
$$B : E(B) = E_c(B) + E_p(B) = 0 + mgh$$

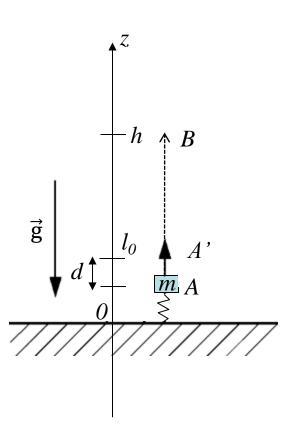
Principe de conservation : E(A) = E(B)

$$\Rightarrow \frac{1}{2} m v_0^2 = mgh$$

Finalement:
$$h = \frac{v_0^2}{2g}$$

■ Application de la conservation de l'énergie mécanique

Exemple 2 : calcul de la hauteur maximum à laquelle arrive une masse m lancée verticalement par un ressort de longueur l_0 au repos et comprimé d'une longueur d



Vitesse d'expulsion de la masse en *A* ':

$$EnA: E(A) = E_c(A) + E_p(A) = 0 + \frac{1}{2}kd^2$$
 (ici on prend $mgz = 0$ pour $z = l_0 - d$)

En A':
$$E(A') = E_c(A') + E_p(A') = \frac{1}{2} m v_0^2 + mgd$$

avec
$$E(A) = E(A') : \frac{1}{2}mv_0^2 + mgd = \frac{1}{2}kd^2 \implies v_0 = \sqrt{2/m}\sqrt{\frac{1}{2}kd^2 - mgd}$$

Hauteur h en B:

$$EnA': E(A') = E_c(A') + E_p(A') = \frac{1}{2} m v_0^2 + 0$$
 (ici on prend $mgz = 0$ pour $z = l_0$)

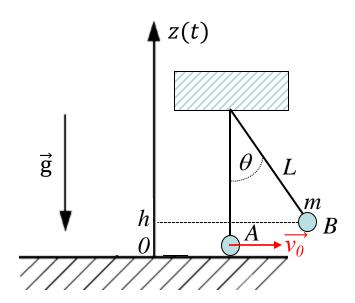
En B:
$$E(B) = E_c(B) + E_p(B) = 0 + mg(h-l_0)$$

avec
$$E(A') = E(B)$$
: $\frac{1}{2} m v_0^2 = mg(h - l_0)$

Finalement:
$$h = \frac{1}{2mg}kd^2 - d + l_0$$

■ Application de la conservation de l'énergie mécanique

Exemple 3 : angle maximum atteint part la masse m d'un pendule lorsqu'il est lancé à la vitesse v_0 . Le fil du pendule est sans masse et de longueur L. L'angle atteint reste inférieure à $\pi/2$.



En
$$A: E(A) = E_c(A) + E_p(A) = \frac{1}{2} m v_0^2 + 0$$

En $B: E(B) = E_c(B) + E_p(B) = 0 + mgh$
 $avec \ h = L - Lcos\theta = L((1 - cos\theta))$
 $avec \ E(A) = E(B): \frac{1}{2} m v_0^2 = mgL(1 - cos\theta)$
 $cos\theta = 1 - \frac{1}{2gL} v_0^2$

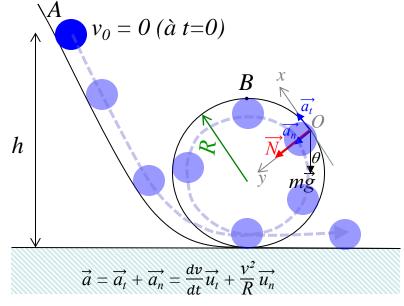
Finalement:
$$\theta = arcos(1 - \frac{1}{2gL}v_0^2)$$

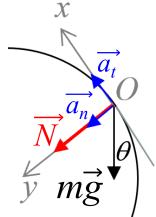
■ Application de la conservation de l'énergie mécanique

Exemple 4 : calcul de la hauteur h du lâché de la bille telle qu'elle fasse le tour complet de la boucle sans décrocher, c'est-à-dire qu'elle reste au contact avec la glissière (on néglige les frottements)

■ Application de la conservation de l'énergie mécanique

Exemple 4: suite...





La force N correspond à la réaction de la glissière sur la bille tant que celle-ci est en contact. La glissière circulaire impose alors à la bille un changement de direction et génère ainsi une accélération centripète égale à $\frac{v^2}{R}$.

a) Etude préliminaire du problème (dans repère de Frenet)

Forces extérieures : le poids et la réaction de la glissière

$$2^{nd}$$
 loi de Newton : $m\vec{a} = m\vec{g} + \vec{N}$

$$projection \begin{cases} Ox : ma_t = -mg \cos \theta \\ Oy : ma_n = N + mg \sin \theta \end{cases}$$

Mouvement circulaire (imposé par la glissière)
$$\Rightarrow \overrightarrow{a_n} = \frac{v^2}{R} \overrightarrow{u_n}$$

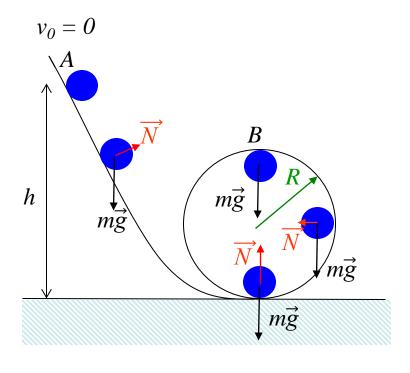
d'où $m \frac{v^2}{R} = N + mg \sin\theta \Rightarrow N = m \frac{v^2}{R} - mg \sin\theta$

On remarque que N diminue quand θ augmente à partir de 0° et est minimum pour $\theta = 90^{\circ}$

soit en B (
$$\theta$$
=90°) $\Rightarrow N_{min} = m \frac{v^2}{R} - mg$

■ Application de la conservation de l'énergie mécanique

Exemple 4: suite...



b) Condition de décrochage en B?

Lorsque N=0 alors la balle «n'appuie» plus sur la glissière. Ceci définie le point de décrochage

La réaction calculée au point a) est $N_{min} = m \frac{v^2}{R} - mg$

La condition $N_{min}=0$ conduit alors à $v=\sqrt{gR}$

c) Conservation de l'énergie

On prend l'énergie potentielle nulle au niveau du sol (h=0)

Au point
$$A: E_A = mgh$$

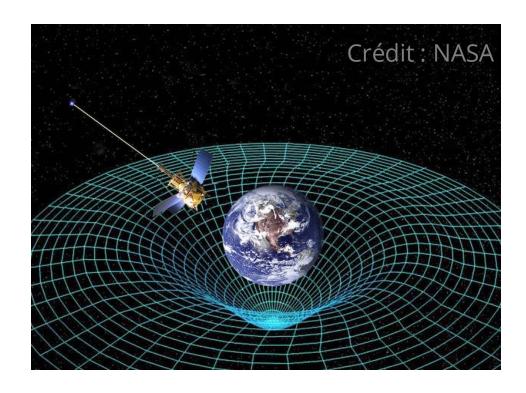
Au point $B: E_B = mg(2R) + \frac{1}{2}mv^2$ $E_A = E_B$

Soit
$$mgh = mg(2R) + \frac{1}{2} mgR$$
 with $v = \sqrt{gR}$

$$mgh = \frac{5}{2} mgR \implies h = \frac{5}{2} R$$

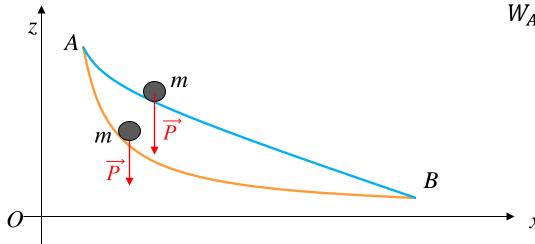
Week 6 – Part 3

- 7. Travail; énergie; principes de conservation
 - 7.7. Force conservative
 - 7.8. Force non-conservative



7.7. Force conservative

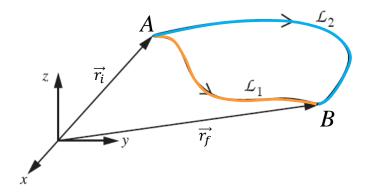
Définition



$$W_{AB} = \int_{A}^{B} m\vec{g} \cdot \overrightarrow{dr} = \int_{A}^{B} -mgdz = -mg(z_B - z_A)$$

Le travail **ne dépend pas** du chemin parcouru

Le poids est une force dite « conservative »



La force F est appelée <u>conservative</u> si son travail ne dépend pas du chemin parcouru

$$W_{\mathcal{L}_1} = W_{\mathcal{L}_2}$$

7.7. Force conservative

Si F est une force conservative alors elle possède les propriétés suivantes :

$$W_{\mathcal{L}_1} = W_{\mathcal{L}_2}$$
 Le travail ne dépend pas du chemin parcouru

$$\oint \delta W = 0$$
 Le travail est nul sur une trajectoire fermée

$$W = -(U_f - U_i)$$
 $U(r)$ est une fonction appelée « potentiel »

$$ec{F}(r) = -rac{dU(r)}{dr} ec{e}_r$$
 On dit que la force dérive d'un potentiel $U(r)$

 $\frac{\partial}{\partial x}$: signifie « dérivée partielle » par rapport à x

exemple:

$$f(x,y) = 2x + 3y - 1$$

$$\frac{\partial f(x,y)}{\partial x} = 2 \ et \frac{\partial f(x,y)}{\partial y} = 3$$

Cette écriture est correcte si F ne dépend que d'une seule variable. L'écriture générale est :

$$\vec{F} = -\frac{\partial U(r)}{\partial x}\vec{e}_x - \frac{\partial U(r)}{\partial y}\vec{e}_y - \frac{\partial U(r)}{\partial z}\vec{e}_z \qquad \vec{F} = -\overrightarrow{grad}U(r) = -\nabla U(r)$$

Opérateur nabla $\nabla ou \overrightarrow{\nabla}$

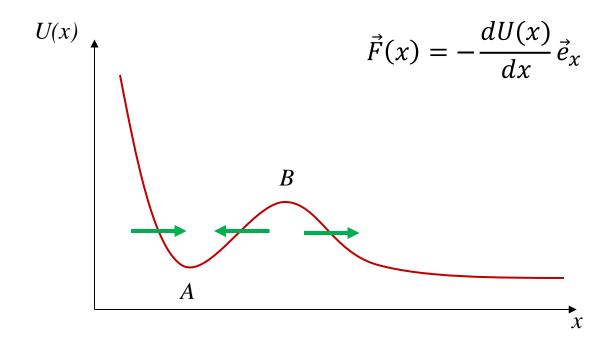
$$\nabla \colon \frac{\partial}{\partial x} \boldsymbol{e}_{x} + \frac{\partial}{\partial y} \boldsymbol{e}_{y} + \frac{\partial}{\partial z} \boldsymbol{e}_{z}$$

$$\vec{F} = -\overrightarrow{grad}U(r) = -\nabla U(r)$$

grad : gradient

7.7. Force conservative

■ Energie potentielle, force, et position d'équilibre



Cas du champ de pesanteur: U(z)=mg.z

Cas du ressort:

 $U(x) = 1/2kx^2$

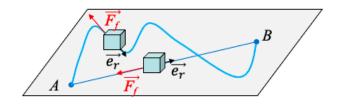
La dérivée de la fonction U(x) étant nulle en A et B, la force y est donc nulle \Rightarrow ces points correspondent à une position d'équilibre

A représente un minimum de la fonction U(x): c'est une position d'équilibre stable B représente un maximum de la fonction U(x): c'est une position d'équilibre instable

7.8. Force non-conservative

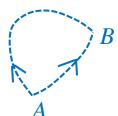
Cas d'une force de frottement

L'énergie mécanique $E=E_c+E_p$ d'un système n'est plus constante lorsque celui-ci est soumis à une force de frottement



Soit W' le travail de la force de frottement, la variation d'énergie mécanique correspond au travail de la force de frottement

$$(E_c + E_p)_B - (E_c + E_p)_A = W'$$
 avec $W' < 0 \Rightarrow$ perte d'énergie vers l'extérieur



Le travail de la force de frottement entre A et B est différent pour les deux trajets

$$(E_B - E_A)_{trajet \ 1} \neq (E_B - E_A)_{trajet \ 2}$$

Une force de frottement est une force «non-conservative»

7.8. Force non-conservative

Cas d'une force de frottement

Exercice : Un bloc est lancé sur un plan incliné faisant un angle α avec l'horizontale avec une vitesse v_0 . Il subit une force de frottement sec F_f . Quelle distance L parcourt-il avant de s'arrêter ?

Etat initial:
$$E_i = E_{c,i} + E_{p,i} = \frac{1}{2}mv_0^2 + 0$$

Etat final :
$$E_f = E_{c,f} + E_{p,f} = 0 + mg h = mg L \sin \alpha$$

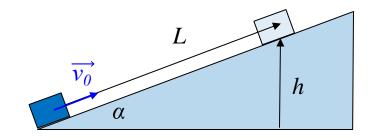
Travail de la force de frottement :
$$W' = \int_0^L \overrightarrow{F_f} \cdot d\vec{x} = -L F_f$$

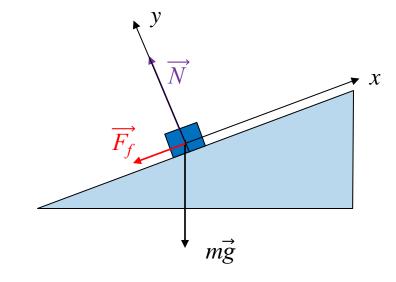
$$E_f - E_i = W' = -L F_f = -L \mu_c N$$

 2^{nd} loi de Newton sur $Oy: O = N - mg \cos \alpha \Rightarrow N = mg \cos \alpha$

$$E_f - E_i = mg L \sin \alpha - \frac{1}{2} m v_0^2 = -L \mu_c mg \cos \alpha$$

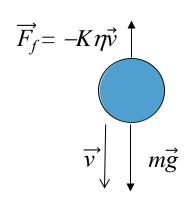
$$\frac{1}{2}mv_0^2 = mgL(\sin\alpha + \mu_c\cos\alpha) \Rightarrow L = \frac{v_0^2}{2g(\sin\alpha + \mu_c\cos\alpha)}$$





7.8. Force non-conservative

Dissipation de l'énergie pour un frottement fluide



On s'intéresse à la chute libre d'un objet dans un fluide en tenant compte de la force de frottement fluide (on néglige ici la poussée d'Archimède)

$$\vec{F}_f = -K\eta \vec{v}$$
: force de frottement fluide

Energie dissipée = travail de la force de frottement : $\delta W' = -K\eta \vec{v} \cdot d\vec{l} = -K\eta v dl$

$$\delta W' = -K\eta v dl = -K\eta v vdt = -K\eta v^2 dt$$

avec δW ' travail effectué par la force de frottement pendant dt

La variation d'énergie mécanique est égale à l'énergie dissipée par la force de frottement fluide :

$$d(E_c + E_p) = d(\frac{1}{2}mv^2 - mgz) = \delta W' = -K\eta v^2 dt$$

Ou encore
$$\frac{d(Ec+Ep)}{dt} = -K\eta v^2$$

puissance dissipée

On remarque celle-ci varie comme le carré de la vitesse

Etat stationnaire:
$$v = v_{lim}$$
 $avec$ $v_{lim} = \frac{mg}{K\eta} \Rightarrow \frac{d(Ec+Ep)}{dt} = -\frac{m^2g^2}{K\eta}$

On cherche à construire un jeu de miniflipper. Un ressort, de longueur au repos l_0 est utilisé pour propulser une masse m qui glisse avec frottements (μ_c) sur une surface horizontale. La propulsion a lieu en comprimant le ressort de la distance x, le trou à atteindre est à la distance d mesurée quand le ressort est au repos. Quelle doit être la constante de raideur du ressort choisi pour que cela fonctionne?

