Week 5 – Part 1

6. Bilan des forces; application des lois de Newton

6.6. Force de frottement fluide

6.3. Force de frottement sec

■ Coefficients de frottement dynamique et statique

• Frottement dynamique (cinétique)

La force de frottement F_f est proportionnelle à la réaction N de la surface sur l'objet et s'oppose toujours au déplacement. Elle est donnée par la formule suivante :

$$//F_f//=\mu_d$$
 // $N//$

avec μ_d coefficient de frottement dynamique (cinétique)

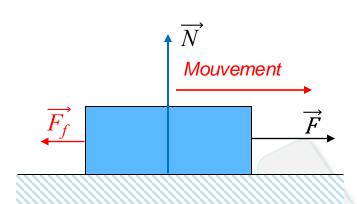
Frottement statique

L'objet reste immobile alors qu'on lui applique une force \vec{F} colinéaire à la direction du mouvement souhaité. Dans ce cas, nous avons $\vec{F}_f = -\vec{F}$ jusqu'à ce que l'objet se mette en mouvement (décrochage). Au décrochage, nous avons $||F_f|| = \mu_s \ ||N||$, avec μ_s coefficient de frottement statique.

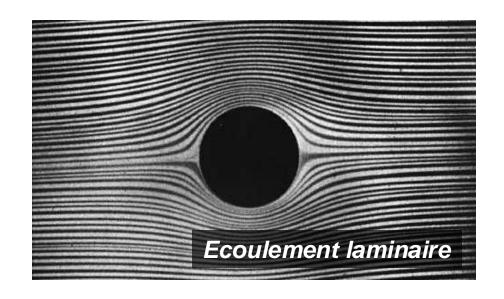
$$|F_f| \leq \mu_s |N|$$

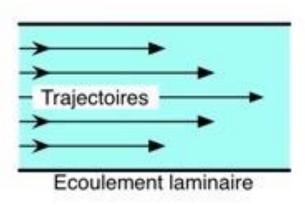
avec μ_s coefficient de frottement statique

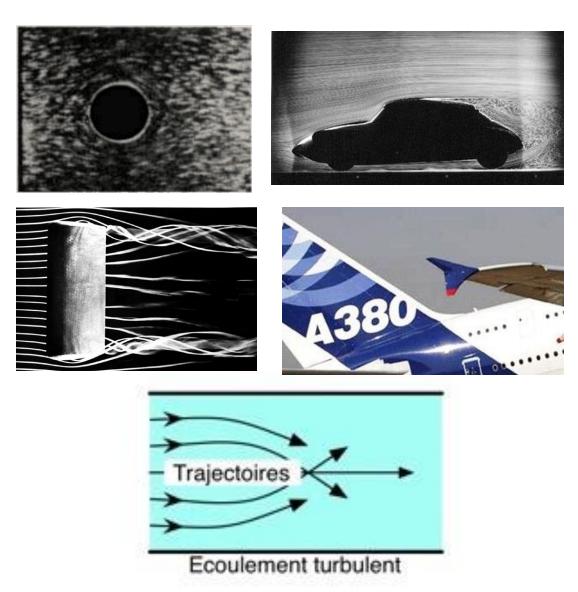
Lorsque l'objet décroche (mise en mouvement) $\Rightarrow ||F_f|| = \mu_s ||N||$



Régime laminaire et régime turbulent







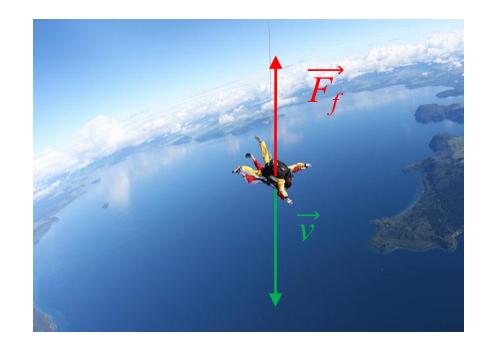
Régime laminaire et régime turbulent

Une force de **frottement fluide** est toujours

- opposée au déplacement
- augmente avec la vitesse

Vitesse de chute :

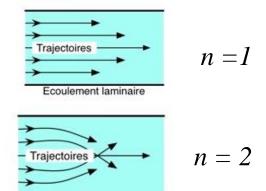
$$\vec{v} = ||v|| \vec{u}$$



La force de **frottement fluide** s'écrit sous la forme :

$$\overrightarrow{F_f} = cte \cdot \|v\|^n \overrightarrow{u}$$
 avec cte <0 \overrightarrow{u} vecteur unitaire

- faible vitesse : régime **laminaire** n = 1
- vitesse élevée : régime turbulent n = 2



Expression de la force de frottement en régime laminaire

Si un corps se déplace dans un fluide (gaz ou liquide) à la vitesse \vec{v} , suffisamment faible pour que l'on puisse négliger les turbulences, alors le régime est dit laminaire. La force de **frottement est proportionnelle à la vitesse et de signe opposé** :

$$\overrightarrow{F}_f = -K\eta \vec{v}$$

K coefficient qui dépend de la forme du corps [m] η coefficient de viscosité $[N/m^2.s]$ ou [Pa.s]

forme aérodynamique crée par bio-inspiration

■ Coefficient de viscosité η

$$\vec{F}_f = -K\eta \vec{v}$$

Liquides*		$\eta \times 10^2$	$\eta \times 10^2$ Gaz*		$\eta \times 10^4$
Eau	(0°)	1,792	Air	(0°)	1,71
Eau		1,005	Air		1,81
Eau	(40°)	0,656	Air	(40°)	1,90
Glycérine		1490	Hydrogène		0,93
Huile de ricin		986	Ammoniac		0,97
Méthanol		0,597	Gaz carbonique		1,46

Ces valeurs sont exprimées dans le système CGS, c'est-à-dire en poise (Po). L'unité dans le système international est le pascal-secondes (Pa·s), avec la relation 1 Pa·s = 10 Po

$$1 Pa = 1 N/m^2 = 1 kg/(m.s^2)$$

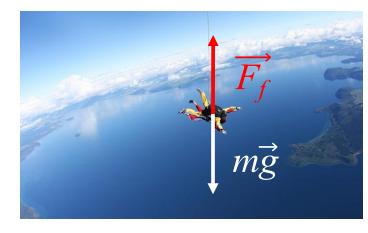
ECOLE POINTECHNIQUE FEDERALE DE LAUSANNE

^{*}Toutes les valeurs sont à 20°, sauf lorsqu'on le spécifie.

■ Vitesse limite

Chute libre (parachutiste):

$$m\vec{a} = m\vec{g} - K\eta\vec{v}$$



 $lorsque F_f = mg \ alors \ v = cte = v_{lim}$

Après le saut hors de l'avion, la vitesse v augmente sous l'effet du poids. La force de frottement est faible au début de la chute car la vitesse est elle-même faible.

Au cours de la chute v augmente ainsi que la force de frottement de façon proportionnelle.

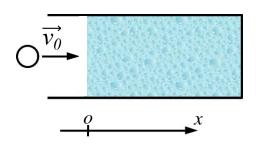
A un certain moment, la force de frottement devient égale au poids : $K\eta v = mg \Rightarrow a = 0$

Si a=0, alors la vitesse v est constante. Le régime est alors dit **stationnaire** : la vitesse n'évolue plus. Cette vitesse est la **vitesse limite** v_{lim} :

$$v_{lim} = mg/K\eta$$

■ Calcul de la vitesse v(t)

Exemple 1 : un objet se déplace suivant Ox avec une vitesse initiale v_0 . En x=0 il subit une force de frottement fluide en régime laminaire qui le ralentit. Quelle est l'expression de la **vitesse en fonction du temps lors de la phase de ralentissement ?** (on néglige ici la pesanteur)



2nd loi de Newton :
$$\overrightarrow{ma} = \overrightarrow{F}_f$$

On projette sur $Ox: ma = -K\eta v$ ou encore $a = -\lambda v$ avec $\lambda = K\eta/m$

Nous avons alors l'équation suivante : $a_f(t) = \frac{dv(t)}{dt} = -\lambda v(t)$ Equation différentielle du 1^{er} ordre

Résolution:

on sépare les variables $\frac{dv}{v} = -\lambda dt$

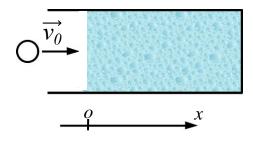
on intègre
$$\int_{v_0}^{v(t)} \frac{dv}{v} = -\lambda \int_0^t dt \quad \Rightarrow \ [\ln(v(t) - \ln(v_0))] = -\lambda [t - 0]$$

$$ln\frac{v(t)}{v_0} = -\lambda t \stackrel{exp}{\Longrightarrow} e^{ln\frac{v(t)}{v_0}} = e^{-\lambda t} \Rightarrow \frac{v(t)}{v_0} = e^{-\lambda t}$$

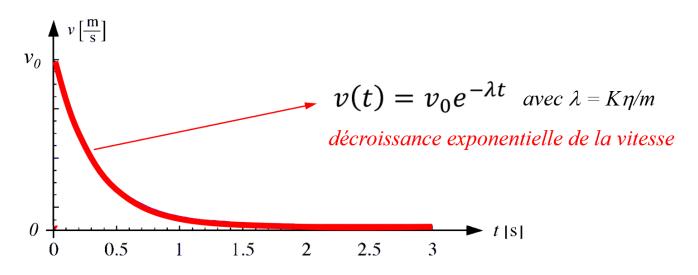
Et finalement:

$$v(t) = v_0 e^{-\lambda t}$$

\blacksquare Calcul de la **vitesse** v(t)



Evolution de la vitesse en fonction du temps



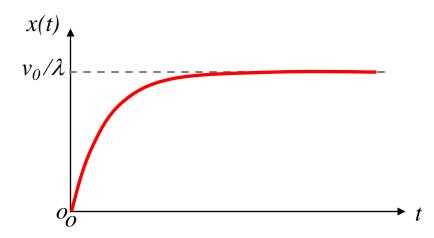
■ Calcul de la **position** x(t)

On intègre
$$v(t) = \frac{dx}{dt} = v_0 e^{-\lambda t}$$

$$\int_0^t \frac{dx}{dt} dt = \int_0^t v_0 e^{-\lambda t} dt \implies x(t) - 0 = -\frac{v_0}{\lambda} \left(e^{-\lambda t} - 1 \right)$$

$$x(t) = -\frac{v_0}{\lambda} \left(e^{-\lambda t} - 1 \right)$$

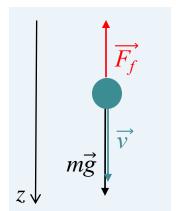
Evolution de la position en fonction du temps



 \blacksquare Calcul de la vitesse v(t)

Exemple 2 : un objet lâché à vitesse nulle est en chute libre. Il subit un frottement fluide en régime laminaire.

Quelle est l'expression de la vitesse en fonction du temps ?



2nd loi de Newton:
$$m\vec{a} = m\vec{g} + \vec{F}_f$$
 \Rightarrow on projette sur $Oz: a(t) = \frac{dv(t)}{dt} = g - \lambda v(t)$ avec $\lambda = K\eta/m$

Il faut résoudre **l'équation différentielle** suivante:
$$\frac{dv(t)}{dt} + \lambda v(t) = g$$

Ce que l'on sait du mouvement :

- i) La vitesse atteint une vitesse limite aux temps longs $(t \to \infty)$: $v_{lim} = F/K\eta = g/\lambda$ avec $\lambda = K\eta/m$
- ii) La vitesse doit varier de façon exponentielle avant d'atteindre la vitesse limite

La solution doit donc avoir la forme suivante :
$$v(t) = v_{lim}(t \to \infty) + v_1 e^{-\lambda t}$$

avec v_{lim} et v_I des constantes à déterminer

 \blacksquare Calcul de la vitesse v(t)

Equation différentielle:
$$\frac{dv(t)}{dt} + \lambda v(t) = g \qquad \text{avec} \quad v(t) = v_{lim} + v_1 e^{-\lambda t}$$
Forme générale de la solution

• On injecte
$$v(t)$$
 dans l'équation $\frac{dv(t)}{dt} + \lambda v(t) = g$
$$on \ trouve \ -\lambda v_1 e^{-\lambda t} + \lambda v_{lim} + \lambda v_1 e^{-\lambda t} = g \quad \Rightarrow \quad v_{lim} = g/\lambda$$

$$d'où v(t) = g/\lambda + v_1 e^{-\lambda t}$$

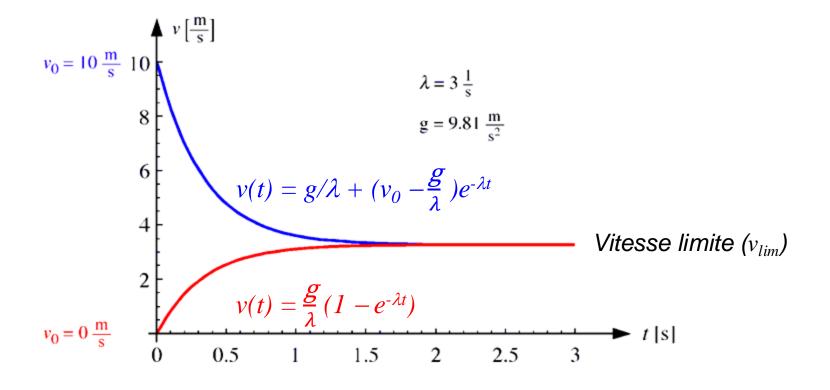
• On détermine v_1 avec la condition initiale $v(t=0) = 0 \implies v_1 = -g/\lambda$

La vitesse en fonction de
$$t$$
 s'écrit $v(t) = \frac{g}{\lambda} (1 - e^{-\lambda t})$

Remarque: si vitesse initiale non nulle $(v_0 \neq 0)$ et dirigée selon \vec{g} alors: $v_1 = v_0 - g/\lambda$ et $v(t) = g/\lambda + (v_0 - g/\lambda)e^{-\lambda t}$

■ Calcul de la **vitesse** v(t)

Deux cas de figure en fonction des conditions initiales : $v_0 = 0$ ou $v_0 > g/\lambda$

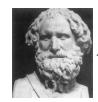


Week 5 – Part 2

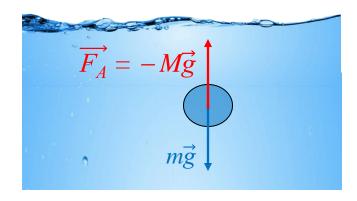
6. Bilan des forces; application des lois de Newton

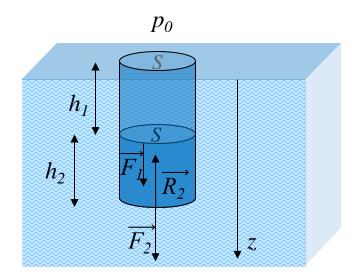
- 6.7. Poussée d'Archimède
- 6.8. Poulie
- 6.9. Ressort

La force de poussée verticale vers le haut exercée par un fluide sur un corps immergé équivaut au poids du volume du fluide déplacé par le corps.



Archimède ^{IIIème} av. IC





La masse du volume V de fluide déplacée est M=
ho V ho masse volumique du fluide

La poussée d'Archimède est alors : $\overrightarrow{F_A} = -M\overrightarrow{g}$

Démonstration:

 p_0 : pression atmosphérique

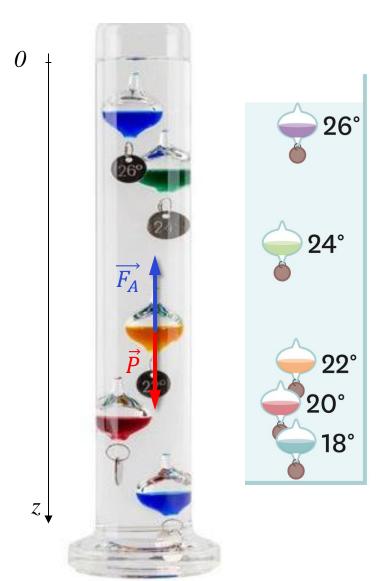
Colonne d'eau $h_1 : \overrightarrow{F}_1 = (p_0 S + \rho S h_1 g) \overrightarrow{e}_z$

Colonne d'eau $(h_2 + h_1)$: $\overrightarrow{F_2} = (p_0 S + \rho S(h_1 + h_2) g) \overrightarrow{e_z} = -\overrightarrow{R_2}$

Résultante F_r des forces qui s'exercent sur le cylindre de hauteur h_2 :

$$\overrightarrow{F_r} = \overrightarrow{F_1} + \overrightarrow{R_2} = \overrightarrow{F_1} - \overrightarrow{F_2} = -\rho Sh_2 g \overrightarrow{e_z} = -\rho V g \overrightarrow{e_z} = -Mg \overrightarrow{e_z}$$
haut bas

Application : thermomètre de Galilée



Démonstration:

Densité du liquide : $\rho(z,T) = \rho_0 + \beta z - \alpha T$

Masse m immobile $\Rightarrow m\vec{a} = \vec{0} = \vec{P} + \overrightarrow{F_A}$ $avec \overrightarrow{F_A} = -\rho(z, T)Vg \overrightarrow{e_z}$

Projection sur $Oz \Rightarrow mg = (\rho_0 + \beta z - \alpha T)Vg$

soit
$$z = \frac{\alpha VT + m - \rho_0 V}{\beta V}$$
 avec $m = \rho_S V$

 ρ_S : masse volumique des « flotteurs »

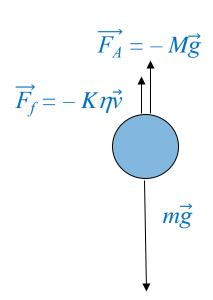
Finalement :
$$z = \frac{\alpha}{\beta} T - \frac{\rho_S - \rho_0}{\beta}$$

La masse de l'eau dans un volume fixe diminue quand la température augmente

Chute libre dans un liquide

Vitesse limite avec poussée d'Archimède

Si la poussée d'Archimède est inférieure au poids de l'objet alors celui-ci «coule» en subissant une force de frottement fluide.



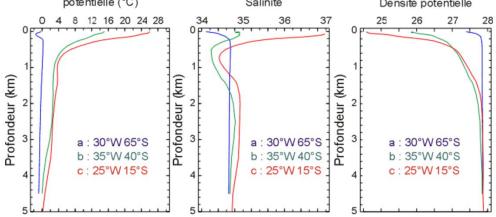
2nd loi de Newton :
$$m\vec{a} = \Sigma \vec{F} = m\vec{g} - K\eta \vec{v} - M\vec{g}$$

La vitesse limite est définie par a=0 (v=cte):

$$v_{lim} = \frac{g(m-M)}{K\eta}$$

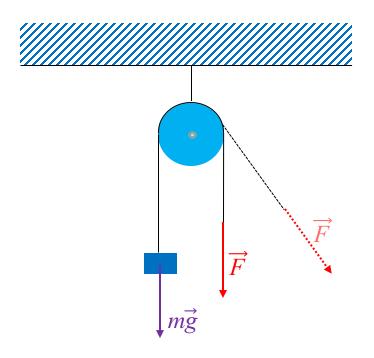
Remarque: la densité de l'eau n'est pas constante sur de grandes distances. Elle augmente avec la profondeur et on peut alors avoir M=m, soit $v_{lim}=0$, i.e. l'objet s'immobilise.

Salinité Densité potentielle Densité potentielle

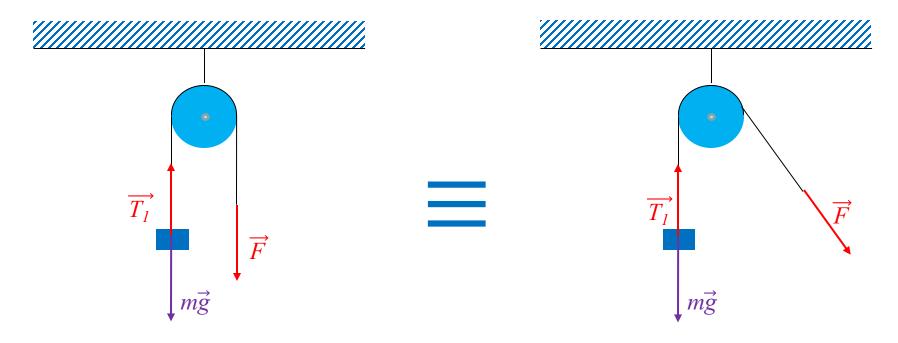


<u>Caractéristique</u>: une poulie sans masse avec une corde inextensible (elle-même sans masse) transmet les forces parfaitement, seules les directions changent.

<u>Remarque</u>: on considèrera dans ce qui suit une poulie sans masse. Le cas réel, poulie avec masse, sera traité dans le chapitre "Applications du solide indéformable".



■ Poulie simple fixe (sans masse)



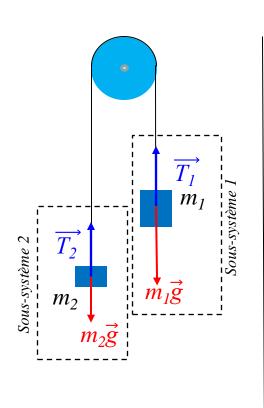
 2^{nd} loi de Newton appliquée à la masse m:

$$si \ \vec{v} = \overrightarrow{cte} \ alors \ \sum \overrightarrow{F_{ext}} = \vec{0} \ \Rightarrow \ |\overrightarrow{T_I}| = mg = |\overrightarrow{F}|$$

$$si \ \vec{v} \neq \overrightarrow{cte} \ alors \ \sum \overrightarrow{F_{ext}} \neq \overrightarrow{0} \ \Rightarrow \ |\overrightarrow{T_I}| \neq mg \ et \ |\overrightarrow{T_I}| = |\overrightarrow{F}|$$

Systèmes à plusieurs masses avec poulie fixe (sans masse)

On considère deux sous-systèmes m_1 et m_2 reliés par un fil sans masse et inextensible



Z

Calcul de l'accélération

Sous-système 1 :

$$m_1 \overrightarrow{a_1} = m_1 \overrightarrow{g} + \overrightarrow{T_1} \stackrel{Oz}{\Longrightarrow} m_1 a_1 = m_1 g - T_1$$

Sous-système 2 :

$$m_2 \overrightarrow{a_2} = m_2 \overrightarrow{g} + \overrightarrow{T_2} \stackrel{Oz}{\Longrightarrow} -m_2 a_2 = m_2 g - T_2$$

$$car mouvement de la masse m_2$$

$$opposé à la masse m_1$$

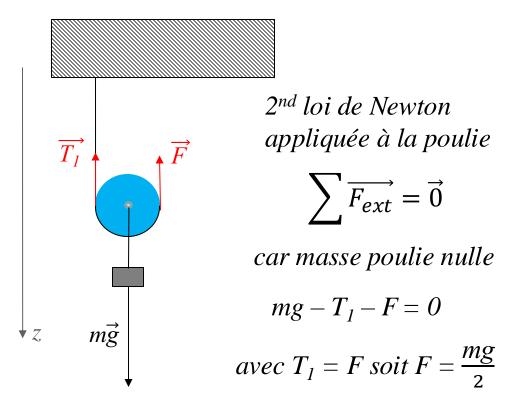
Fil inextensible $\Rightarrow a_1 = a_2 = a$ et $T_1 = T_2$

$$m_1 a = m_1 g - (m_2 g + m_2 a)$$

Finalement, l'accélération est $a = \frac{(m_1 - m_2)}{(m_1 + m_2)} g$

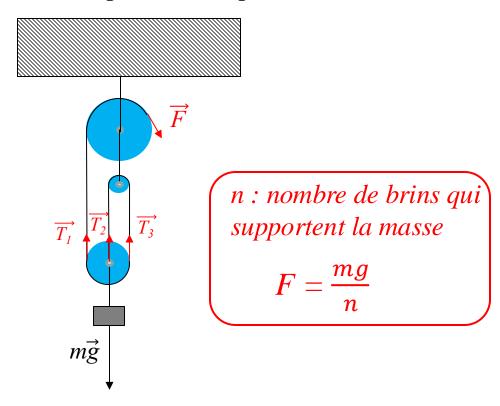
Systèmes à plusieurs poulies et plusieurs brins

Poulie mobile

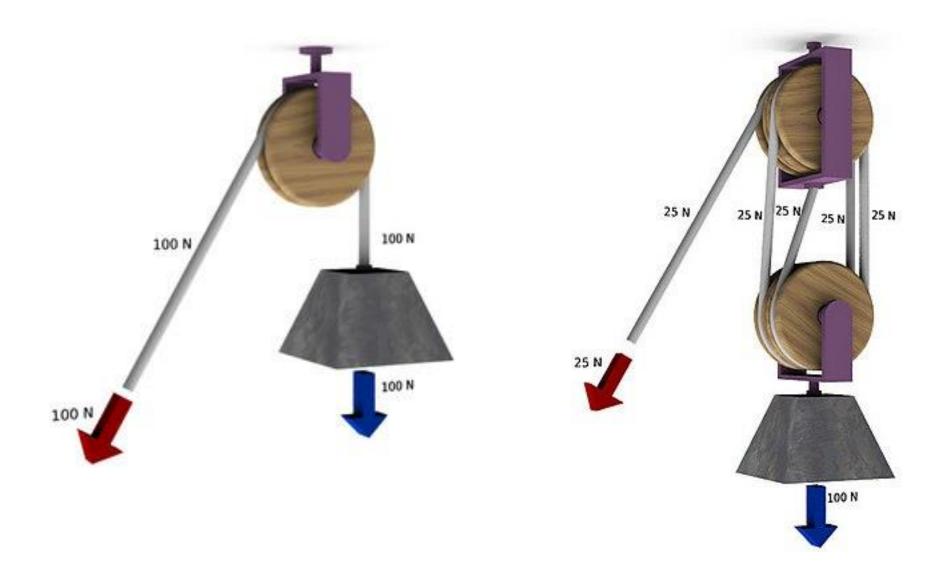


La force qui permet de remonter la masse à vitesse constante est égale à la moitié de mg <u>si la direction de F est verticale</u>

Palan (plusieurs poulies et plusieurs brins)

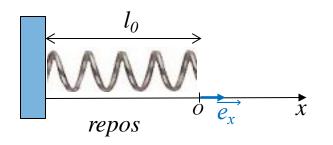


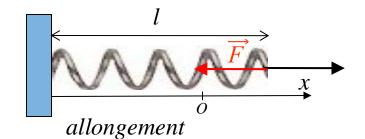
La force qui permet de remonter la masse à vitesse constante est égale au tiers du poids car 3 brins (n=3)

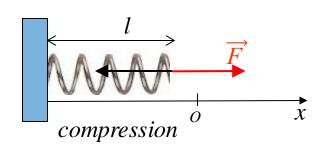


6.9. Ressort

■ Force exercée par un ressort







On considère que la masse du ressort est nulle

Force de rappel du ressort : $\vec{F} = -k\vec{r}$

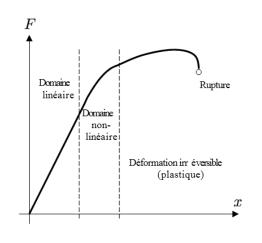
k constante de raideur du ressort

 ${m r}$ est le vecteur « allongement du ressort » : $\vec r=(l-l_0) \overrightarrow{e_x}$

Après projection sur Ox: F = -kx avec $x = l - l_0$

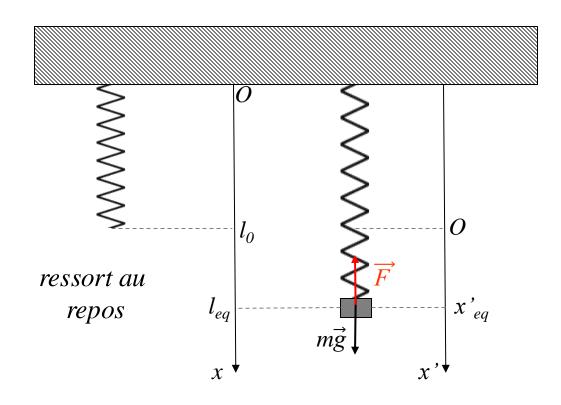
Remarque: le régime de déformation linéaire n'est vrai que sur un domaine d'allongement restreint: la déformation est dite "élastique".

Au delà d'une trop grande élongation, le ressort ne revient pas à sa longueur initiale. La déformation est dite "plastique"



6.9. Ressort

Masse attachée à un ressort



On considère que la masse du ressort est nulle

Position d'équilibre :
$$m\vec{a} = \vec{0} = \vec{F} + m\vec{g}$$

Projection sur Ox (origine au point d'attache):

$$O = -k \left(l_{eq} - l_0 \right) + mg$$

$$\Rightarrow l_{eq} = \frac{mg}{k} + l_0$$

Projection sur Ox' (origine à la position au repos) :

$$0 = -k x'_{eq} + mg$$

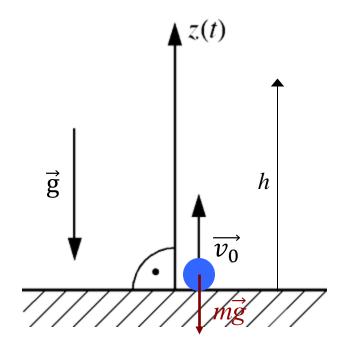
$$\Rightarrow x'_{eq} = \frac{mg}{k}$$

7. Travail; Energie, Principes de conservation

- 7.1. Introduction
- 7.2. Travail d'une force
- 7.3. Puissance

7.1. Introduction

■ Notions de travail d'une force et énergie cinétique



Quelle est la hauteur maximale h d'une bille lancée verticalement à la vitesse v_0 ?

A) Par la 2nd loi de Newton:

$$v(t_{ret}) = 0 = v_0 - gt_{ret} \implies t_{ret} = \frac{v_0}{g}$$

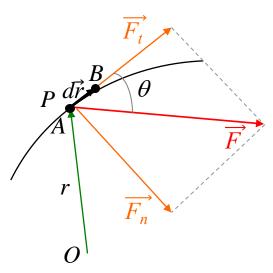
$$h = v_0 t_{ret} - \frac{1}{2} g t_{ret}^2 \implies h = \frac{1}{2} \frac{v_0^2}{g}$$

B) Par la conservation de l'énergie mécanique

Energie cinétique :
$$\frac{1}{2}m v_0^2$$
 $\frac{1}{2}m v_0^2 = mg h \implies h = \frac{1}{2}\frac{v_0^2}{g}$
Travail du poids : $mg h$

7.2. Travail d'une force

Soit une particule se déplaçant une distance $d\vec{r}$ entre A et B ($d\vec{r} = \vec{r_B} - \vec{r_A}$) sous l'effet d'une force \vec{F} . Le travail élémentaire δW de la force pendant un instant dt sur la distance $d\vec{r}$ s'écrit :



 F_t et F_n sont les composantes tangentielle et normale de la force \vec{F}

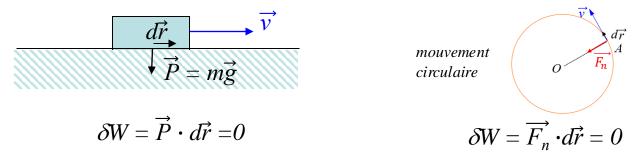
$$\delta W = \overrightarrow{F} \cdot d\overrightarrow{r}$$

Unité : newton \times *mètre* [Nm] = joule [J]

soit $\delta W = F dr \cos \theta = F_t dr$

Définition: Le travail élémentaire de la force \vec{F} correspond au produit de la distance parcourue par la composante de cette force selon le déplacement (= la projection de la force sur la tangente à la trajectoire)

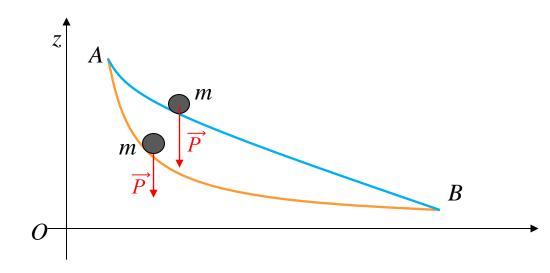
Corollaire : le travail d'une force perpendiculaire au déplacement est nul



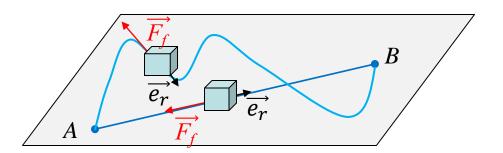
Rem : on utilise le symbole δ pour indiquer que le travail peut dépendre a priori du chemin parcouru

7.2. Travail d'une force

Exemple 1



Exemple 2



Travail du poids :

$$\vec{P} = m\vec{g} = -mg\vec{e}_{z}$$

$$W_{AB} = \int_{A}^{B} m\vec{g} \cdot d\vec{r}$$

$$m\vec{g} \cdot d\vec{r} = -mg\vec{e}_{z} \cdot (dx\vec{e}_{x} + dz\vec{e}_{z}) = -mgdz$$

$$W_{AB} = \int_{A}^{B} -mgdz = -mg(z_{B} - z_{A})$$

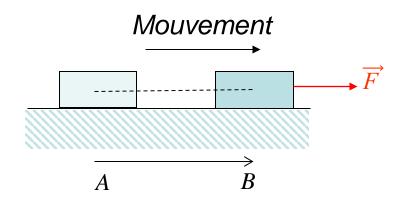
→ Le travail **ne dépend pas** du chemin suivi

La force est dite « conservative »

Travail d'une force de frottement sec :

 $W_{AB} = \int_{A}^{B} \overrightarrow{F_f} \cdot d\overrightarrow{r} = \int_{A}^{B} -\mu_c mg \overrightarrow{e_r} \cdot dr \overrightarrow{e_r} = -\mu_c mg L_{A \to B}$ avec $L_{A\rightarrow B}$ longueur totale parcourue → Le travail **dépend** du chemin suivi

7.3. Puissance



La puissance instantanée est une grandeur qui fournit une information sur la dynamique du mouvement.

C'est une indication sur la vitesse à laquelle le travail est dépensé.

$$P_{inst} = \frac{\delta W}{dt}$$
 Unité: Joule/seco

Joule/seconde [J/s] = Watt [W]

ou encore

$$P_{inst} = \overrightarrow{F} \cdot \frac{d\overrightarrow{r}}{dt} = \overrightarrow{F} \cdot \overrightarrow{v}$$

La puissance moyenne pendant un intervalle Δt est

$$P_{moy} = W/\Delta t$$

7.3. Puissance

Quelques valeurs

Exemples	Puissance (W)	
Locomotive diesel	900 000	
Limite humaine	400	
Cycliste - étape de montagne	300	
1 Cheval Vapeur (CV)	736	

5 MW : la puissance électrique du nouveau centre de calcul de l'EPFL

 $M: m\acute{e}ga = 10^6$

12,6 GW : la puissance électrique générée par un barrage au Brésil

G: $giga = 10^9$

50 à 200 TW : énergie calorifique d'un cyclone

 $T: t\'era = 10^{12}$

174 PW : la puissance totale venant du soleil et reçue par la Terre

 $P: p\acute{e}ta = 10^{15}$

386 YW: la puissance lumineuse du soleil

Y: $yotta = 10^{24}$