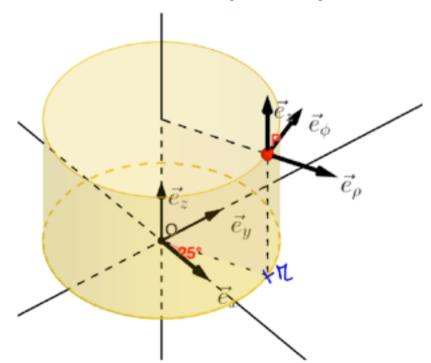
Semaine 1

1. Introduction

1.3. Cinématique

(d)Coordonnées cylindriques

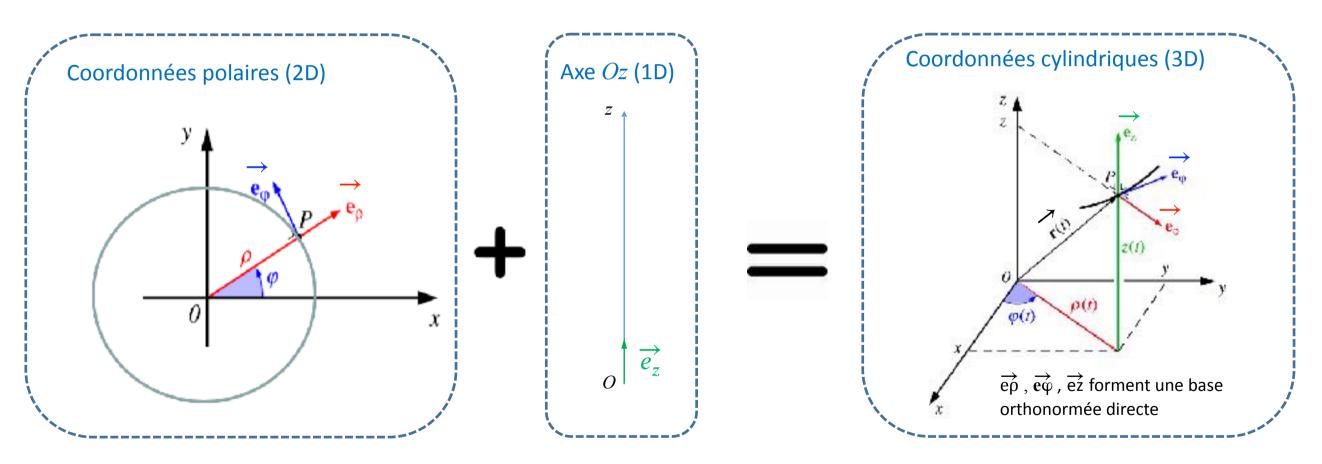
- (e)Repère de Frenet mouvement curviligne
- (f) Coordonnées sphériques



1.3.d. Coordonnées cylindiques

https://www.geogebra.org/m/yzz9psgb

Le système de coordonnées cylindriques ajoute aux coordonnées polaires la troisième dimension avec le vecteur unitaire $\overrightarrow{e_z}$

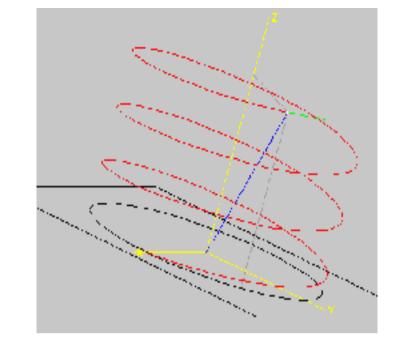


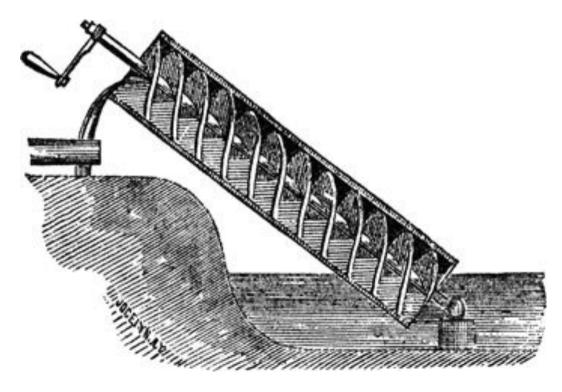
Le repère cylindrique est défini par les vecteurs unitaires $\overrightarrow{e\rho}$, $\overrightarrow{e\phi}$, \overrightarrow{ez} (c'est un repère orthonormé)

1.3.d. Coordonnées cylindriques

Application : un mouvement hélicoïdal est parfaitement décrit dans un système de coordonnées cylindriques

Exemple de mouvement hélicoïdal: la vis d'Archimède

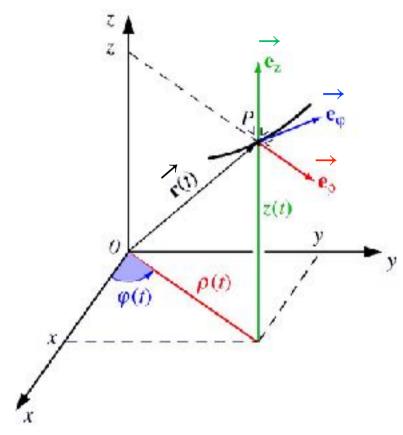




http://en.wikipedia.org/wiki/Archimedes'_screw

1.3.d. Coordonnées cylindriques

Composantes des vecteurs \overrightarrow{ep} , \overrightarrow{eq} , \overrightarrow{ez} dans le repère (O; \overrightarrow{ex} , \overrightarrow{ey} , \overrightarrow{ez})



Les coordonnées du point P sont ρ , φ , z

Equation du mouvement: $r(t) = \rho(t) \overrightarrow{e\rho} + z(t) \overrightarrow{ez}$

 $\overrightarrow{\mathbf{e}_{\rho}}$ vecteur unité dans la direction ρ (déplacement de P si φ et z sont constants);

$$\overrightarrow{\mathbf{e}_{\rho}} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix}$$

 $\overrightarrow{\mathbf{e}_{\varphi}}$ vecteur unité dans la direction φ : $\overrightarrow{\mathbf{e}_{\varphi}}$ est tangent au cercle horizontal
passant par P et de rayon ρ ;

$$\overrightarrow{\mathbf{e}_{\varphi}} = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}$$

 $\overrightarrow{e_z}$ vecteur unité dans la direction z $(\rho \text{ et } \varphi \text{ constants});$

$$\overrightarrow{\mathbf{e}_z} - \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Coordonnées cartésiennes des vecteurs unitaires \overrightarrow{ep} , \overrightarrow{eq} , \overrightarrow{ez}

1.3.d. Coordonnées cylindriques

Position, vitesse, accélération en coordonnées cylindriques

exprimées dans le repère $(O; \overrightarrow{e\rho}, \overrightarrow{e\phi}, \overrightarrow{ez})$ en fonction de ρ, φ , et z

$$\overrightarrow{r}(t) = \rho \overrightarrow{e\rho} + z \overrightarrow{ez} \qquad \Longrightarrow \overrightarrow{v}(t) = \frac{d\overrightarrow{r}(t)}{dt} = \left[\rho \overrightarrow{e_{\rho}} + \rho \overrightarrow{e_{\rho}}\right] + \left[\dot{z}\overrightarrow{e_{z}} + z\overrightarrow{e_{z}}\right] \qquad \begin{cases} \dot{\overrightarrow{e_{\rho}}} = \dot{\varphi}\overrightarrow{e_{\varphi}} \\ \dot{\overrightarrow{e_{\varphi}}} = -\dot{\varphi}\overrightarrow{e_{\rho}} \\ \dot{\overrightarrow{e_{z}}} = 0 \end{cases}$$

$$\overrightarrow{v} = v_{\rho} \overrightarrow{e_{\rho}} + v_{\varphi} \overrightarrow{e_{\varphi}} + v_{z} \overrightarrow{e_{z}} \begin{cases} v_{\rho} = \dot{\rho} \\ v_{\varphi} = \rho \dot{\varphi} \\ v_{z} = \dot{z} \end{cases}$$

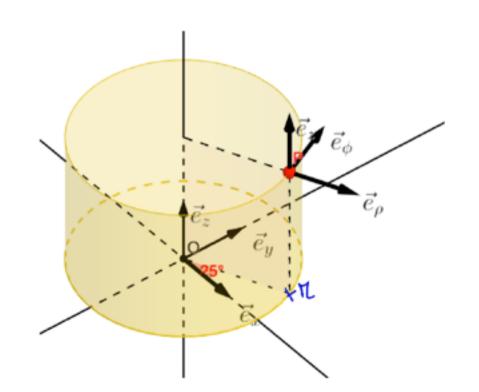
$$\overrightarrow{a} = a_{\rho}\overrightarrow{e_{\rho}} + a_{\varphi}\overrightarrow{e_{\varphi}} + a_{z}\overrightarrow{e_{z}} \begin{cases} a_{\rho} = \ddot{\rho} - \rho\dot{\varphi}^{2} \\ a_{\varphi} = 2\dot{\rho}\dot{\varphi} + \rho\ddot{\varphi} \\ a_{z} = \ddot{z} \end{cases}$$

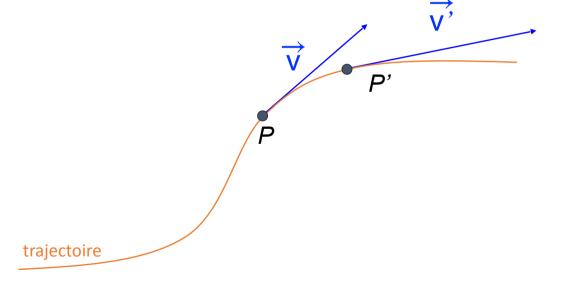
ATTENTION: ep et → eφ dépendent du temps avec les relations suivantes:

$$\begin{cases} \dot{\overrightarrow{e}_{\rho}} = \dot{\varphi} \overrightarrow{e_{\varphi}} \\ \dot{\overrightarrow{e}_{\varphi}} = -\dot{\varphi} \overrightarrow{e_{\rho}} \\ \dot{\overrightarrow{e}_{z}} = 0 \end{cases}$$

Semaine 1

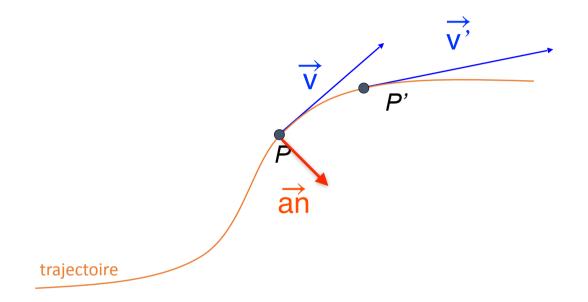
- 1. Introduction
 - 1.3. Cinématique
 - (d)Coordonnées cylindriques
 - (e)Repère de Frenet mouvement curviligne
 - (f) Coordonnées sphériques

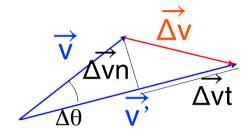




1.3.e. Repère de Frenet – Mouvement curviligne

Accélérations tangentielle et normale





$$\overrightarrow{\Delta v} = \overrightarrow{\Delta v}_n + \overrightarrow{\Delta v}_t$$

$$sin\Delta\theta = \Delta v_n/v$$

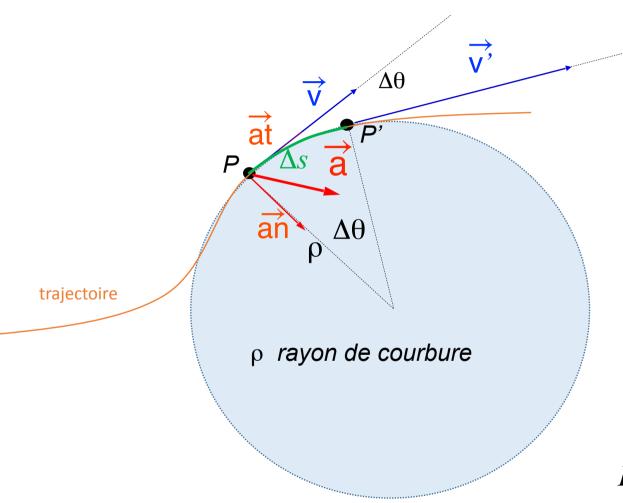
$$quand t \rightarrow 0 \ alors \Delta\theta \approx \Delta v_n/v$$

On définit l'accélération normale:

$$a_n = \frac{\lim}{\Delta t \to 0} \frac{\Delta v_n}{\Delta t} = \frac{\lim}{\Delta t \to 0} v \frac{\Delta \theta}{\Delta t}$$

1.3.e. Repère de Frenet – Mouvement curviligne

Accélérations tangentielle et normale



$$\Delta s = v\Delta t = \rho\Delta\theta \ d'où \Delta\theta/\Delta t = v/\rho$$

$$a_n = \frac{\lim}{\Delta t \to 0} \frac{\Delta v_n}{\Delta t} = \frac{\lim}{\Delta t \to 0} v \frac{\Delta \theta}{\Delta t} = \frac{v^2}{\rho}$$

$$a_n = v^2/\rho$$

$$a_t = dv/dt$$

$$\overrightarrow{a} = \overrightarrow{at} + \overrightarrow{an} = \frac{dv}{dt} \overrightarrow{ut} + \frac{v^2}{\rho} \overrightarrow{un}$$

Expression du vecteur accélération dans la base de Frenet ut et un sont les vecteurs unitaires de la base de Frenet

Semaine 1

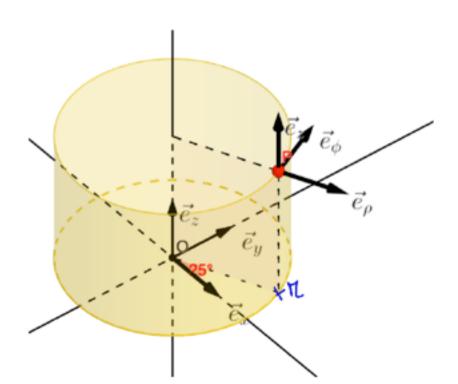
1. Introduction

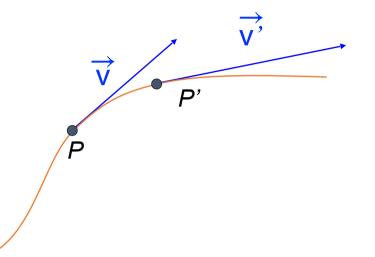
1.3. Cinématique

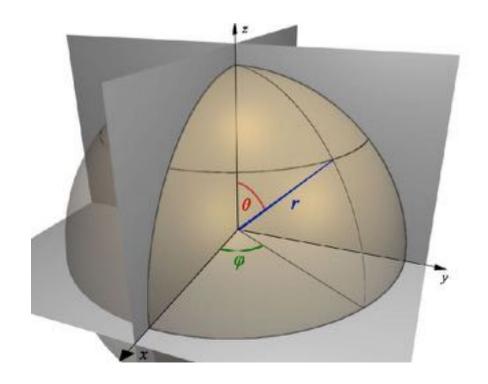
(d)Coordonnées cylindriques

(e)Repère de Frenet – mouvement curviligne

(f) Coordonnées sphériques

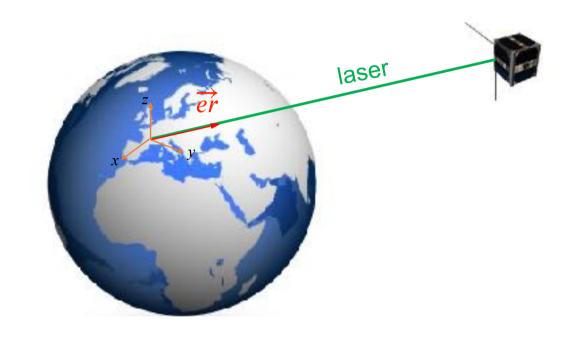






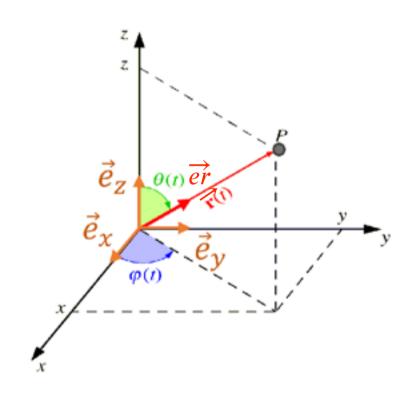
trajectoire

Les coordonnées sphériques sont particulièrement adaptées pour des mouvements de type orbital (*exemple* : satellite autour de la Terre)



Télémétrie laser sur satellites :

- 1) On mesure la distance avec un laser à partir du temps mis par la lumière pour faire un aller-retour
- 2) On repère la direction du laser (vecteur \overrightarrow{er}) avec 2 angles θ et ϕ définis dans un repère (O; \overrightarrow{ex} , \overrightarrow{ey} , \overrightarrow{ez})

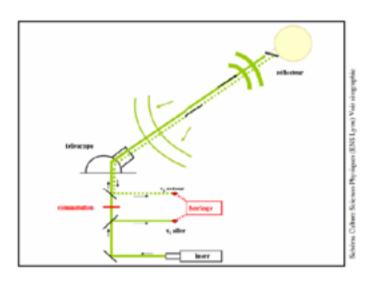


La position du satellite est définie dans le repère $(O; \overrightarrow{er}, \overrightarrow{e\theta}, \overrightarrow{e\phi})$ et ses coordonnées sont r, θ et ϕ

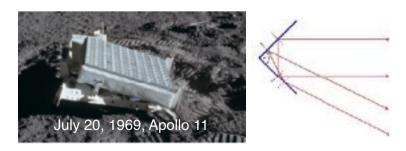
Information scientifique: tir laser - Lune

L'expérience « laser-lune » de l'<u>Observatoire de La Côte d'Azur</u>

Station de tir laser

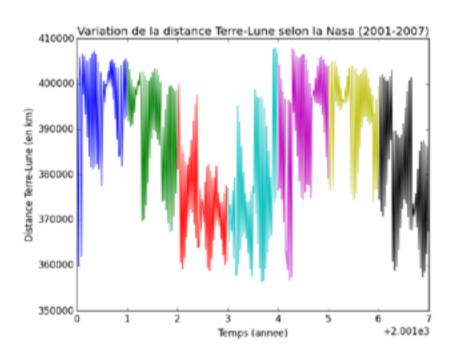


la distance est déterminée au centimètre près



Réflecteur "coin du cube" sur la Lune

La distance moyenne entre la Terre et la Lune est de 384 400 km



https://lejournal.cnrs.fr/videos/unlaser-de-la-terre-a-la-lune

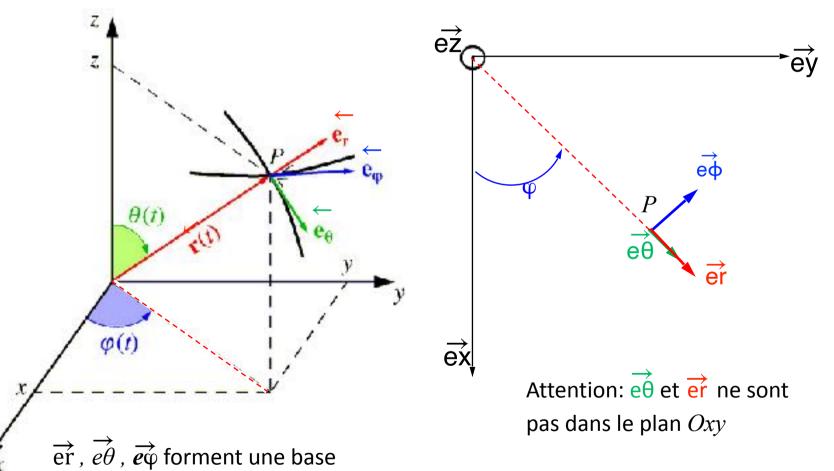
http://culturesciencesphysique.ens-lyon.fr/ressource/laser-distance-terre-lune.xml

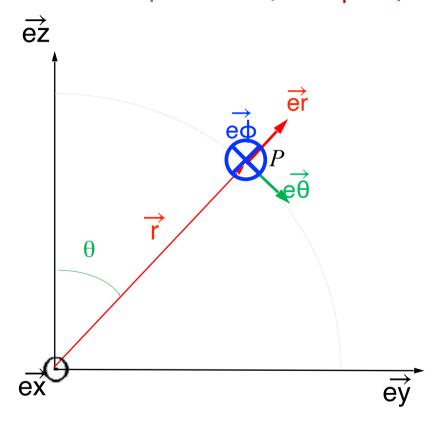
orthonormée directe

Définition des angles θ et ϕ , et des vecteurs unitaires $\overrightarrow{er} \ \overrightarrow{e\theta} \ \overrightarrow{e\phi}$

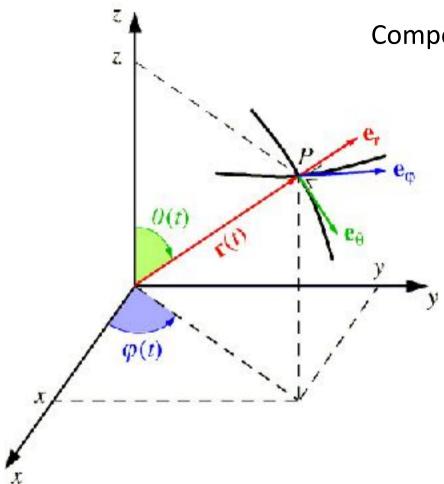
situation pour $\theta = \pi/4$ et $\phi = \pi/4$ situation pour $\theta = \pi/4$ et $\phi = \pi/4$

situation pour $\theta = \pi/4$ et $\phi = \pi/2$





http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Meca/Cinematique/coord_spheriques.php



Les coordonnées de P sont r, θ , ϕ

Equation du mouvement: $\overrightarrow{r}(t) = r(t) \overrightarrow{er}$

Composantes des vecteurs \overrightarrow{er} , $\overrightarrow{e\theta}$, $\overrightarrow{e\phi}$ dans le repère $(O; \overrightarrow{ex}, \overrightarrow{ey}, \overrightarrow{ez})$

e_r vecteur unité dans la direction r (déplacement de P si φ et θ sont constants);

$$\overrightarrow{\mathbf{e}_r} = \begin{pmatrix} \sin\theta\cos\varphi \\ \sin\theta\sin\varphi \\ \cos\theta \end{pmatrix}$$

 $\overrightarrow{\mathbf{e}_{\varphi}}$ vecteur unité dans la direction φ $(\mathbf{e}_{\varphi} \text{ est tangent au cercle horizon-}$ $\text{tal de rayon } r \sin \theta)$. Dépl. de P si r et θ sont const ;

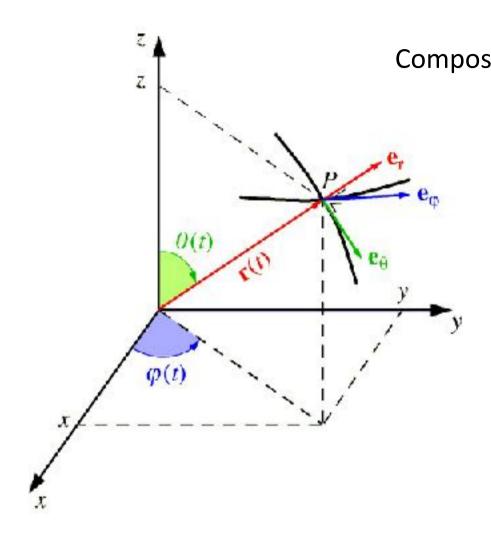
$$\overrightarrow{\mathbf{e}_{\varphi}} - \begin{pmatrix} -\sin\varphi \\ \cos\varphi \\ 0 \end{pmatrix}$$

e_{θ} vecteur unité dans la direction θ (e_{θ} est tangent au cercle vertical de rayon r). Dépl. de P si φ et r sont const;

$$\overrightarrow{e}_{\theta} = \begin{pmatrix} \cos \theta \cos \varphi \\ \cos \theta \sin \varphi \\ -\sin \theta \end{pmatrix}$$

Coordonnées cartésiennes des vecteurs

unitaires
$$\overrightarrow{er}$$
, $\overrightarrow{e\theta}$, $\overrightarrow{e\phi}$



Calcul des dérivées des vecteurs unitaires \overrightarrow{er} , $\overrightarrow{e\theta}$, $\overrightarrow{e\phi}$?

(Pour ensuite calculer la vitesse/accélération du point P)

Composantes des vecteurs \overrightarrow{er} , $\overrightarrow{e\theta}$, $\overrightarrow{e\phi}$ dans le repère $(O; \overrightarrow{ex}, \overrightarrow{ey}, \overrightarrow{ez})$

e_r vecteur unité dans la direction
$$r$$

(déplacement de P si φ et θ sont constants);

$$\Rightarrow \begin{cases} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \end{cases}$$

vecteur unité dans la direction φ $(e_{\varphi} \text{ est tangent au cercle horizon-}$ tal de rayon $r \sin \theta$). Dépl. de P si r et θ sont const ;

$$\overrightarrow{\mathbf{e}_{\varphi}} - \begin{pmatrix} -\sin\varphi \\ \cos\varphi \\ 0 \end{pmatrix}$$

e_{\theta} vecteur unité dans la direction θ (e_{\theta} est tangent au cercle vertical de rayon r). Dépl. de P si φ et r sont const;

$$\overrightarrow{e}_{\theta} = \begin{pmatrix} \cos \theta \cos \varphi \\ \cos \theta \sin \varphi \\ -\sin \theta \end{pmatrix}$$

Coordonnées cartésiennes des vecteurs

unitaires
$$\overrightarrow{er}$$
, $\overrightarrow{e\theta}$, $\overrightarrow{e\phi}$

Position, vitesse et accélération en coordonnées sphériques

dans le repère $(O; \overrightarrow{er} \overrightarrow{e\theta} \overrightarrow{e\phi})$ en fonction de r, θ , et ϕ

$$\overrightarrow{\mathbf{r}}(t) = r(t) \ \overrightarrow{\mathbf{er}}$$

$$\vec{\mathbf{v}} = v_r \mathbf{e}_r + v_\varphi \mathbf{e}_\varphi + v_\theta \mathbf{e}_\theta \begin{cases} v_r = \dot{r} \\ v_\varphi = r\dot{\varphi}\sin\theta \\ v_\theta = r\dot{\theta} \end{cases}$$

$$\vec{e}_{r} = \dot{\theta} \vec{e}_{\theta} + \dot{\varphi} \sin \theta \vec{e}_{\varphi}$$

$$\vec{e}_{\theta} = -\dot{\theta} \vec{e}_{r} + \dot{\varphi} \cos \theta \vec{e}_{\varphi}$$

$$\vec{e}_{\varphi} = -\dot{\varphi} \sin \theta \vec{e}_{r} - \dot{\varphi} \cos \theta \vec{e}_{\theta}$$

$$\vec{\mathbf{a}} = a_r \mathbf{e}_r + a_{\varphi} \mathbf{e}_{\varphi} + a_{\theta} \mathbf{e}_{\theta} \begin{cases} a_r = \ddot{r} - r\dot{\theta}^2 - r\dot{\varphi}^2 \sin^2 \theta \\ a_{\varphi} = r\ddot{\varphi} \sin \theta + 2r\dot{\varphi}\dot{\theta} \cos \theta + 2\dot{r}\dot{\varphi} \sin \theta \\ a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\varphi}^2 \cos \theta \sin \theta \end{cases}$$

Séance de karting

Lou fait du karting pour la première fois.

Son kart a une vitesse maximale *v*_{max} de 10 m/s.

Elle roule en ligne droite. Prudente, elle appuie progressivement sur l'accélérateur, si bien que son accélération augmente linéairement avec le temps.

 $a = \gamma t$ avec γ constante.

De l'arrêt, Il faut 30 m au kart de Lou pour atteindre v_{max} , ensuite il roule à vitesse constante.

- 1- Quelle est la durée de la phase d'accélération ?
- 2– Que vaut γ ?
- 3– Quelle est la valeur maximale de l'accélération ?