Week 3 - Lois de Newton

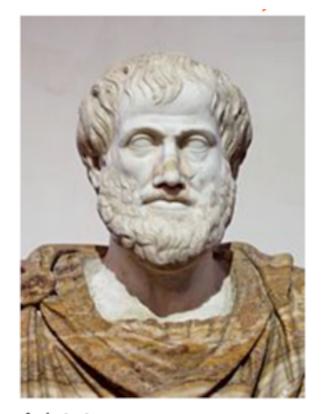
3. Lois de Newton

- 3.1. Quantité de mouvement : 1ère loi de Newton
- 3.2. Conservation de la quantité de mouvement : 2nd loi de Newton
- 3.3. Action-réaction : 3ème loi de Newton
- 3.4. 2nd loi de Newton dans un référentiel non-galiléen
- 3.5. \mathcal{R} ' en translation non-uniforme

$$\frac{d\overrightarrow{p}}{dt} = \overrightarrow{F}_{ext}$$

3. Lois de Newton

Avant Newton: Physique d'Aristote



Aristote: 384 av.JC – 322 Av. JC

Quelle est l'origine du Mouvement?

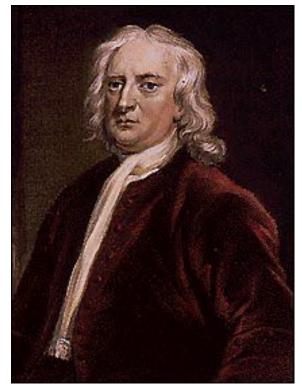
On applique une force => un objet bouge

Force constante => vitesse constante!

Un objet "lourd" tombe pour rejoindre son état au repos

3. Lois de Newton

Cause(s) du mouvements ⇒



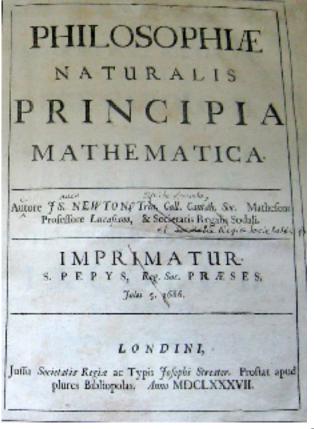
Newton (1642 - 1727)

dynamique

Relation entre forces (interactions) et masse

"Philosophiae naturalis principia mathematica", paru en 1687, contient:

- l'énoncé de la loi de la gravitation universelle
- et celui des trois fameuses lois de Newton.



Particule libre

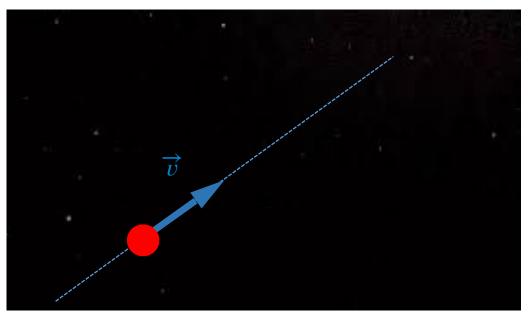
⇒ Aucune interaction

1ère loi de Newton

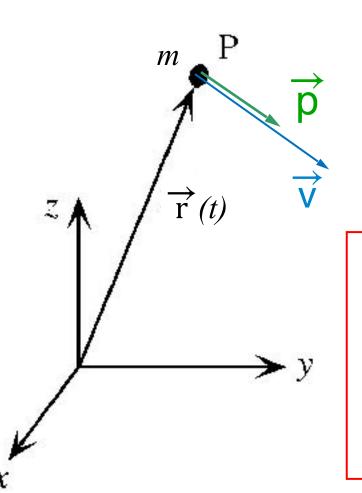
Dans un référentiel galiléen, une particule libre possède toujours un vecteur vitesse constant (accélération nulle)

Deux cas possibles:

- mouvement rectiligne uniforme
- immobile



Un objet de masse m qui se déplace est caractérisé par sa <u>quantité de mouvement</u> :



$$\overrightarrow{p} = m \overrightarrow{v}$$

c'est une grandeur vectorielle, extensive

$$\overrightarrow{p} = \overrightarrow{p1} + \overrightarrow{p2}$$

■ 1ère loi de Newton (ou loi d'inertie):

Un corps conserve un mouvement rectiligne et uniforme si aucune force extérieure n'agit sur lui ou si la résultante des forces est nulle

$$m \overrightarrow{v} = \overrightarrow{p} = constante \quad si \quad \Sigma \overrightarrow{\text{Fext}} = \overrightarrow{0}$$

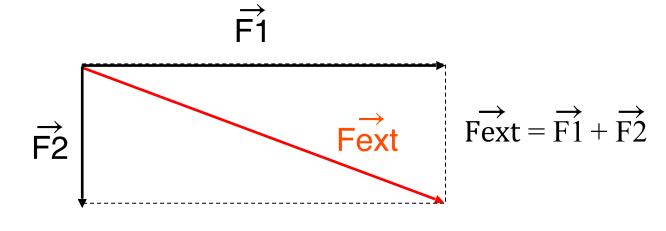
Attention: ceci n'est vrai que dans un référentiel galiléen (appelé aussi référentiel inertiel)

Notion de force

- Une force correspond à une interaction s'exerçant sur un objet.
- Exemple: l'attraction terrestre (force de gravitation) ou la répulsion électrostatique (force électromagnétique).
- Une force s'exprime sous la forme d'un vecteur: direction, sens, intensité.
- Lorsque plusieurs forces agissent sur un objet, celles-ci s'additionnent pour donner une seule force appelée résultante des forces externes (extérieures): Fext
- L'unité de force est le Newton [N]

$$1 N = 1 kg \cdot m \cdot s^{-2}$$

Résultante des forces :
$$\overrightarrow{F_{ext}} = \sum_i \overrightarrow{F_i}$$

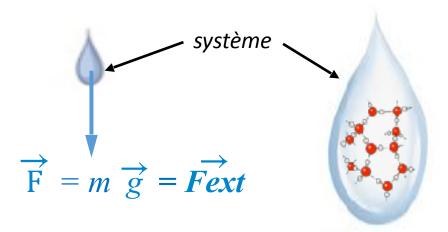


Force externe/Force interne

- Pour définir une force externe, il faut définir ce qu'est un système.
- Système = ensemble d'objets qui sont en interaction à travers des forces dites internes.
- Toute force dont l'origine est extérieure au système est alors une force dite externe.

Exemple : une goutte de pluie

Le système est la "goutte de pluie"



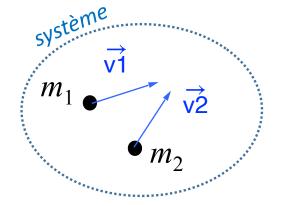
les forces d'interaction entre les molécules d'eau sont des <u>forces internes</u> au système "goutte de pluie"

La force de gravitation est une <u>force externe</u> au système "goutte de pluie"

Quantité de mouvement d'un système de particules

La quantité de mouvement totale d'un système de plusieurs particules est la somme des quantités de mouvement de chaque particule.

$$\overrightarrow{p} = \overrightarrow{p_1} + \overrightarrow{p_2} + \overrightarrow{p_3} + \dots = \sum_i \overrightarrow{p_i}$$



$$\overrightarrow{p_1} = m_1 \overrightarrow{v_1}$$

$$\overrightarrow{p_2} = m_2 \overrightarrow{v_2}$$

$$\overrightarrow{p_{tot}} = m_1 \overrightarrow{v_1} + m_2 \overrightarrow{v_2}$$
Quantité de mouvement

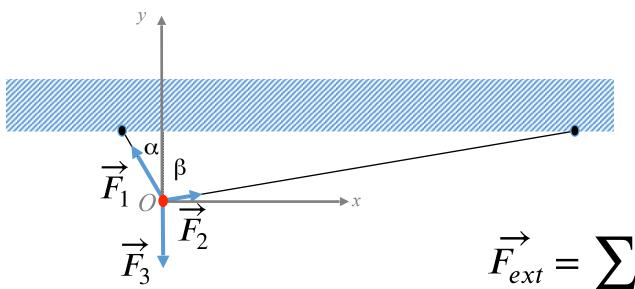
$$\Rightarrow p_{tot}^{\rightarrow}$$

$$\overrightarrow{\mathbf{p_{tot}}} = m_1 \overrightarrow{\mathbf{v}_1} + m_2 \overrightarrow{\mathbf{v}_2}$$

totale du système constitué des deux particules

Exemple de force

Composantes de Fext obtenues par projection :



- Identification du système
- Choix référentiel
- Choix repère orthonormé direct
- Dessin
- Projection des forces
- Liste des conditions initiales
- On résout

$$\overrightarrow{F_{ext}} = \sum_{i=1}^{3} \overrightarrow{F_i} = \overrightarrow{F_1} + \overrightarrow{F_2} + \overrightarrow{F_3}$$

Cas d'un objet suspendu par 2 fils

On projette sur Ox et Oy:

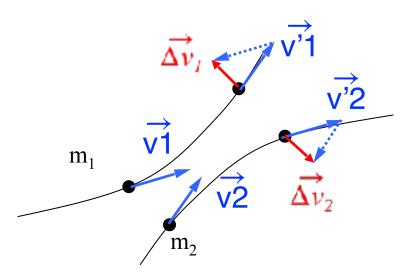
$$Ox: F_{ext,x} = -F_1 sin\alpha + F_2 sin\beta + 0$$

Oy:
$$F_{ext,y} = F_1 \cos \alpha + F_2 \cos \beta - F_3$$

3.2. Conservation de la quantité de mvt : 2nd loi de Newton

Conservation de la quantité de mouvement

Interaction entre deux objets de masse m₁ *et* m₂



Variation de la vitesse (vectorielle) de chacun des objets :

$$\overrightarrow{\Delta v_I} = \overrightarrow{v'_I} - \overrightarrow{v_I} \qquad \overrightarrow{\Delta v_2} = \overrightarrow{v'_2} - \overrightarrow{v_2}$$

On a la relation suivante (conservation de la qté de mouvement):

$$m_1 \overrightarrow{\Delta v}_1 + m_2 \overrightarrow{\Delta v}_2 = \overrightarrow{0}$$

interaction entre deux particules (choc élastique par exemple)

3.2. Conservation de la quantité de mvt : 2nd loi de Newton

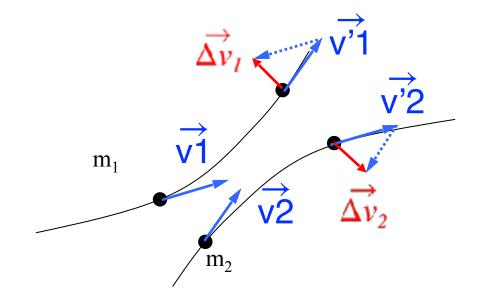
Conservation de la quantité de mouvement

$$\overrightarrow{\Delta p_1} = \overrightarrow{p'_1} - \overrightarrow{p_1} \qquad \overrightarrow{\Delta p_2} = \overrightarrow{p'_2} - \overrightarrow{p_2}$$

$$\overrightarrow{\Delta p_2} = -\overrightarrow{\Delta p_1}$$

$$\overrightarrow{p_1} + \overrightarrow{p_2} = \overrightarrow{p'_1} + \overrightarrow{p'_2}$$

quantité de MVT à t = quantité de MVT à t '



La quantité de mouvement totale d'un système de plusieurs particules soumises à leurs seules interactions mutuelles (forces internes) est constante

$$\overrightarrow{p} = \overrightarrow{p1} + \overrightarrow{p2} + \overrightarrow{p3} + \dots = \sum \overrightarrow{pi} = \overrightarrow{cte}$$

⇒ conservation de la quantité de mouvement

3.2. Conservation de la quantité de mvt : 2nd loi de Newton

2ème loi de Newton

La dérivée par rapport au temps de la quantité de mouvement d'un point matériel est égale à la résultante des **forces extérieures** qui agissent sur ce point:

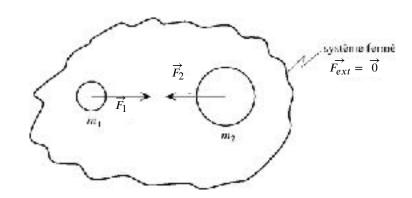
$$\frac{d\overrightarrow{p}}{dt} = \overrightarrow{p} = \sum_{i} \overrightarrow{F_{ext,i}} = \overrightarrow{F_{ext}}$$
 (fin XVIIème)

$$\frac{d\overrightarrow{p}}{dt} = \frac{d}{dt}(m\overrightarrow{v}) = m\frac{d\overrightarrow{v}}{dt} \Rightarrow \qquad m\overrightarrow{a} = \overrightarrow{F}_{ext}$$

Uniquement si *m* est constante

3.3. Action-réaction : 3ème loi de Newton

3ème loi de Newton



L'action est toujours **égale** et **opposée** à la réaction π

Les actions de deux corps l'un sur l'autre sont toujours égales et de directions opposées

Démonstration de la 3^{ème} loi de Newton :

Soient 2 objets dans un système fermé et isolé tel que les forces extérieures sont nulles

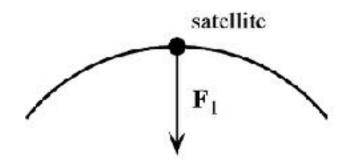
$$\Sigma \overrightarrow{Fext} = \overrightarrow{0}$$
 \Rightarrow $\frac{d\overrightarrow{p}}{dt} = \overrightarrow{0}$ (2ème loi de Newton) d'où **p** est constante

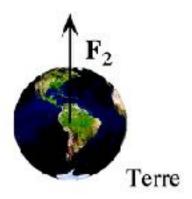
$$\overrightarrow{p} = \overrightarrow{p1} + \overrightarrow{p2} = \overrightarrow{cte} \text{ et } \frac{d\overrightarrow{p}}{dt} = \overrightarrow{0} \implies \frac{d\overrightarrow{p_1}}{dt} + \frac{d\overrightarrow{p_2}}{dt} = 0 \implies \frac{d\overrightarrow{p_1}}{dt} = -\frac{d\overrightarrow{p_2}}{dt} \qquad \text{soit } \overrightarrow{F1} = -\overrightarrow{F2}$$

13

3.3. Action-réaction : 3ème loi de Newton

3ème loi de Newton : Exemple 1





forces de gravitation entre Terre et satellite

3.3. Action-réaction: 3ème loi de Newton

3ème loi de Newton : Exemple 2

forces de « contact »

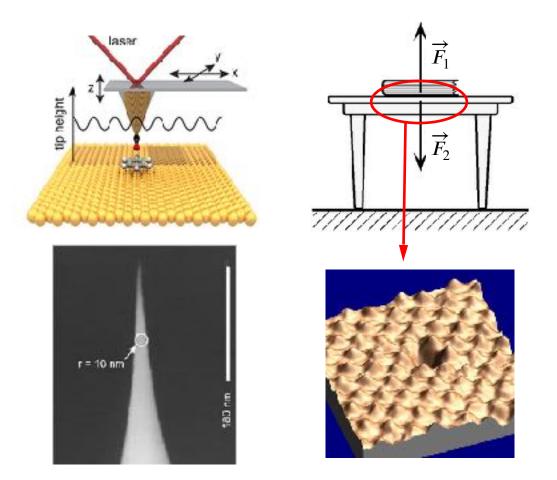
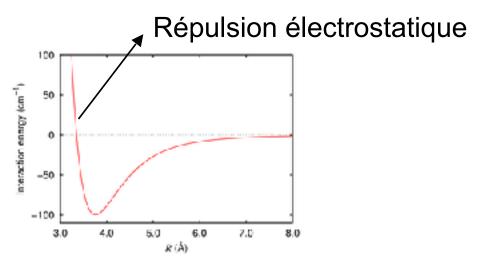
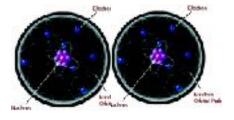


Image d'atomes en microscopie à force atomique (AFM)



Energie d'interaction entre 2 atomes



Les atomes se repoussent (répulsion électrostatique des nuages électroniques)

Résumé des lois de Newton (dans référentiel galiléen)

■ 1ère loi de Newton (ou loi d'inertie):

Un corps conserve un mouvement rectiligne uniforme si aucune force extérieure n'agit sur lui ou si la résultante des forces extérieures est nulle :

$$m \overrightarrow{v} = \overrightarrow{p} = constante \ si \ \Sigma \overrightarrow{Fext} = \overrightarrow{0}$$

2ème loi de Newton

La dérivée par rapport au temps de la quantité de mouvement d'un point matériel est égale à la résultante des forces **extérieures** qui agissent sur ce point :

$$\frac{d\overrightarrow{p}}{dt} = \dot{\overrightarrow{p}} = \sum_{i} \overrightarrow{F_{ext,i}} = \overrightarrow{F_{ext}}$$

3ème loi de Newton : Principe d'action – réaction

L'action est toujours égale et opposée à la réaction

$$\overrightarrow{F1} = -\overrightarrow{F2}$$

Accélération dans un repère fixe pour un point dans un référentiel en rotation constante

L'accélération d'un point dans \mathcal{R} ' vue de \mathcal{R} s'écrit :

$$\overrightarrow{a} = \overrightarrow{a'} + 2 \overrightarrow{\omega} \times \overrightarrow{v'} + \overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{r'})$$
 (Cf. Week 2)

a est l'accélération dans le repère \mathcal{R} qui est attaché à un référentiel galiléen $\overrightarrow{a'}$, $\overrightarrow{v'}$, $\overrightarrow{r'}$ sont les accélération, vitesse, et position de l'objet dans le repère \mathcal{R}' en rotation

Un observateur sur la Terre est attaché à un référentiel en rotation et par conséquent non-galiléen.

L'étude du mouvement d'un objet se fait alors dans le repère \mathcal{R} '.

En revanche, la 2^{nd} loi de Newton est valide seulement dans le repère \mathcal{R} (Galiléen)

Accélération dans un repère fixe pour un point dans un référentiel en rotation constante

L'accélération dans \mathcal{R} ' s'écrit :

$$\overrightarrow{a'} = \overrightarrow{a} - 2 \overrightarrow{\omega} \wedge \overrightarrow{v'} - \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{r'})$$

$$m \overrightarrow{a}' = m \overrightarrow{a} - m 2 \overrightarrow{\omega} \wedge \overrightarrow{v}' - m \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{r}')$$

or
$$m\overrightarrow{a} = \sum_{i} \overrightarrow{F_{ext,i}}$$
 (2nd loi de Newton dans un référentiel galiléen)

et finalement

$$m \overrightarrow{a'} = \sum_{i} \overrightarrow{F_{ext,i}} - m \ 2 \overrightarrow{\omega} \wedge \overrightarrow{v'} - m \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{r'})$$

On peut donc écrire l'équivalent de la 2^{nd} loi de Newton dans \mathcal{R} ' en rotation à la vitesse angulaire ω :

$$\overrightarrow{ma'} = \sum \overrightarrow{F_{ext}} - \overrightarrow{ma_{Cor}} - \overrightarrow{ma_{in}}$$

$$\overrightarrow{a_{in}} = \overrightarrow{\omega} \times \left(\overrightarrow{\omega} \times \overrightarrow{r'}\right)$$

$$\overrightarrow{a_{Cor}} = 2\overrightarrow{\omega} \times \overrightarrow{v'}$$

accélération d'inertie (entraînement/centrifuge)

accélération de Coriolis

Gaspard-Gustave Coriolis 1792 – 1843

On peut écrire une loi de type $m\overrightarrow{d} = \Sigma \overrightarrow{F}$, avec la prise en compte de deux « forces fictives »

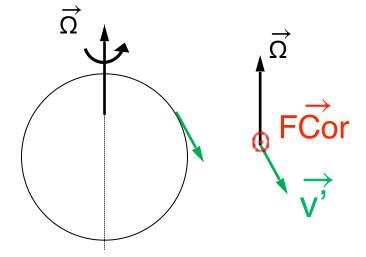
$$\overrightarrow{ma'} = \sum \overrightarrow{F_{ext}} + \overrightarrow{F_{Cor}} + \overrightarrow{F_{in}}$$
Coriolis inertie

$$\begin{cases} \overrightarrow{F_{Cor}} = - \ m \ 2\overrightarrow{\omega} \times \overrightarrow{v'} \\ \overrightarrow{F_{in}} = - \ m \ \overrightarrow{\omega} \times (\overrightarrow{\omega} \times \overrightarrow{r'}) \end{cases}$$

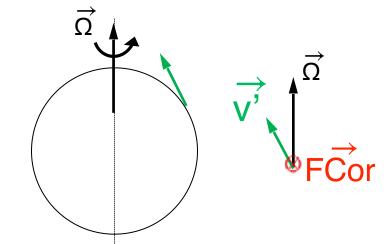
<u>Remarque:</u> la force d'inertie (d'entrainement ou centrifuge) et la force de Coriolis sont improprement appelées «force». Il est en revanche correct de parler d'accélération d'entrainement (d'inertie/centrifuge) et d'accélération de Coriolis, celles-ci découlant du mouvement de rotation du référentiel $\underline{\mathbb{R}}$ ' dans lequel se trouve l'observateur.

■ La Terre est un référentiel en rotation (R') $-\overrightarrow{a_{in}} \neq \overrightarrow{0}$ et $\overrightarrow{\omega_e} \neq \overrightarrow{0}$

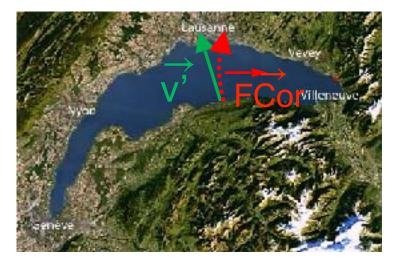
Lancé vers le Sud



Lancé vers le Nord



$$\overrightarrow{F_{Cor}} = -2m\overrightarrow{\Omega} \times \overrightarrow{v'}$$

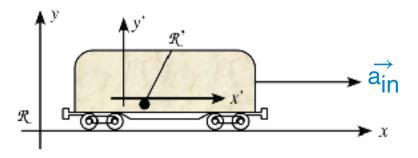


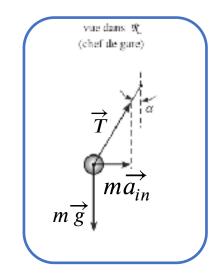
3.5. R' en translation non-uniforme

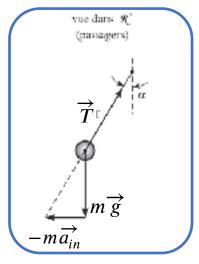
•
$$\overrightarrow{a_{in}} \neq \overrightarrow{\mathbf{0}}$$
 et $\overrightarrow{\omega_e} = \overrightarrow{\mathbf{0}}$

$$\overrightarrow{ma'} = \sum \overrightarrow{F}_{ext} - m\overrightarrow{a}_{in}$$

Exemple : train accéléré sur un rail horizontal







Dans \mathcal{R} :

$$m\overrightarrow{a} = m\overrightarrow{a_{in}} = \overrightarrow{T} + m\overrightarrow{g}$$

Dans
$$\mathcal{R}'$$
 ($\overrightarrow{a'} = \overrightarrow{0}$):

$$\overrightarrow{ma'} = \overrightarrow{0} = \overrightarrow{T} + \overrightarrow{mg} - \overrightarrow{ma_{in}}$$

Week 3 - Balistique

- 4. Balistique effet d'une force constante et uniforme
 - 4.1. Chute libre
 - 4.2. Mouvement balistique

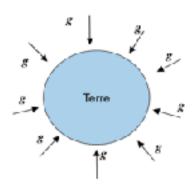
Force gravitationnelle

La Terre exerce sur un objet de masse m une force gravitationnelle, appelée communément

le poids, dont la forme est

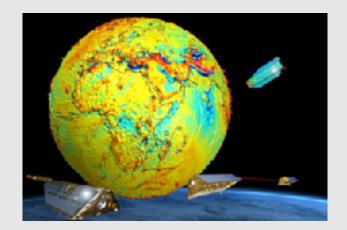
$$\overrightarrow{P} = m\overrightarrow{g}$$

$$\left\| \overrightarrow{g} \right\| = 9,81 \ m \cdot s^{-2}$$



 \overrightarrow{g} est dirigé vers le centre de la Terre

Note: à l'échelle du laboratoire \overrightarrow{g} est perpendiculaire au sol (supposé plat) et de norme constante

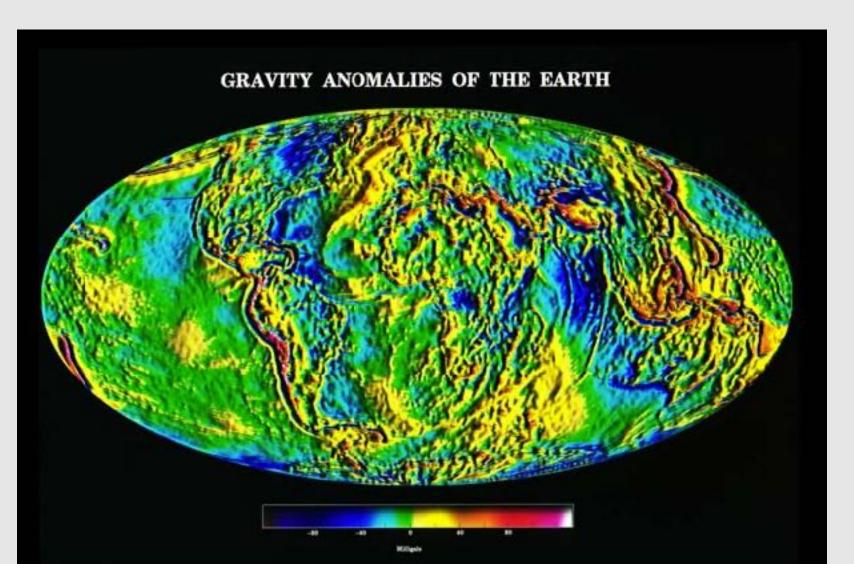


Information scientifique

La mesure de g se fait aujourd'hui grâce à des accéléromètres (ce sont des micro-systèmes) ultra-sensibles placés dans des satellites qui détectent leur changement de trajectoire. Ces micro-systèmes seraient capables de mesurer la force d'impact d'un flocon de neige (0,2g) tombant sur un pétrolier d'un million de tonnes!

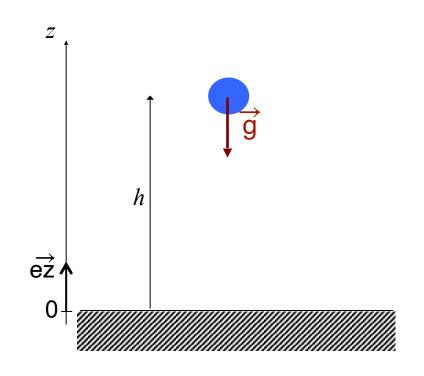
Information scientifique

Variations de **g** à la surface de la Terre



Mouvement rectiligne : chute d'une balle (dans le vide)

Axe Oz vers le haut



Accélération :

2nd loi de Newton : $m\overrightarrow{a} = m\overrightarrow{g}$ et on projette sur Oz

$$a = \frac{d^2z}{dt^2} = \mathbf{g} \cdot \mathbf{e_z} = -g \quad (= constante)$$

Vitesse initiale v(0) = 0Position initiale z(0) = h

Vitesse et position:

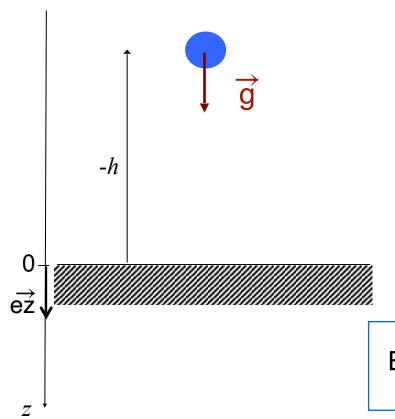
$$v = \int adt = \int -gdt = -gt + cte = -gt$$

$$z(t) = \int vdt = \int -gtdt$$
$$= -\frac{1}{2}gt^2 + cte$$
$$= h - \frac{1}{2}gt^2$$

Equation du mouvement : z(t)

Mouvement rectiligne : chute d'une balle (dans le vide)

Attention : axe Oz vers le bas



Accélération:

2nd loi de Newton: $\overrightarrow{a} = m\overrightarrow{g}$ et on projette sur Oz $a = g.e_z = g$ (= cte)

Vitesse initiale v(0) = 0Position initiale z(0) = -h

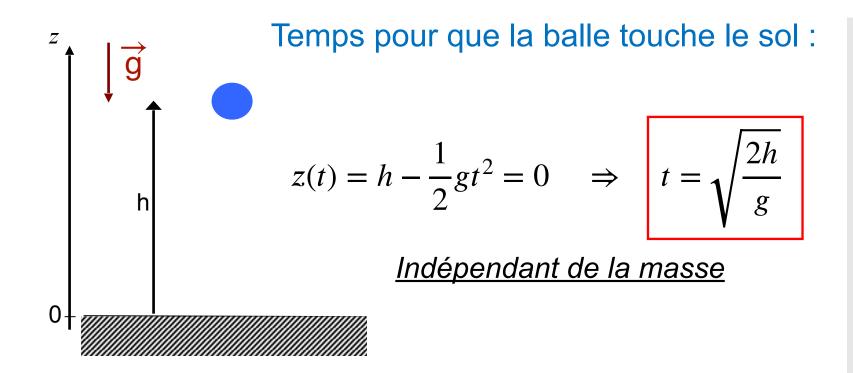
Vitesse: v(t) = gt

Position:

$$z(t) = \int_0^t gt \, dt = \frac{1}{2}gt^2 + cte = \frac{1}{2}gt^2 - h$$

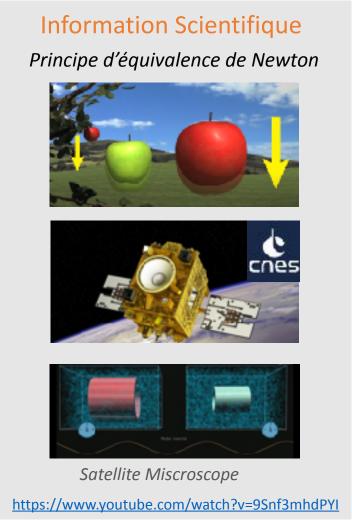
Equation du mouvement : $z(t) = \frac{1}{2}gt^2 - h$

Mouvement rectiligne : chute d'une balle (dans le vide)



De la relation précédente, on peut exprimer g en fonction du temps de chute. C'est un moyen simple de mesurer g

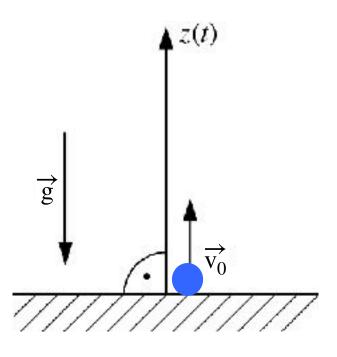
$$g = \frac{2h}{t^2} \mid m.s^{-2}$$



Mouvement rectiligne : hauteur maximum

Balle lancée (dans le vide) verticalement avec une vitesse v_0

2nd loi de Newton : $m\overrightarrow{a} = m\overrightarrow{g}$ et on projette sur Oz : a = -g



Vitesse initiale
$$(t=0)$$
: $v(0) = v_0$
Position initiale $(t=0)$: $z(0) = 0$

projection de $\overrightarrow{v_0}$ sur Oz

$$v(t) = \int -g \, dt = -gt + cte \qquad v(t) = v_0 - gt$$

$$v(t) = v_0 - gt$$

$$z(t) = \int v(t) dt = v_0 t - \frac{1}{2} g t^2 +_{cte}$$
= 0

Equation du mouvement:

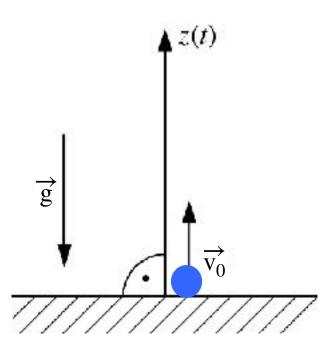
$$z(t) = v_0 t - \frac{1}{2}gt^2$$

Mouvement rectiligne : hauteur maximum

Balle lancée (dans le vide) verticalement avec une vitesse v_0

Equation du mouvement:

$$z(t) = v_0 t - \frac{1}{2}gt^2$$



Hauteur maximum z_{max} ???

la vitesse est nulle à $z_{max} \Rightarrow t_{ret}$ est le temps à z_{max}

$$v(t_{ret}) = 0 = v_0 - gt_{ret} \Rightarrow t_{ret} = v_0/g$$

$$z_{max} = v_0 t_{ret} - 1/2 g t^2_{ret}$$

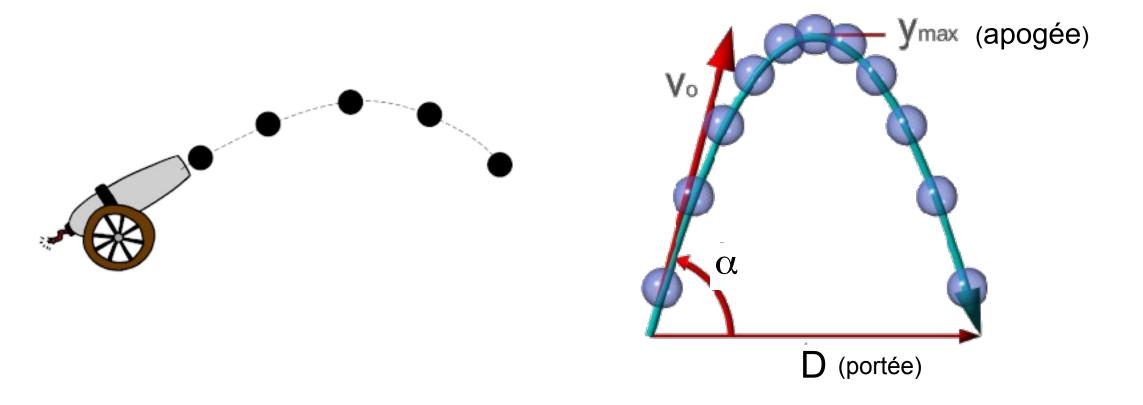
on remplace t_{ret} par v_0/g

$$h = 1/2 v^2_0/g$$

A.N.: v_0 =10 m/s (36 km/h) z_{max} = 5 m (terre) = 31 m (lune)

Indépendant de la masse

Tir balistique : objet lancé avec une vitesse $\overrightarrow{v_0}$ formant un angle α par rapport au sol dans un champ gravitationnel \overrightarrow{g}



Tir balistique

$y \rightarrow \overrightarrow{g}$

Mouvement dans un plan: repère à 2 dimensions

Composantes du vecteur accélération :

 2^{nd} loi de Newton : $m\overrightarrow{a} = m\overrightarrow{g}$ et on projette sur Ox et Oy :

$$a = \begin{pmatrix} 0 \\ -g \end{pmatrix}$$
 composante horizontale : projection sur Ox composante verticale : projection sur Oy

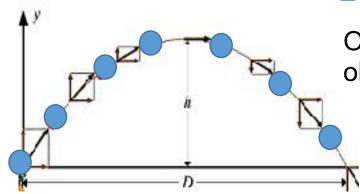
Composantes de la vitesse :

On intègre l'accélération par rapport au temps pour obtenir la vitesse

avec à
$$t=0$$
, $v_x(0) = v_0 \cos\alpha$ et $v_y(0) = v_0 \sin\alpha$

$$\begin{bmatrix} v_x(t) = v_0 \cos\alpha & \text{composante horizontale suivant } Ox \\ v_y(t) = v_0 \sin\alpha - gt & \text{composante verticale suivant } Oy \\ \text{on rappelle que } v_0 = \sqrt{v_x^2 + v_y^2} \\ \end{bmatrix}$$

Tir balistique



Equation horaire du mouvement :

On intègre la vitesse par rapport au temps pour obtenir les composantes du vecteur position

$$\begin{cases} x(t) = v_0 \cos \alpha t \\ y(t) = v_0 \sin \alpha t - \frac{1}{2}gt^2 \end{cases}$$

Equation intrinsèque de la trajectoire :

on cherche y = f(x)

$$x = v_0 \cos \alpha \ t$$

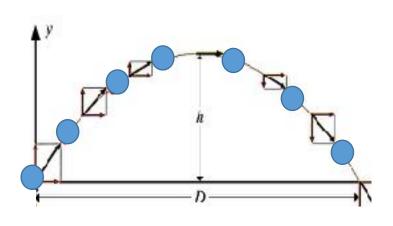
$$d'où \ t = x/(v_0 \cos \alpha)$$
On remplace t

$$y(t) = v_0 \sin \alpha \ t - \frac{1}{2}gt^2$$

$$y(x) = x \tan \alpha - x^2 \frac{g}{2v_0^2} \frac{1}{\cos^2 \alpha}$$

Equation d'une parabole $(y = ax + bx^2)$

Tir balistique



Distance D (portée):

D définie par y = 0 (balle touche le sol) et x = D

$$y(x) = x \tan \alpha - x^2 \frac{g}{2v_0^2} \frac{1}{\cos^2 \alpha}$$

$$y(D) \doteq 0 = D \tan \alpha - D^2 \frac{g}{2v_0^2} \frac{1}{\cos^2 \alpha}$$

$$0 = \sin \alpha - D \frac{g}{2v_0^2} \frac{1}{\cos \alpha}$$

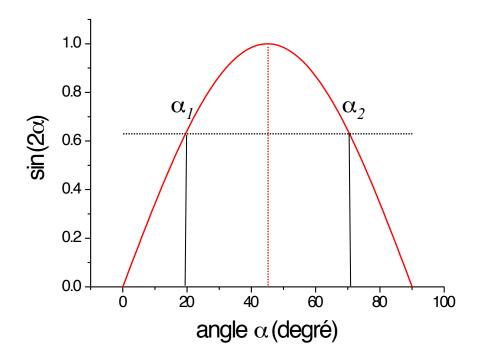
$$D = \frac{2v_0^2 \sin \alpha \cos \alpha}{g} = \frac{v_0^2}{g} \sin(2\alpha)$$

 $sin2\alpha = 2cos\alpha sin\alpha$

Tir balistique

Portée : $D = (v_0^2/g) \sin 2\alpha$

- 1) Le sinus est maximum pour $2\alpha = 90^{\circ}$, soit $\alpha = 45^{\circ}$
- 2) Lorsque α varie entre 0 et 90°, il existe deux angles α_l et α_2 tel que $sin(2\alpha_l) = sin(2\alpha_2)$



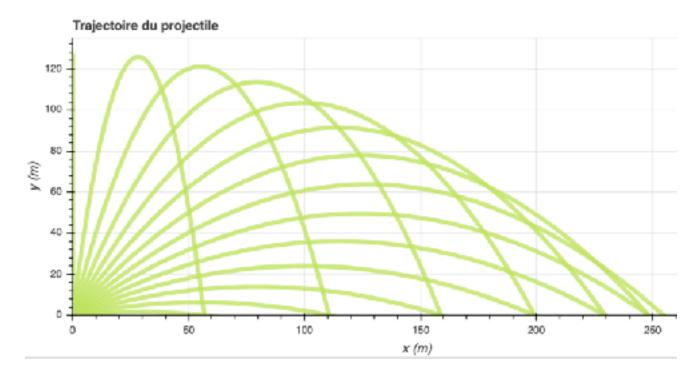
- 1) D maximum pour 45°
- 2) Il existe 2 angles donnant la même distance D

http://galileoandeinstein.physics.virginia.edu/more_stuff/Applets/Projectile/projectile.html

Tir balistique

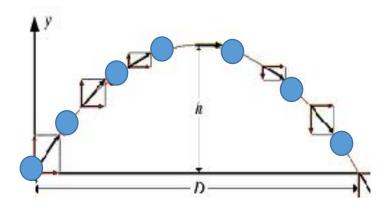
Portée :
$$D = (v_0^2/g) \sin 2\alpha$$

- 1) Le sinus est maximum pour $2\alpha = 90^{\circ}$, soit $\alpha = 45^{\circ}$
- 2) Lorsque α varie entre 0 et 90°, il existe deux angles α_l et α_2 tel que $sin(2\alpha_l) = sin(2\alpha_2)$



- 1) D maximum pour 45°
- 2) Il existe 2 angles donnant la même distance D

Tir balistique



Hauteur maximum:

 h_{max} définie par la condition suivante :

Vitesse ascensionnelle $v_y = 0$

On part de la vitesse v_y :

$$v_v(t) = v_0 \sin\alpha - gt$$
 et on pose $v_0 \sin\alpha - gt = 0$

d'où
$$t = (v_0 sin\alpha)/g$$
 temps de vol

On injecte le temps dans l'équation du mouvement

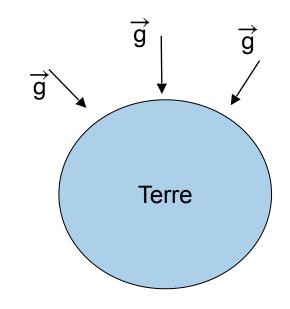
$$y(t) = v_0 \sin \alpha \ t - \frac{1}{2}gt^2$$

$$y_{max} = v_0 \sin\alpha ((v_0 \sin\alpha)/g) - 1/2g(v_0 \sin\alpha)^2/g^2$$

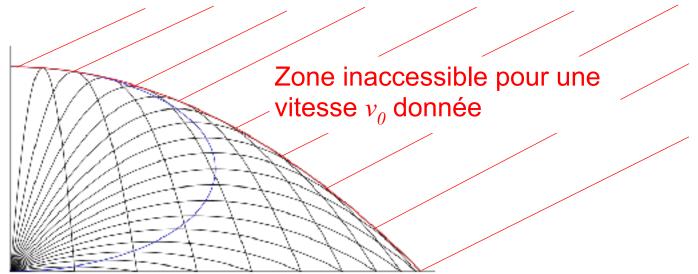
$$y_{max} = (v_0 \sin\alpha)^2 / 2g$$

- Remarques
 - La trajectoire n'est plus une parabole si
 - 1) On tient compte de la résistance de l'air
 - 2) Pour des tirs de projectiles à longue portée

 Les vecteurs \overrightarrow{g} sont dirigés vers le centre de la terre. Si 2 points sont très éloignés alors les vecteur \overrightarrow{g} en ces points ne sont plus parallèles

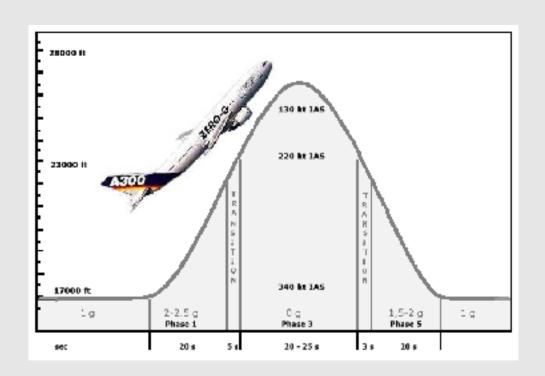


• Parabole de sureté



Information scientifique

Vol parabolique pour créer une micro-pesanteur (situation de chute libre)

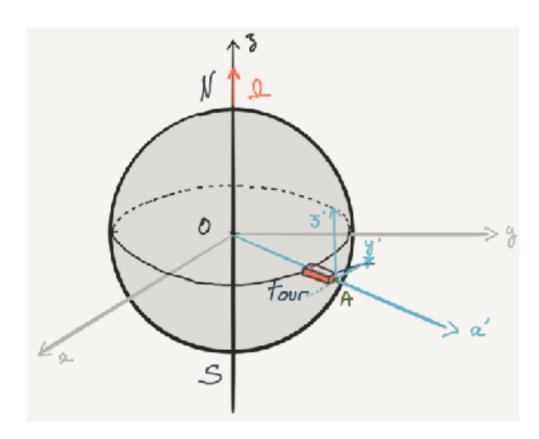


Permet de tester l'influence de la gravitation sur de nombreux phénomènes physiques

Exercice d'application: Pierre qui tombe d'une tour à l'équateur

On considère qu'on lâche une pierre d'une hauteur h depuis une tour située à l'équateur.

De quelle distance et dans quelle direction la pierre est-elle déviée ?

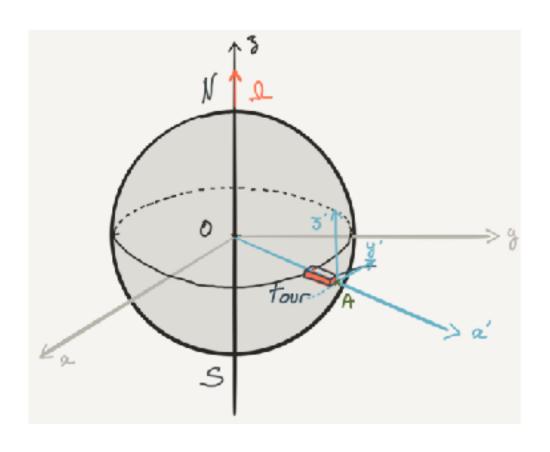


Calcul "intuitif", ne prenant en compte que les vitesses de rotations :

Calcul complet

 $\mathcal{R}(O, x, y, z)$ repère fixe avec O centre de la Terre

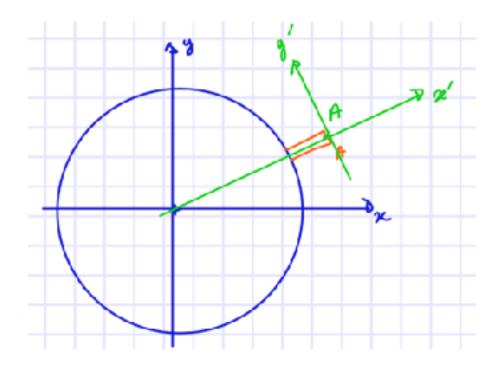
 $\mathcal{R}'(A, x', y', z')$ repère lié à la tour avec A sommet de la tour (d'où on lâche la pierre P).



$$m \stackrel{\longrightarrow}{a(P)} = m \stackrel{\longrightarrow}{g}$$

$$\overrightarrow{\Omega} = \Omega \overrightarrow{e_z} = \Omega \overrightarrow{e_{z'}}$$

$$\overrightarrow{g} = g \overrightarrow{e_x}'$$



$$\vec{a}_{R}(P) = \vec{a}_{R}(P) + \vec{a}_{R}(A) + \vec{b}_{R}(AP) + \vec{b}_{R}(AP) + 2\vec{b}_{R}(P) + 2\vec{b}_{$$

$$\hat{\sigma}_{R'}(P) = \int_{P_{R'}}^{P_{R'}} - g_{R} \hat{e}_{R'}^{2} dt \qquad \int_{P_{R'}}^{P_{R'}} (P) dt$$

$$\hat{\sigma}_{R'}(P) = \hat{\sigma}_{R'}(P)(1=0) = -q_{R} \hat{e}_{R'}^{2} - 2\hat{\Omega} \wedge (\hat{r}_{R'} (H) - \hat{r}_{R'} (E=0))$$

$$\hat{\sigma}_{R'}(P) = -q_{R} \hat{e}_{R'}^{2} - 2\hat{\Omega} \wedge \hat{A}P \qquad \hat{\sigma}_{R'}(P) \begin{vmatrix} \hat{r}_{R'} \\ \hat{r}_{R'} \end{vmatrix} \hat{\sigma}_{R'} \hat{\sigma}_{R'}(P) \begin{vmatrix} \hat{r}_{R'} \\ \hat{r}_{R'} \end{vmatrix} \hat{\sigma}_{R'}(P) \begin{vmatrix} \hat{r}_{R'} \\ \hat{r}_{R'} \end{vmatrix} \hat{\sigma}_{R'}(P) \begin{vmatrix} \hat{r}_{R'} \\ \hat{r}_{R'} \end{vmatrix} \hat{\sigma}_{R'}(P) \hat$$

$$\ddot{S} = 0 \implies \ddot{S} = da = \ddot{S}(t=0) = 0 \qquad \ddot{S} = 0 \qquad \text{pac de deviation } N-S$$

$$\dot{x}' = -q_{eff}t + 2 & & & \\ \dot{y}' = -2 & \\ \dot{y}' = -2 & & \\ \dot$$

Ferdinand Reich 1799–1882

Expérience en 1833; $h = 158 \text{m} \lambda = 51^{\circ}$

