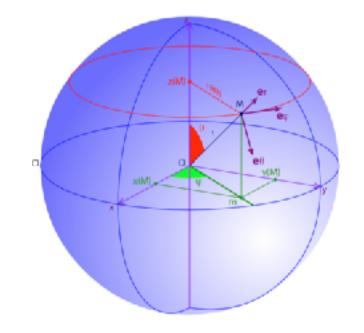
Week 2 - 23 Septembre, 2024

1. Introduction

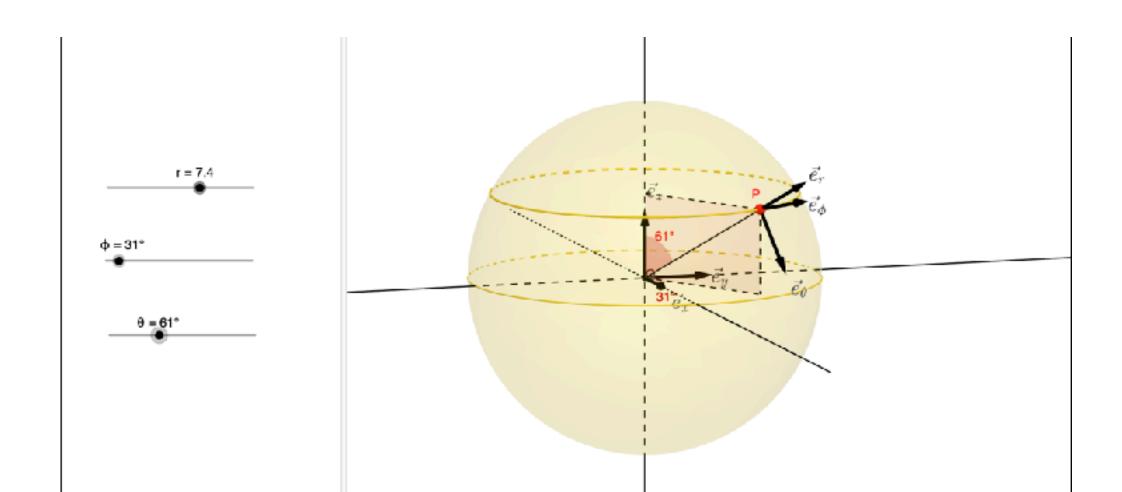
- 1.3. Cinématique
 - 1.3.f. Coordonnées sphériques (rappel)
 - 1.3.g. Mouvement circulaire uniforme
 - 1.3.h. Mouvement circulaire cas général
 - 1.3.i. Trajectoire, équation horaire

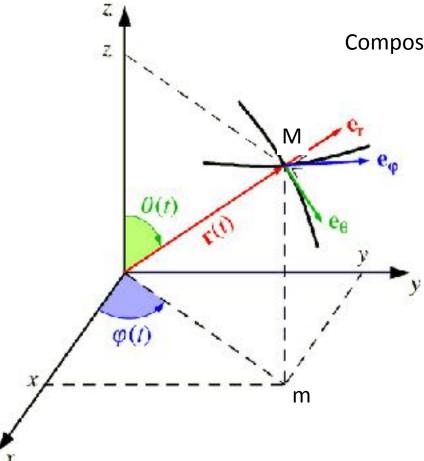


- 2. Référentiels accélérés
 - 2.1. Introduction
 - 2.2. Accélération d'inertie et accélération de Coriolis

Geogebra App (link in the Moodle)

https://www.geogebra.org/m/vwb5kmvq





Les coordonnées de M sont r, θ , ϕ

Equation du mouvement:

$$\overrightarrow{r}(t) = r(t) \overrightarrow{er}$$

Composantes des vecteurs \overrightarrow{er} , $\overrightarrow{e\theta}$, $\overrightarrow{e\phi}$ dans le repère (O; \overrightarrow{ex} , \overrightarrow{ey} , \overrightarrow{ez})

 $\overrightarrow{e_r}$ vecteur unité dans la direction r (déplacement de M si φ et θ sont constants);

$$\overrightarrow{e_r} = \begin{pmatrix} \sin\theta\cos\varphi\\ \sin\theta\sin\varphi\\ \cos\theta \end{pmatrix}$$

 $\overrightarrow{e_{\varphi}}$ vecteur unité dans la direction φ (e_{φ} est tangent au cercle horizontal de rayon $r \sin \theta$). Dépl. de M si r et θ sont const;

$$\overrightarrow{\mathbf{e}_{\varphi}} = \begin{pmatrix} -\sin\varphi \\ \cos\varphi \\ 0 \end{pmatrix}$$

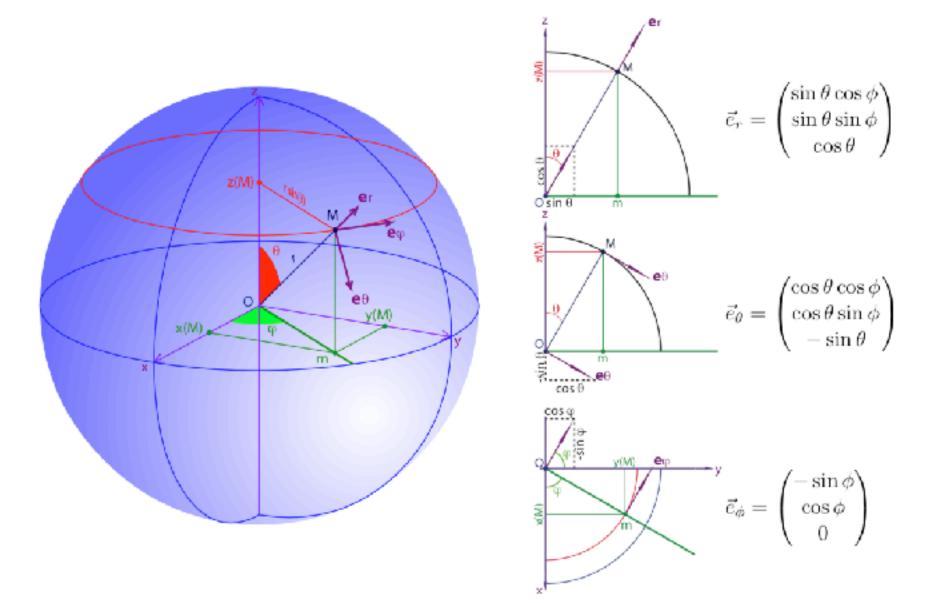
 $\overrightarrow{e_{\theta}}$ vecteur unité dans la direction θ (e_{θ} est tangent au cercle vertical de rayon r). Dépl. de M si φ et r sont const ;

$$\overrightarrow{\mathbf{e}}_{\theta} - \begin{pmatrix} \cos \theta \cos \varphi \\ \cos \theta \sin \varphi \\ -\sin \theta \end{pmatrix}$$

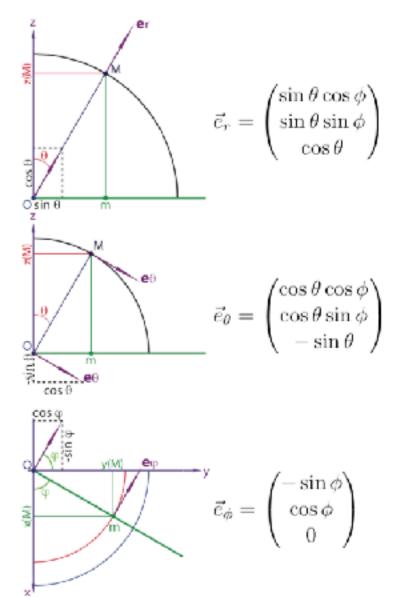
Coordonnées cartésiennes des vecteurs unitaires

$$\overrightarrow{er}$$
, $\overrightarrow{e\theta}$, $\overrightarrow{e\varphi}$

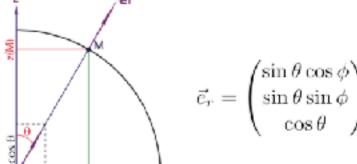
Composantes des vecteurs \overrightarrow{er} , $\overrightarrow{e\theta}$, $\overrightarrow{e\varphi}$ dans le repère (O; \overrightarrow{ex} , \overrightarrow{ey} , \overrightarrow{ez})



Composantes des vecteurs \overrightarrow{er} , $\overrightarrow{e\theta}$, $\overrightarrow{e\varphi}$ dans le repère (O; \overrightarrow{ex} , \overrightarrow{ey} , \overrightarrow{ez})



Composantes des vecteurs \overrightarrow{er} , $\overrightarrow{e\theta}$, $\overrightarrow{e\varphi}$ dans le repère (O; \overrightarrow{ex} , \overrightarrow{ey} , \overrightarrow{ez})



Dérivation des vecteurs
$$\vec{e}_r$$
, \vec{e}_θ et \vec{e}_ϕ ...

$$\vec{e}_r = \begin{pmatrix} \sin\theta\cos\phi \\ \sin\theta\sin\phi \\ \cos\theta \end{pmatrix}$$

$$\vec{e}_\theta = \begin{pmatrix} \cos\theta\cos\phi \\ \cos\theta\sin\phi \\ -\sin\theta \end{pmatrix}$$

$$\vec{e}_r = \begin{pmatrix} \sin\theta\cos\phi \\ \sin\theta\sin\phi \\ \cos\theta \end{pmatrix}$$

$$\dot{\vec{e}}_r = \begin{pmatrix} \dot{\theta}\cos\theta\cos\phi - \dot{\phi}\sin\theta\sin\phi \\ \dot{\theta}\cos\theta\sin\phi + \dot{\phi}\sin\theta\cos\phi \end{pmatrix} = \dot{\theta}\vec{e}_\theta + \dot{\phi}\sin\theta\vec{e}_\phi$$

$$-\dot{\theta}\sin\theta$$

$$(\cos\theta\cos\phi)$$

$$(-\dot{\theta}\sin\theta\cos\phi - \dot{\phi}\cos\theta\sin\phi)$$

$$\underline{\vec{e}_{\theta}} = \begin{pmatrix} \cos\theta\cos\phi \\ \cos\theta\sin\phi \\ -\sin\theta \end{pmatrix} \qquad \dot{\vec{e}_{\theta}} = \begin{pmatrix} -\dot{\theta}\sin\theta\cos\phi - \dot{\phi}\cos\theta\sin\phi \\ -\dot{\theta}\sin\theta\sin\phi + \dot{\phi}\cos\theta\cos\phi \\ -\dot{\theta}\cos\theta \end{pmatrix} = -\dot{\theta}\vec{e}_{r} + \dot{\phi}\cos\theta\vec{e}_{\phi}$$

$$\vec{e}_{\phi} = \begin{pmatrix} -\sin\phi \\ \cos\phi \\ 0 \end{pmatrix}$$

$$\dot{\vec{e}}_{\phi} = \begin{pmatrix} -\dot{\phi}\cos\phi\\ -\dot{\phi}\sin\phi\\ 0 \end{pmatrix} = -\dot{\phi}\sin\theta\vec{e}_r - \dot{\phi}\cos\theta\vec{e}_{\theta}$$

Position, vitesse en coordonnées sphériques

dans le repère $(O; \overrightarrow{er} \overrightarrow{e\theta} \overrightarrow{e\phi})$ en fonction de r, θ , et ϕ

$$\overrightarrow{\mathbf{r}}(t) = r(t) \overrightarrow{\mathbf{e_r}}$$

$$\overrightarrow{v} = \overrightarrow{r} = \frac{d(r\overrightarrow{e_r})}{dt} = \overrightarrow{r} \overrightarrow{e_r} + r\overrightarrow{e_r}$$

$$\overrightarrow{v} = \overrightarrow{r} \cdot \overrightarrow{e_r} + r \dot{\varphi} \sin \theta \overrightarrow{e_{\varphi}} + r \dot{\theta} \overrightarrow{e_{\theta}}$$

$$\vec{\mathbf{v}} = v_r \mathbf{e}_r + v_\varphi \mathbf{e}_\varphi + v_\theta \mathbf{e}_\theta \begin{cases} v_r = \dot{r} \\ v_\varphi = r\dot{\varphi}\sin\theta \\ v_\theta = r\dot{\theta} \end{cases}$$

7

 $\overrightarrow{e_r} = \dot{\varphi} \sin \theta \overrightarrow{e_\varphi} + \dot{\theta} \overrightarrow{e_\theta}$

Vitesse et accélération en coordonnées sphériques

$$\overrightarrow{v} = \overrightarrow{r} \cdot \overrightarrow{e_r} + r \dot{\varphi} \sin \theta \overrightarrow{e_{\varphi}} + r \dot{\theta} \overrightarrow{e_{\theta}}$$

$$\overrightarrow{a} = \overrightarrow{v} = \frac{d(\overrightarrow{r} \cdot \overrightarrow{e_r} + \overrightarrow{r} \varphi \sin \theta \overrightarrow{e_\varphi} + r \dot{\theta} \overrightarrow{e_\theta})}{dt}$$

$$\overrightarrow{r} \cdot \overrightarrow{e_r} + \overrightarrow{r} \cdot \overrightarrow{e_r}$$

$$\frac{\rightarrow}{a}$$
 =

Vitesse et accélération en coordonnées sphériques

$$\overrightarrow{v} = \overrightarrow{r} \cdot \overrightarrow{e_r} + r \dot{\varphi} \sin \theta \overrightarrow{e_{\varphi}} + r \dot{\theta} \overrightarrow{e_{\theta}}$$

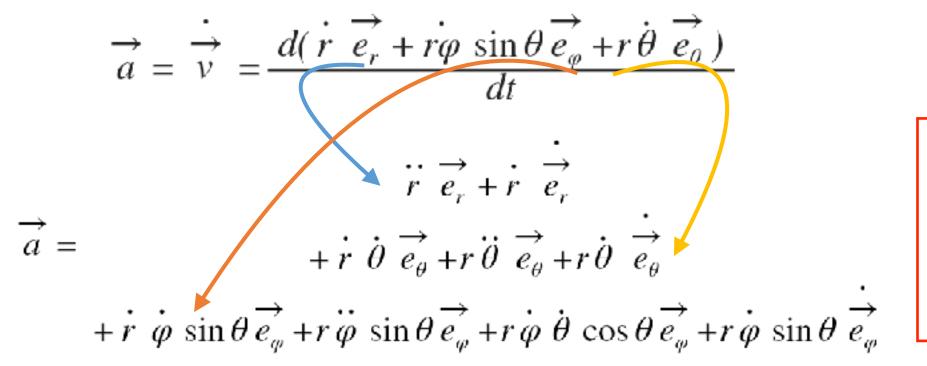
$$\vec{a} = \vec{v} = \frac{d(\vec{r} \cdot \vec{e_r} + r\dot{\varphi} \sin\theta \vec{e_\varphi} + r\dot{\theta} \cdot \vec{e_\theta})}{dt}$$

$$\vec{r} \cdot \vec{e_r} + \vec{r} \cdot \vec{e_r}$$

$$+ \vec{r} \cdot \dot{\theta} \cdot \vec{e_\theta} + r\dot{\theta} \cdot \vec{e_\theta} + r\dot{\theta} \cdot \vec{e_\theta}$$

Vitesse et accélération en coordonnées sphériques

$$\overrightarrow{v} = \overrightarrow{r} \cdot \overrightarrow{e_r} + r \dot{\varphi} \sin \theta \overrightarrow{e_\varphi} + r \dot{\theta} \overrightarrow{e_\theta}$$



$$\frac{\dot{e}_{r}}{\dot{e}_{r}} = \dot{\varphi} \sin \theta \, \overrightarrow{e}_{\varphi} + \dot{\theta} \, \overrightarrow{e}_{\theta}$$

$$\dot{\overrightarrow{e}_{\theta}} = -\dot{\theta} \overrightarrow{e}_{r} + \dot{\varphi} \cos \theta \overrightarrow{e}_{\varphi}$$

$$\dot{\overrightarrow{e}_{\varphi}} = -\dot{\varphi} \sin \theta \overrightarrow{e}_{r} - \dot{\varphi} \cos \theta \overrightarrow{e}_{\theta}$$

Vitesse et accélération en coordonnées sphériques

$$\overrightarrow{v} = \overrightarrow{r} \cdot \overrightarrow{e_r} + r \overrightarrow{\phi} \sin \theta \overrightarrow{e_{\phi}} + r \dot{\theta} \overrightarrow{e_{\theta}}$$

$$\overrightarrow{v} = v_r e_r + v_{\phi} e_{\phi} + v_{\theta} e_{\theta}$$

$$\overrightarrow{v} = v_r e_r + v_{\phi} e_{\phi} + v_{\theta} e_{\theta}$$

$$\overrightarrow{v} = r \dot{\phi} \sin \theta$$

$$\overrightarrow{v} = r \dot{\phi} \sin \theta$$

$$\overrightarrow{a} = \overrightarrow{v} = \frac{d(\overrightarrow{r} \cdot \overrightarrow{e_r} + \overrightarrow{\phi} \sin \theta \overrightarrow{e_{\varphi}} + \overrightarrow{\theta} \overrightarrow{e_{\theta}})}{dt}$$

$$\vec{\mathbf{a}} = a_r \mathbf{e}_r + a_{\varphi} \mathbf{e}_{\varphi} + a_{\theta} \mathbf{e}_{\theta} \begin{cases} a_r = \ddot{r} - r\dot{\theta}^2 - r\dot{\varphi}^2 \sin^2 \theta \\ a_{\varphi} = r\ddot{\varphi} \sin \theta + 2r\dot{\varphi}\dot{\theta} \cos \theta + 2\dot{r}\dot{\varphi} \sin \theta \\ a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\varphi}^2 \cos \theta \sin \theta \end{cases}$$

Week 2 - 23 Septembre, 2024

1. Introduction

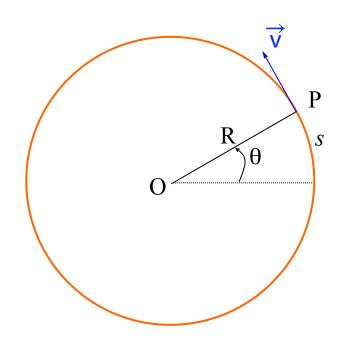
- 1.3. Cinématique
 - 1.3.f. Coordonnées sphériques
 - 1.3.g. Mouvement circulaire uniforme
 - 1.3.h. Mouvement circulaire cas général
 - 1.3.i. Trajectoire, équation horaire

2. Référentiels accélérés

- 2.1. Introduction
- 2.2. Accélération d'inertie et accélération de Coriolis

1.3.g. Mouvement circulaire uniforme

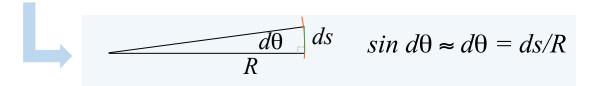
La vitesse angulaire ω est constante pour un mouvement circulaire uniforme



Nous savons que

$$v = ds/dt = R d\theta/dt$$

car $ds = Rd\theta$



La vitesse angulaire est donnée par

$$\omega = \frac{d\theta}{dt}$$
 (en rad.s⁻¹ ou s⁻¹)

d'où
$$v = \omega R$$

1.3.g. Mouvement circulaire uniforme

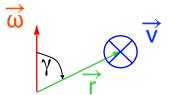
Expression vectorielle de la vitesse v pour un mvt circulaire uniforme ($\omega = cte$)



$$R = r \sin \gamma \quad \Rightarrow \quad$$

$$v = \omega R = \omega r \sin \gamma$$

$$\overrightarrow{\mathbf{v}} = \overrightarrow{\omega} \wedge \overrightarrow{r}$$



Si $\omega = cte$ alors mouvement périodique

P période

fréquence (nb de tours par unité de temps)

Si *n* tours pendant le temps *t* alors

$$\begin{cases} P = t/n & \Rightarrow v = 1/P \text{ en s-1 ou hertz (Hz)} \\ f = n/t \end{cases}$$

$$\theta = \omega t \Rightarrow \omega = \theta/t$$

tour complet: t = P et $\theta = 2\pi$

d'où
$$\omega = 2\pi/P = 2\pi$$
. f

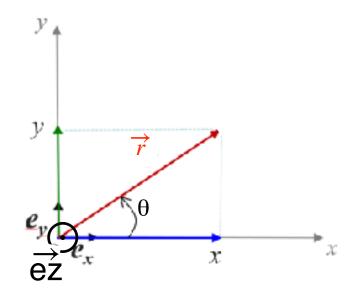
1.3.g. Mouvement circulaire uniforme

Dérivée d'un vecteur en rotation de norme constante

Coordonnées du vecteur
$$\overrightarrow{r}$$
 de norme ρ

$$\begin{cases}
x = \overrightarrow{r} : \overrightarrow{e_x} = \rho \cos \theta \\
y = \overrightarrow{r} : \overrightarrow{e_y} = \rho \sin \theta \\
z = 0
\end{cases}$$

Coordonnées du vecteur
$$\dot{\vec{r}}$$
:
$$\begin{cases} \dot{x} = \rho \dot{\theta}(-\sin\theta) + \dot{\rho} \cos\theta = -\omega \rho \sin\theta \\ \dot{y} = \rho \dot{\theta} \cos\theta + \dot{\rho} \sin\theta = \omega \rho \cos\theta \\ \dot{z} = 0 \end{cases}$$
 Rayon constant



Le vecteur "vitesse angulaire" pour une rotation dans le sens direct (anti-horaire) est $\overrightarrow{\omega} = \omega \overrightarrow{e}_z$

$$\frac{r}{-\omega \rho \sin \theta}$$

$$\frac{\omega \rho \cos \theta}{0}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}_{a_{y}}^{a_{x}}$$

$$egin{array}{lll} a_x &
ho \cos \theta & b_x \ a_y &
ho \sin \theta & b_y \ a_z & 0 & b_z \end{array}$$

Produit vectoriel:

$$\begin{pmatrix} 0 \\ 0 \\ a_y \\ a_z \end{pmatrix} \begin{bmatrix} a_x \\ \rho \sin \theta \\ b_y \\ 0 \end{bmatrix} \begin{pmatrix} \rho \cos \theta \\ b_y \\ b_z \end{pmatrix} \begin{pmatrix} a_x \\ b_y \\ b_z \end{pmatrix} \begin{pmatrix} a_x \\ b_y \\ b_z \end{pmatrix} + \overrightarrow{e_y} (a_z b_x - a_x b_z) + \overrightarrow{e_z} (a_x b_y - a_y b_x) \\ \underline{\qquad \qquad \qquad } \qquad \underline{\qquad \qquad \qquad } \qquad \underline{\qquad \qquad \qquad } \qquad \underline{\qquad \qquad \qquad } \qquad \underline{\qquad \qquad } \qquad \underline{\qquad \qquad \qquad \qquad } \qquad \underline{\qquad \qquad \qquad \qquad } \qquad \underline{\qquad \qquad \qquad } \qquad \underline{\qquad \qquad \qquad } \qquad \underline{\qquad \qquad \qquad } \qquad \underline{\qquad$$

Nous avons finalement

$$\overrightarrow{r} = \overrightarrow{\omega} \wedge \overrightarrow{r}$$

 $(\omega \neq cte)$

et par conséquent

$$\overrightarrow{r}$$
. $\overrightarrow{r} = 0$

La dérivée d'un vecteur de norme constante en rotation est un vecteur perpendiculaire

1.3.h. Mouvement circulaire – Cas général

soit $\omega(t)$ la vitesse angulaire

Accélération angulaire :

$$\alpha = d\omega/dt$$

Accélération tangentielle:

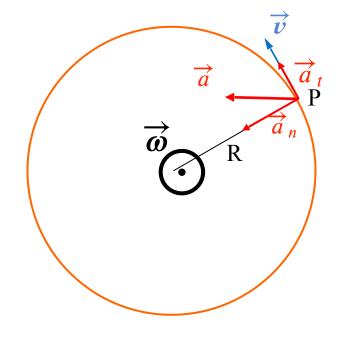
$$a_t = dv/dt = R d\omega/dt = R\alpha$$

 $(v = \omega R avec R cte)$

Accélération normale (centripète):

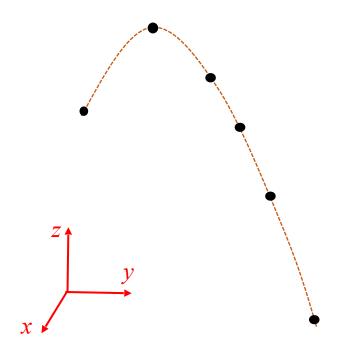
$$a_n = v^2/R = R\omega^2$$

$$(v = R\omega)$$



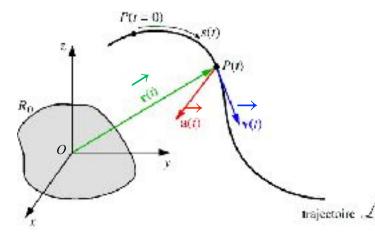
$$\overrightarrow{a} = \overrightarrow{a}_t + \overrightarrow{a}_n$$

Remarque: mouvement circulaire uniforme $\Rightarrow v = cte$ d'où $a_t = 0$ mais a_n non nulle $(=v^2/R)$



<u>Mécanique du point</u>: nous simplifions le « monde réel » en associant un objet à un point matériel possédant une masse <u>Mécanique du solide</u>: on tiendra compte du volume de l'objet

Equations (paramétriques) du mouvement



- le vecteur « position » \vec{r}
- le vecteur « vitesse » $\vec{v}=\frac{d\vec{r}}{dt}=\dot{\vec{r}}$ le vecteur « accélération » $\vec{a}=\frac{d\vec{v}}{dt}=\dot{\vec{v}}=\frac{d^2\vec{r}}{dt^2}=\ddot{\vec{r}}$

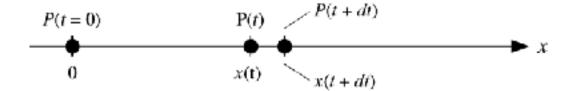
Le mouvement de P, dans le repère R_O , est donné par les équations paramétriques du mouvement, obtenues par projection du vecteur position dans un repère

$$\overrightarrow{\mathbf{r}}(t) = \overrightarrow{OP(t)}$$
 en projetant sur un repère

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

Equation du mouvement - cas 1D

Mouvement rectiligne uniforme – (MRU) : a(t) = 0



Conditions initiales:

$$\dot{a} t = 0 : v(0) = v_0 et x(0) = 0$$

$$\forall t, a(t) = 0$$

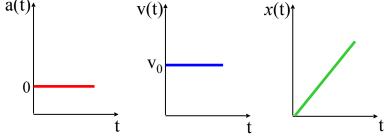
Calcul de l'équation de mouvement :

$$a(t) = 0$$

$$v(t) = \int_{0}^{t} a(t)dt = cte \quad \text{or} \quad v(t=0) = v_0 \rightarrow cte = v_0 \quad (v_0 \text{ vitesse initiale})$$

$$x(t) = \int_{0}^{t} v(t)dt = \int_{0}^{t} v_0dt = v_0t - 0 + cte \quad \text{or} \quad x(t=0) = 0 \rightarrow cte = 0$$

Equation du mouvement : $x(t) = v_0 t$



Equation du mouvement – cas 1D

Mouvement rectiligne uniformément accéléré : - MRUA: a(t) = a

Conditions initiales à t = 0: $v(0) = v_0$ et x(0) = 0

Calcul de l'équation de mouvement :

$$a(t) = a$$

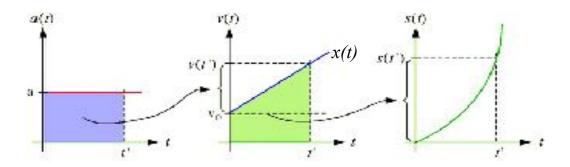
$$v(t) = \int_{0}^{t} a \, dt = at - 0 + cte \qquad \text{Avec} \qquad v(t=0) = v_0 \rightarrow cte = v_0$$

$$v(t=0) = v_0 \rightarrow cte = v_0$$

$$v(t) = v_0 + at$$

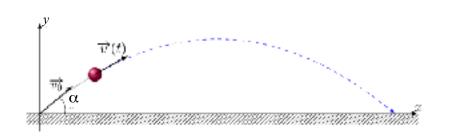
 $= v_0 t + \frac{1}{2}at^2 + cte$ Avec $x(0) = 0 \Rightarrow cte = 0$

$$x(t) = \int_{0}^{t} v(t) dt$$
$$= \int_{0}^{t} (v_0 + at) dt$$



Equation du mouvement : $x(t) = v_0 t + \frac{1}{2} at^2$

Equations (paramétriques) du mouvement



$$x(t) = v_0 \cos \alpha t$$
$$y(t) = v_0 \sin \alpha t - \frac{1}{2}gt^2$$

Equations paramétriques

Equation intrinsèque de la trajectoire (parabolique)

$$y(t) = v_0 \sin \alpha \ t - \frac{1}{2}gt^2$$

on élimine le temps avec $t = x / (v_0 \cos \alpha)$

$$y(x) = x \tan \alpha - x^2 \frac{g}{2v_0^2} \frac{1}{\cos^2 \alpha}$$

Equation de la trajectoire

la trajectoire est la « trace » du déplacement

Week 2 - 24 Septembre, 2024

1. Introduction

- 1.3. Cinématique
 - 1.3.f. Coordonnées sphériques
 - 1.3.g. Mouvement circulaire uniforme
 - 1.3.h. Mouvement circulaire cas général
 - 1.3.i. Trajectoire, équation horaire

2. Référentiels accélérés

- 2.1. Introduction
- 2.2. Accélération d'inertie et accélération de Coriolis

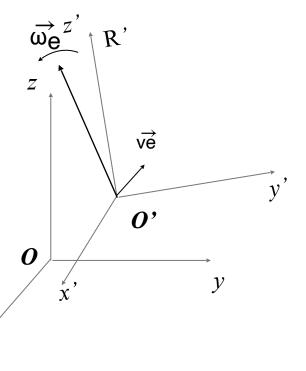
2.1. Introduction

Référentiel galiléen (inertiel)

<u>Définition</u>: dans un référentiel galiléen tout corps isolé qui se déplace présente un mouvement rectiligne uniforme

- Si R est un référentiel galiléen alors R' est un aussi un référentiel galiléen s'il est en translation uniforme ($v_e = cte$, $\omega_e = 0$)

- Si R' est accéléré ou en rotation par rapport à R $(v_e \neq cte \text{ et/ou } \omega_e \neq 0)$ alors R' n'est pas un référentiel galiléen



2.1. Introduction

Example:

Le référentiel d'un train en mouvement (acceleration et/ou rotation)

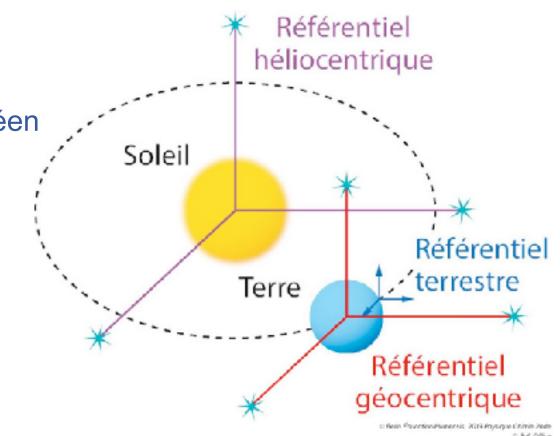
=> est non galiléen

Le référentiel terrestre, n'est pas un référentiel galiléen

R = référentiel héliocentrique, géocentrique

R' = référentiel terrestre (rotation)

Référence héliocentrique galiléen ???



2. Référentiels accélérés

2.1. Introduction

Sur Terre, nous sommes dans un référentiel en mouvement donc <u>non-galiléen</u> ⇒ c'est un *référentiel en rotation à vitesse angulaire constante*

Conséquence:

- a) Tout objet placé dans ce référentiel subit une accélération, appelée accélération d'inertie (ou encore appelée « d'entrainement », « centrifuge »)
- b) La trajectoire d'un objet en mouvement, telle qu'observée depuis la Terre, présente <u>une déviation systématique par rapport à la trajectoire calculée</u> <u>tenant compte seulement du champ de pesanteur</u> (2nd loi de Newton).
 - → Cette trajectoire peut être décrite en tenant compte d'une accélération supplémentaire dite accélération de Coriolis

2. Référentiels accélérés

2.1. Introduction

Donc

La 2nd loi de Newton (qui sera présenté lors des prochaines semaines) $ma = \Sigma F_{ext}$

ne s'applique pas dans un référentiel en rotation ou dans un référentiel en accélération de translation - mais on peut y apporter des corrections!!!

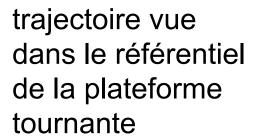
Nous allons déterminer les expressions de la vitesse et de l'accélération dans des référentiels en rotation afin de pouvoir décrire la trajectoire observée.

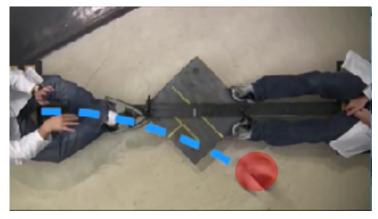
2.1. Introduction

Trajectoire dans un référentiel en rotation

Le manège

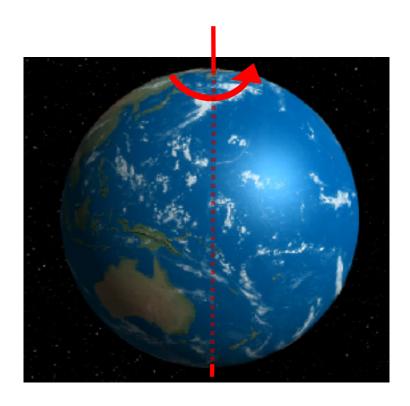
trajectoire vue dans le référentiel de la salle





2.1. Introduction

La Terre est un référentiel en rotation

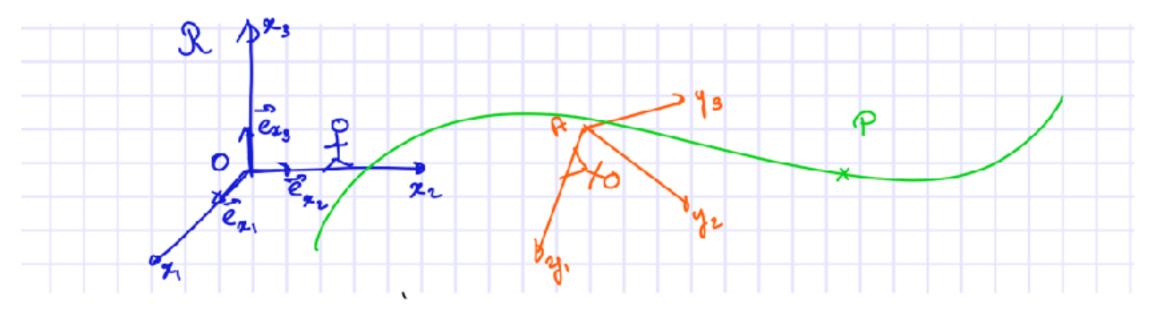


La terre tourne à la vitesse angulaire Ω

<u>Déviation due à la rotation de la terre :</u> Etude de la trajectoire d'un objet lancé vers le Sud/vers le Nord

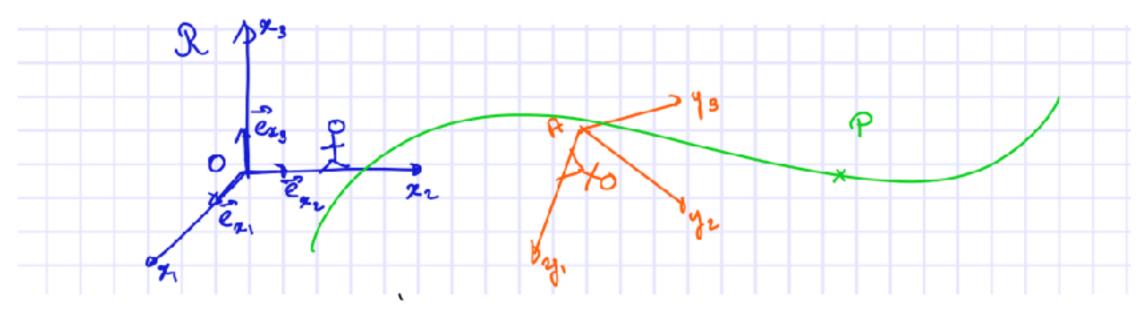
Notation et détermination de la position/vitesse/accélération

référentiel \mathcal{R} fixe, muni du repère cartésien (O, x_1, x_2, x_3) référentiel \mathcal{R} ' muni du repère cartésien (A, y_1, y_2, y_3) en mouvement dans \mathcal{R} . On notera e_{xi} respectivement e_{yi} les vecteurs unitaires de ces deux repères.



position/vitesse/accélération ???

Notation et détermination de la position/vitesse/accélération



Dans
$$\mathcal{R}$$
:

$$\overrightarrow{OP} = \sum_{i} \mathbf{x}_{i} \vec{\mathbf{e}}_{\mathbf{x}_{i}}$$

$$ec{m{v}}_{\mathcal{R}}(m{P}) = \sum_i \dot{m{x}}_i ec{m{e}}_{m{x}_i}$$

$$ec{a}_{\mathcal{R}}(P) = \sum_{i} \ddot{x}_{i} \vec{e}_{x_{i}}$$

Dans
$$\mathcal{R}'$$
:

$$\overrightarrow{AP} = \sum_{i} y_{i} \overrightarrow{e}_{y_{i}}$$

$$\overrightarrow{AP} = \sum_{i} y_{i} \vec{e}_{y_{i}}$$
 $\vec{v}_{\mathcal{R}'}(P) = \sum_{i} \dot{y}_{i} \vec{e}_{y_{i}}$

$$ec{\mathbf{a}}_{\mathcal{R}'}(\mathbf{P}) = \sum_i \ddot{\mathbf{y}}_i ec{\mathbf{e}}_{\mathbf{y}_i}$$

Notation et détermination de la position/vitesse/accélération

Dans
$$\mathcal{R}$$
: $\overrightarrow{OP} = \sum_i x_i \vec{e}_{x_i}$ $\vec{v}_{\mathcal{R}}(P) = \sum_i \dot{x}_i \vec{e}_{x_i}$ $\vec{a}_{\mathcal{R}}(P) = \sum_i \ddot{x}_i \vec{e}_{x_i}$

Dans
$$\mathcal{R}'$$
: $\overrightarrow{AP} = \sum_i y_i \vec{e}_{y_i}$ $\vec{v}_{\mathcal{R}'}(P) = \sum_i \dot{y}_i \vec{e}_{y_i}$ $\vec{a}_{\mathcal{R}'}(P) = \sum_i \ddot{y}_i \vec{e}_{y_i}$

On sépare le mouvement de \mathcal{R} ' dans \mathcal{R} en 2 composantes: une rotation et une translation.

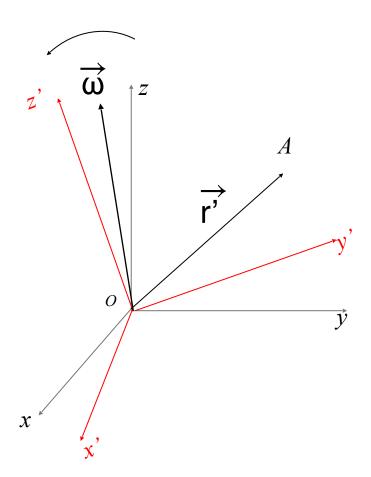
- La **translation** donne le mouvement de A dans \mathcal{R} .
- La **rotation** c'est la rotation des axes (y_j) par rapport aux axes (x_i) . On appelle ω le vecteur rotation.

Les vecteurs $\mathbf{e}_{\mathbf{y_i}}$ changent dans \mathcal{R} . On obtient leur dérivée par:

$$\frac{\overrightarrow{d}\overrightarrow{e_{y_i}}}{\overrightarrow{dt}} = \overrightarrow{e_{y_i}} = \overrightarrow{\omega} \wedge \overrightarrow{e_{y_i}}$$

Introduction : repère en rotation dans un repère fixe

Calcul de la vitesse d'un point A, dans un repère \mathcal{R} attaché à un référentiel en rotation uniforme (ω) , exprimée dans un repère \mathcal{R} attaché à un référentiel fixe (galiléen)



 \mathcal{R} ' en rotation uniforme par rapport à \mathcal{R} (\mathcal{R} et \mathcal{R} ' ont la même origine).

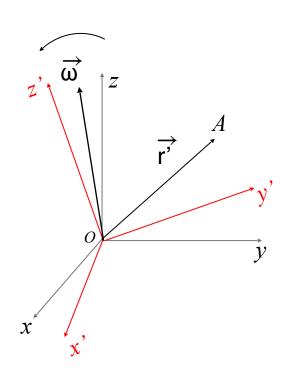
• Si A est au repos dans \mathcal{R} , alors A présente un mouvement de rotation dans \mathcal{R} avec une vitesse telle que

$$\overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{\omega}} \wedge \overrightarrow{\mathbf{r}}$$

• Si A se déplace à la vitesse v' dans \mathcal{R}' , alors A aura la vitesse v dans \mathcal{R} telle que

$$\overrightarrow{\mathbf{v}} = \left(\frac{d\overrightarrow{\mathbf{r}'}}{dt}\right) = \overrightarrow{\mathbf{v}'} + \overrightarrow{\omega} \wedge \overrightarrow{\mathbf{r}'}$$

Introduction : repère en rotation dans un repère fixe



$$\overrightarrow{a} = \overrightarrow{a'} + \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{r'})$$
 est faux

<u>A au repos dans \mathcal{R} </u>. A se déplace avec un mouvement circulaire uniforme dans \mathcal{R} et l'accélération est donnée par

$$\overrightarrow{a}$$
 (rotation) = $\overrightarrow{\omega} \wedge \overrightarrow{v} = \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{r'})$

<u>A se déplace dans \mathbb{R} </u> avec une vitesse v constante. Quelle est l'accélération dans \mathbb{R} ?

$$\overrightarrow{a} = \frac{\overrightarrow{d} \overrightarrow{v}}{\overrightarrow{dt}} \text{ avec } \overrightarrow{v} = \overrightarrow{v'} + \overrightarrow{\omega} \wedge \overrightarrow{r'} \Rightarrow \overrightarrow{a} = \frac{\overrightarrow{d} \overrightarrow{v'}}{\overrightarrow{dt}} + \overrightarrow{\omega} \wedge \left(\frac{\overrightarrow{d} \overrightarrow{r'}}{\overrightarrow{dt}}\right)$$

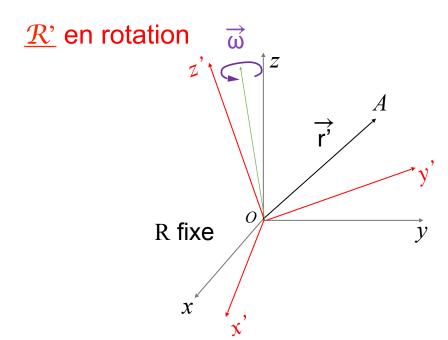
$$\overrightarrow{dans} \mathcal{R} = \overrightarrow{\omega} \wedge \overrightarrow{v'}$$

$$\overrightarrow{dt} = \overrightarrow{\omega} \wedge \overrightarrow{v'} + \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{r'})$$

Finalement:
$$\overrightarrow{a} = 2 \overrightarrow{\omega} \wedge \overrightarrow{v} + \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{r})$$

Introduction : repère en rotation dans un repère fixe

Vitesse et Accélération exprimées dans un repère fixe \mathcal{R} pour un point A en mouvement dans un référentiel \mathcal{R} ' en rotation



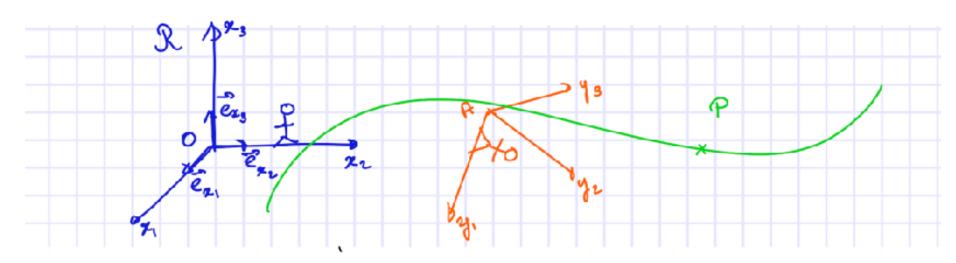
Vitesse du point A

dans \mathcal{R}' : \overrightarrow{v}' dans \mathcal{R} : $\overrightarrow{v} = \overrightarrow{v}' + \overrightarrow{\omega} \wedge \overrightarrow{r}'$

Accélération du point A

dans \mathcal{R}' : $\overrightarrow{a'}$ Acceleration Acceleration De Coriolis/ D'entrainement

Repère en rotation et translation dans un repère fixe



Position du point *P*

dans \mathcal{R}' : \overrightarrow{AP}

dans $\mathcal{R}: \overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$

<u>Vitesse du point *P*</u>

dans \mathbb{R}' : $\overrightarrow{v}'(P)$

dans $\mathcal{R}: \overrightarrow{v}(P) = \overrightarrow{v}(A) + \overrightarrow{v'}(P) + \overrightarrow{\omega} \wedge \overrightarrow{AP}$

Cas Général

$$\vec{\sigma}_{R}(P) = \vec{\sigma}_{R}(H) + \vec{\sigma}_{R'}(P) + \vec{\omega}_{A}\vec{H}^{P} \longrightarrow derivation$$

$$\vec{\sigma}_{R}(P) = \vec{\sigma}_{R}(H) + \frac{d}{dt} \left[\sum_{i} \dot{y}_{i} \vec{e}_{i} \right] + \frac{d}{dt} \left[\vec{\omega}_{A} \sum_{i} y_{i} \vec{e}_{i} \right]$$

$$= \vec{\sigma}_{R}(H) + \sum_{i} \frac{d}{dt} (\dot{y}_{i} \vec{e}_{i}) + \dot{\vec{\omega}}_{A} \sum_{i} y_{i} \vec{e}_{i} + \dot{\vec{\omega}}_{A} \sum_{i} \frac{d}{dt} (y_{i} \vec{e}_{i})$$

$$= \vec{\sigma}_{R}(H) + \sum_{i} (\dot{y}_{i} \vec{e}_{i}) + \dot{\vec{\omega}}_{A}\vec{e}_{i} + \dot{\vec{\omega}}_{A}\vec{e}_{i}$$

$$= \vec{\sigma}_{R}(H) + \sum_{i} \dot{y}_{i} \vec{e}_{i} + \sum_{i} \dot{y}_{i} \vec{\omega}_{A}\vec{e}_{i} + \dot{\vec{\omega}}_{A}\vec{H}^{P} + \dot{\vec{\omega}}_{A} \sum_{i} \dot{y}_{i} \vec{e}_{i} + \dot{\vec{\omega}}_{A} \sum_{i} \dot{y}_{i} \vec{e}_{i}$$

$$= \vec{\sigma}_{R}(H) + \sum_{i} \dot{y}_{i} \vec{e}_{i} + \sum_{i} \dot{y}_{i} \vec{\omega}_{A}\vec{e}_{i} + \dot{\vec{\omega}}_{A}\vec{H}^{P} + \dot{\vec{\omega}}_{A} \sum_{i} \dot{y}_{i} \vec{e}_{i} + \dot{\vec{\omega}}_{A} \sum_{i} \dot{y}_{i} \vec{e}_{i}$$

$$= \vec{\sigma}_{R}(H) + \vec{\sigma}_{R'}(P) + \vec{\omega}_{A} \sum_{i} \dot{y}_{i} \vec{e}_{i} + \dot{\vec{\omega}}_{A}\vec{H}^{P} + \dot{\vec{\omega}}_{A} \sum_{i} \dot{q}_{i} \vec{e}_{i} + \dot{\vec{\omega}}_{A} \sum_{i} \dot{q}_{i} \vec{e}_{i}$$

$$= \vec{\sigma}_{R}(H) + \vec{\sigma}_{R'}(P) + \vec{\omega}_{A} \sum_{i} \dot{q}_{i} \vec{e}_{i} + \dot{\vec{\omega}}_{A}\vec{H}^{P} + \dot{\vec{\omega}}_{A} \sum_{i} \dot{q}_{i} \vec{e}_{i} + \dot{\vec{\omega}}_{A} \sum_{i} \dot{q}_{i} \vec{e}_{i}$$

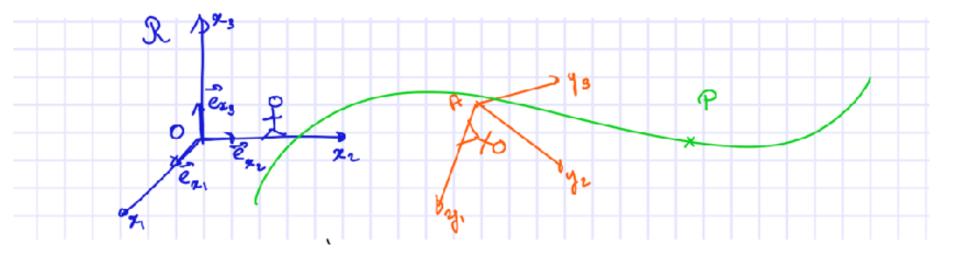
$$= \vec{\sigma}_{R}(H) + \vec{\sigma}_{R'}(P) + \dot{\vec{\omega}}_{A}\vec{H}^{P} + \dot{\vec{\omega$$

Repère en rotation et translation dans un repère fixe

Position du point P

dans **R**': \overrightarrow{AP}

dans $\mathcal{R}: \overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$



Vitesse du point P

dans \mathcal{R}' : $\overrightarrow{v}'(P)$

dans $\mathcal{R}: \overrightarrow{v}(P) = \overrightarrow{v}(A) + \overrightarrow{v}(P) + \overrightarrow{\omega} \wedge \overrightarrow{AP}$

Accélération du point P

 $\mathcal{R}': \overrightarrow{a'}(P)$

 $\mathcal{R}: \overrightarrow{a}(P) = \overrightarrow{a'}(P) + \overrightarrow{a}(A) + \overrightarrow{\omega} \wedge \overrightarrow{AP} + \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{AP}) + 2\overrightarrow{\omega} \wedge \overrightarrow{v'}(P)$