
Solutions to Problem Set 9
Potential energy, conservation of energy

PHYS-101(en)

1. Circular loop

This problem is similar to problem 1. As the block is initially at rest v0 = 0, the initial kinetic energy is
K0 = mv20/2 = 0. The initial potential energy is due to gravity. We will define the reference point to be
at the height of the table, so the initial height of the object is y0 = h and the initial gravitational potential
energy is Ug0 = mgh. Therefore, the total initial energy is

E0 = K0 + Ug0 = 0 +mgh = mgh. (1)

At the top of the loop yt = 2R, the kinetic energy is Kt = mv2t /2 and the gravitational potential energy is
Ugt = mgyt = 2mgR. Thus, the total energy at the top of the loop is given by

Et = Kt + Ugt =
m

2
v2t + 2mgR. (2)

Since the track is frictionless and there is no air drag, there is no non-conservative force and mechanical
energy is conserved. We can use equations (1) and (2) to write

E0 = Et ⇒ mgh =
m

2
v2t + 2mgR. (3)

̂y

From the properties of circular motion, we know that the acceleration in the radial direction is equal to
the centripetal acceleration acent = −v2t /R. Thus, at the top of the loop (shown in figure above) Newton’s
second law in the ŷ direction is

−mg −N = −mv2t
R

. (4)

From the information given in the problem statement, we know that the mass just barely doesn’t lose contact
with the track. Thus, the normal force of the track on the mass must be effectively N = 0, so equation (4)
becomes

mg =
mv2t
R

⇒ vt =
√
gR. (5)
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We can substitute equation (5) into equation (3) and solve for h to find

mgh =
m

2

(√
gR

)2

+ 2mgR ⇒ h = 2.5R. (6)
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2. Two-body interaction

1. Choosing to use a spherical coordinate system, the change in the potential energy due to the force F⃗
is

∆U = U(R)− U(∞) = −
∫
C

F⃗ · d⃗l = −
∫
C

(
−Gm1m2

r2
+

C

r3

)
r̂ ·

(
drr̂ + rdθθ̂ + r sin θdϕϕ̂

)
=

∫
C

(
Gm1m2

r2
− C

r3

)
dr, (1)

where the integration path C is along the trajectory from r = ∞ to r = R. However, we see that, since
the force is purely radial, only the change in the radial position matters. Thus, we can write

∆U = U(R)− U(∞) =

∫ R

∞

Gm1m2

r2
− C

r3
dr. (2)

Taking the integral gives a potential energy difference of

∆U = U(R)− U(∞) =

(
−Gm1m2

r
+

C

2r2

∣∣∣∣R
∞

= −Gm1m2

R
+

C

2R2
. (3)

Since the reference point for the potential energy is at r = ∞ (i.e. we define the potential energy such
that U(∞) = 0), equation (3) implies that

U(R) = −Gm1m2

R
+

C

2R2
, (4)

which will be useful in the next part of the problem.

2. Equilibrium occurs when the force on a particle is zero. Thus, we can find the locations R = R0 that
satisfy this by enforcing

F⃗ (R0) = 0 ⇒
(
−Gm1m2

R2
0

+
C

R3
0

)
r̂ = 0 ⇒ Gm1m2

R2
0

=
C

R3
0

. (5)

Solving for R0 shows that there is just one equilibrium point at

R0 =
C

Gm1m2
. (6)

Using this result and equation (4), we find that the value of the potential energy at R = R0 is

U(R0) = −Gm1m2

R0
+

C

2R2
0

= − (Gm1m2)
2

C
+

(Gm1m2)
2

2C
= − (Gm1m2)

2

2C
. (7)

To see if this equilibrium point is stable or not, we can calculate the second derivative of the potential
energy and see if it is positive or negative. Using equation (4) to do so gives

dU

dR
=

Gm1m2

R2
− C

R3
⇒ d2U

dR2
= −2

Gm1m2

R3
+ 3

C

R4
. (8)

Evaluating this at R = R0 using equation (??) and simplifying produces

d2U

dR2

∣∣∣∣
R=R0

= −2
Gm1m2

R3
0

+ 3
C

R4
0

= −2
(Gm1m2)

4

C3
+ 3

(Gm1m2)
4

C3
=

(Gm1m2)
4

C3
. (9)

Given that C must be positive for the repulsive portion of the force in the problem statement to be
repulsive, we see that d2U/dR2|R=R0

> 0, so the equilibrium point is stable.
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3. A particle in Gaussian potential

1. The energy diagram is shown below, where we note that the kinetic energy K(x) = E − U(x) is the
difference between the total energy E and the potential energy U(x) due to conservation of mechanical
energy.

U(x)
E

K(E)Turning 
points

-3a -2a -a a 2a 3ax

U0/2

-U0/2

-U0

2. The force on the particle in the x direction is calculated from

F (x) = −dU

dx
. (1)

Plugging in the form of U(x) and using the chain rule gives

F (x) = − d

dx

(
−U0e

−x2/a2
)
= U0e

−x2/a2 d

dx

(
−x2

a2

)
= −2

U0

a2
xe−x2/a2

. (2)

3. To find the speed v0 at x = 0, we can use conservation of mechanical energy between any two points
x1 and x2 according to

Em(x1) = Em(x2) ⇒ K(x1) + U(x1) = K(x2) + U(x2). (3)

Obviously we want to take one of the points to be the origin x1 = 0 as it is where we want to find the
speed. At this location the kinetic energy is related to the speed by K(x1) = K(0) = mv20/2. However,
the second point requires more thought. It is best to choose one of the turning points because we know
that the velocity is zero as the particle is reversing its direction. Thus, at x2 = a the kinetic energy is
K(x2) = K(a) = 0. Plugging in these facts and the form of U(x) into equation (3) yields

m

2
v20 − U0e

−02/a2

= 0− U0e
−a2/a2

⇒ m

2
v20 − U0 = −U0e

−1. (4)

Solving for v0 gives

v0 =

√
2U0

m
(1− e−1). (5)
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4. Review: Tension in a massive rope

There are several methods to solve this problem. One is shown below.

In this method, we will use differential elements. To calculate the tension, we start by considering a small
piece of rope with length ∆x and its left end located at an arbitrary position x along the rope. Here we
define a coordinate system where x = 0 is the location at which the rope connects to the block and x̂ points
to the right. Since the rope has a uniform linear mass density λ, we can calculate the mass of the differential
element ∆m to be

λ =
M

L
=

∆m

∆x
⇒ ∆m =

M

L
∆x. (1)

Drawing a free body diagram for the piece of rope, we see that Newton’s second law in the x̂ direction is
given by

T (x+∆x)− T (x) = ∆mar, (2)

where ar is the acceleration of the piece of rope. Substituting equation (1) and rearranging gives

T (x+∆x)− T (x) =

(
M

L
∆x

)
ar ⇒ T (x+∆x)− T (x)

∆x
=

M

L
ar. (3)

Taking the limit that the differential element is infinitesimally small ∆x → 0 produces the differential
equation

dT

dx
=

M

L
ar. (4)

Importantly, since the rope does not stretch, we know that the entire rope must move together. This implies
that all the different pieces of the rope accelerate together. In other words, ar = a does not vary with x
location. This can be seen as a constraint condition. Thus, we can directly integrate equation (4) to find

T (x) =
M

L
ax+ C, (5)

where C is an integration constant.

To find the value of C we must apply a boundary condition. We can either use T (L) = Fa or find a condition
on T (0) by analyzing the block. The first is quicker and allows us to directly calculate

T (L) = Fa =
M

L
aL+ C ⇒ C = Fa −Ma (6)

from equation (5). The second is more work. We draw a free body diagram for the block and see that
Newton’s second law in the x̂ direction is

Frb − Ff = mba, (7)

where Frb is the force of the rope on the block and we know that the block must have the same acceleration
a as the rope. To calculate the kinetic friction force Ff = µkN , we must know the normal force N . This
can be found from the ŷ component of Newton’s second law for the block to be

N −mbg = 0 ⇒ N = mbg (8)

since the block has no acceleration in the vertical direction. Thus, the kinetic friction force is given by

Ff = µkmbg. (9)

Substituting this into equation (7) allows us to find the force of the rope on the block to be

Frb = µkmbg +mba. (10)
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Newton’s third law tells us that the magnitudes of the forces between the rope and block must be equal (i.e.
Frb = Fbr). Additionally, we know that the force of the rope on the block is identical to the tension at the
end of the rope (i.e. T (0) = Frb). Thus, we can use these facts and equation (10) to show

T (0) = Frb = Fbr = µkmbg +mba. (11)

Finally, we can solve for the integration constant C by evaluating equation (5) at x = 0 and using equation
(11) to get

T (0) = µkmbg +mba = 0 + C ⇒ C = µkmbg +mba. (12)

Here we have used two different ways to calculate the integration constant C. Equations (6) and (12) appear
different, but we will soon see that they are identical.

Equation (5), together with either equation (6) or (12), gives the tension as a function of position. However,
they contain the acceleration a, which we still do not know. To find it, we can consider the system of both
the rope and the block together. Newton’s second law in the x̂ direction for the whole system is

Fa − Ff = (M +mb)a. (13)

Substituting equation (9) and solving for a gives

Fa − µkmbg = (M +mb)a ⇒ a =
Fa − µkmbg

M +mb
. (14)

If we substitute this into either equation (6) or (12) and perform some algebra, we find that they both
produce the same result of

C =
mb

M +mb
(Fa + µkMg) . (15)

We can substitute this into equation (5) and use equation (14) to replace a to arrive at

T (x) =
M

L

(
Fa − µkmbg

M +mb

)
x+

mb

M +mb
(Fa + µkMg) . (16)

After considerable algebra we can somewhat simplify this result to

T (x) =
M

M +mb

((
1− x

L

)
µkmbg +

(mb

M
+

x

L

)
Fa

)
. (17)
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