
Solutions to Problem Set 8
Work and energy
PHYS-101(en)

1. Throwing a ball in the wind

We start by choosing a coordinate system with the x̂ pointing to the east and the ŷ direction pointing
upwards. The ball is thrown straight up, so normally its motion would be one-dimensional, along the y-
axis. However, in this case the force of the wind F is constant and in the x̂ direction, so the motion is not
one-dimensional. The work done by the wind ∆W as the ball undergoes a small displacement ∆l⃗ is given by

∆W = F⃗ ·∆l⃗,

where ∆l⃗ is the displacement vector. Thus, F⃗ = Fx̂ and ∆l⃗ = ∆xx̂ +∆yŷ. From the definition of the dot
product, only the x component of the displacement contributes, so integrating over the trajectory gives

W =

∫ L

0

F⃗ · d⃗l =
∫ L

0

Fx̂ · d⃗l = F

∫ D

0

dx = FD, (1)

where L is the total distance travel by the ball.

2. Travel on surface/loop

This problem may seem complicated at first (all those parameters!), but the work-kinetic energy theorem
makes it tractable, even simple. The work-kinetic energy theorem tells us that the work done by the net
force on the object is equal to the change in its kinetic energy. So let’s take the initial state to be when the
spring is compressed by a distance x0 and the final state to be when the object is at its maximum height. In
both of these states, the velocity is equal to zero, so the kinetic energy is zero as well. Thus, as a consequence
of the work-kinetic energy theorem, we know that the total work done on the object during its path must
be equal to zero.

We choose the positive x̂ direction to point to the left since it is the direction of motion. The motion has
four stages and we need to calculate the work on the object during each:

1. Using the form of the spring force, we can calculate the work done by the spring to be

Wspring =

∫ 0

−x0

Fspringdx =

∫ 0

−x0

(−kx)dx =
1

2
kx2

0. (1)

2. Using the form of the friction force, we can calculate the work done by the horizontal track to be

Wfric =

∫ d

0

Ffricdx = −
∫ d

0

(mgµ(x))dx = −mg

∫ d

0

µ0 + µ1

(x
d

)
dx = −mgd

(
µ0 +

µ1

2

)
. (2)

3. The work done by the normal force of the surface of the loop is zero because the normal force is always
perpendicular to the surface and the object is always moving along the surface. Thus, the normal force
is perpendicular to the trajectory, so the dot product of the force and the displacement is zero.
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4. Using the form of the gravitational force, we can calculate the work done by gravity as the object
moves to a height h to be

Wgrav = −
∫ h

0

Fgravdy = −
∫ h

0

(mg)dy = −mgh. (3)

The total work done on the object is the sum of all these contributions, which must be equal to zero by the
work-kinetic energy theorem. Thus, we find

W = Wspring +Wfric +Wgrav =
1

2
kx2

0 −mgd
(
µ0 +

µ1

2

)
−mgh = 0. (4)

Solving this for h gives the final answer of

h =
kx2

0

2mg
− d

(
µ0 +

µ1

2

)
. (5)

3. Slide

θ
mg

Ff
N

̂x
̂y

1. First, we take a coordinate system with the x̂ and ŷ unit vectors defined as shown in the figure above.
In the x̂ and ŷ directions, Newton’s second law is

mg sin θ − Ff = max (1)
N −mg cos θ = may = 0 ⇒ N = mg cos θ (2)

respectively, where Ff is the magnitude of the kinetic friction force, N is the magnitude of the normal
force, and we know that there is no acceleration in the ŷ direction. Using the form of the friction force
and equation (2), we find

Ff = µkN = µkmg cos θ. (3)

This allows us to calculate the total work done by friction to be

Wf =

∫ d

0

F⃗f · x̂dx = −
∫ d

0

Ffdx = −Ffd = −µkmgd cos θ. (4)

Plugging in the numerical values, we find

Wf = −(0.2)(20 kg)(9.8 m/s2)(5 m)(cos(20◦)) = −180 J. (5)

2. In this part, we will calculate the total work performed on the child and then use the work-kinetic
energy theorem to determine the kinetic energy, which allows us to find the final speed. We already
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know the work done by friction from part 1. The only other force in the problem is gravity, for which
we can calculate the work as

Wg =

∫ 0

h0

F⃗g · ŷdy =

∫ 0

h0

(−mgŷ) · ŷdy =

∫ h0

0

mgŷ · ŷdy = mg(h0 − 0) = mg(d sin θ) = mgd sin θ, (6)

where we have adopted a new coordinate system with ŷ pointing straight upwards and note that the
child is traveling from a height h0 to a height 0. We also used trigonometry to calculate the height of
the slide h0 = d sin θ in terms of known quantities. Thus, the total work performed on the child is

W = Wf +Wg = −µkmgd cos θ +mgd sin θ. (7)

By the work-kinetic energy theorem, this work must be equal to the change in kinetic energy according
to

W = ∆K = Kf −Ki. (8)

Since the child starts at rest, the initial kinetic energy is

Ki = 0. (9)

At the bottom, they are moving at some speed vf (which we want to calculate), so

Kf =
1

2
mv2f . (10)

Plugging equations (7), (9), and (10) into equation (8) gives

−µkmgd cos θ +mgd sin θ =
1

2
mv2f − 0. (11)

We can solve this to find that the speed of the child at the bottom of the slide is

vf =
√

2gd (sin θ − µk cos θ). (12)

Plugging in the numbers gives

vf =
√

2(9.8 m/s2)(5.0 m)(sin(20◦)− (0.2) cos(20◦)) = 3.9 m/s. (13)

3. To calculate the time it takes for the child to slide down the slide, we use Newton’s second law in the
x̂ direction (in the coordinate system of part 1). Substituting equation (3) into equation (1) gives

ax(t) = g sin θ − µkg cos θ = g (sin θ − µk cos θ) . (14)

Integrating this once in time yields the velocity

vx(t) = gt (sin θ − µk cos θ) , (15)

where the integration constant is zero because the child starts at rest. Since we know the final speed
from part 2, we can use it to calculate the final time tf as

vx(tf ) = vf = gtf (sin θ − µk cos θ) ⇒ tf =
vf

g (sin θ − µk cos θ)
. (16)

Substituting equation (12) gives

tf =

√
2gd (sin θ − µk cos θ)

g (sin θ − µk cos θ)
=

√
2d

g (sin θ − µk cos θ)
. (17)

Plugging in the numbers, we find

tf =

√
2(5.0 m)

(9.8 m/s2)(sin(20◦)− (0.2) cos(20◦))
= 2.6 s. (18)
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4. Since we can assume that the children start and finish at rest, by the work-kinetic energy theorem we
know that the total work must be zero. As a child ascends, it experiences two forces. The normal force
from the ladder, which the child uses to push itself up, and the gravitational force, which is pulling
downwards on the child. Thus, we have

W = Wg +WN = ∆K = 0, (19)

where we note that WN represents the work done by the child via the normal force. Defining a
coordinate system with the origin at the ground and the ŷ direction pointing upwards, we see that the
work done by gravity as the child ascends is

Wg =

∫ h0

0

F⃗g · ŷdy =

∫ h0

0

(−mgŷ) · ŷdy = −mgh0. (20)

Substituting this into equation (19) allows us to calculate the work done by the child

WN = mgh0. (21)

We see that this doesn’t depend on time, only on the mass of the child. Since the two children have
equal masses, they do the same amount of work.

4. Tetherball

In this scenario, we are being asked to check the work-kinetic energy theorem. To calculate the net work
done on the body, we first need to identify the forces applied. We start by defining a cylindrical coordinate
system with the origin located at the fixed ring in the center of the circular motion. We are told that the
string is pulled downward with constant velocity, so the body moves inward with ρ̇ = −V = constant and
ρ̈ = 0.

In order to calculate the work done by the string, we need to know the tension force and the trajectory of
the ball. Thus, we want to apply Newton’s second law to the situation, but first we must recall the formula
for acceleration in cylindrical coordinates

a⃗ =
(
ρ̈− ρϕ̇2

)
ρ̂+

(
2ρ̇ϕ̇+ ρϕ̈

)
ϕ̂+ z̈ẑ. (1)

We identify that ϕ̇ = ω, z̈ = 0, so Newton’s 2nd law can be written as

−T = −mρω2 (2)
0 = m(2ρ̇ω + ρω̇) (3)

in the radial and tangential directions respectively. The first equation gives us the tension as a function of
radius, but we do not know how ω changes with radius. This can be found from the second equation, which
can be rewritten as

1

ω

dω

dt
= −2

ρ

dρ

dt
⇒ 1

ω
dω = −2

ρ
dρ. (4)

Integrating this gives∫
1

ω
dω = −2

∫
1

ρ
dρ ⇒ ln(ω) = −2 ln(ρ)+C ⇒ ln(ω) = ln

(
ρ−2

)
+C ⇒ ω(ρ) = ρ−2 exp(C), (5)

where C is an integration constant and we have used identities that A ln(B) = ln(BA) and exp(A + B) =
exp(A) exp(B). Substituting the initial condition that ω(ρ0) = ω0 allows us to calculate that the integration
constant is

ω(ρ0) = ω0 = ρ−2
0 exp(C) ⇒ exp(C) = ω0ρ

2
0. (6)
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Substituting this into equation (5) gives

ω(ρ) =
ρ20
ρ2

ω0. (7)

Together with equation 2, this allows us to calculate the tension

T = m
ρ40
ρ3

ω2
0 . (8)

We can now consider the work done by the tension on the ball, as it is the only force in the problem. From
the above figure, we see that the tension force is always pointed inwards. Thus, the work done by the string
in moving the ball from a radius ρ0 to a radius ρf is given by

W =

∫
T⃗ · d⃗l = −

∫
T ρ̂ · d⃗l = −

∫ ρf

ρ0

Tdρ. (9)

Substituting equation (8) gives

W = −
∫ ρf

ρ0

m
ρ40
ρ3

ω2
0dρ = −mρ40ω

2
0

∫ ρf

ρ0

ρ−3dρ = −mρ40ω
2
0

(
−1

2
ρ−2

∣∣∣∣ρf

ρ0

=
mρ40ω

2
0

2

(
1

ρ2f
− 1

ρ20

)
, (10)

which is our final solution for the work.

To calculate the change in kinetic energy, we can use the formula

∆K = Kf −K0 =
1

2
mv2f − 1

2
mv20 , (11)

where the subscripts f and 0 indicate the final and initial values respectively. To calculate the velocity, we
can use its formula in cylindrical coordinates

v⃗ = ρ̇ρ̂+ ρϕ̇ϕ̂+ żẑ (12)

and note that ρ̇ = 0, ż = 0 in the initial and final states. Thus, the initial and final speeds are

v0 = ρ0ω0 (13)
vf = ρfωf (14)

respectively. Plugging these into equation 11 reveals that

∆K =
1

2
mρ2fω

2
f − 1

2
mρ20ω

2
0 =

mρ40ω
2
0

2

(
ρ2fω

2
f

ρ40ω
2
0

− 1

ρ20

)
, (15)
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but we still must determine ωf . This can be done by evaluating equation 7 at ρ = ρf to find

ω(ρf ) = ωf =
ρ20
ρ2f

ω0. (16)

Substituting this into equation 15 gives

∆K =
mρ40ω

2
0

2

 ρ2f
ρ40ω

2
0

(
ρ20
ρ2f

ω0

)2

− 1

ρ20

 =
mρ40ω

2
0

2

(
1

ρ2f
− 1

ρ20

)
, (17)

which is equal to the work (i.e. equation 10) as expected. Thus, the work-kinetic energy theorem holds.
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