
Solutions to Problem Set 7
Momentum and continuous mass transfer

PHYS-101(en)

1. Acrobat and clown

We start by defining our system to include both the acrobat and the clown. The first important observation
is that there is a collision between the acrobat and the clown. This collision is completely “inelastic” in that
the two bodies collide and stick together after the collision. The details of the collision are determined by
the internal forces in the system. Since this is a one-dimensional motion, we will use a coordinate system
with the origin at the trampoline and ŷ defined to be upwards.

There are two important states to identify in this problem. State 1 is immediately before the collision, at a
time that we’ll call t1. At this moment, acrobat has just arrived at the platform of the clown, so both are
at the same position

yA(t1) = yC(t1) = h0, (1)

where yA(t) and yC(t) are the vertical positions of the acrobat and clown respectively. Additionally, just
before grabbing the clown the acrobat has a velocity of v⃗A(t1) = vA(t1)ŷ.

The collision lasts a time ∆tcoll. During this time interval, the acrobat grabs the clown.

State 2 is immediately after the collision, at a time t2. After the collision, the two people rise together with
the same velocity v⃗A(t) = v⃗C(t) = vAC(t)ŷ. The key assumption is that the time over which the collision
occurs is very short ∆tcoll = t2 − t1 ≈ 0.

Because the collision is so fast, the impulse delivered by the external gravitational force during the collision
is negligibly small. This is the impulse approximation. Because of the impulse approximation, we can say
that the total momentum of the system is constant during the collision. If the collision lasts a significant
length of time, there would be some slowing down of the acrobat during the collision and we would have to
calculate the effect of this. However, by assuming the collision is instantaneous, we can ignore this slowing
down and consider the momentum of the system to be conserved.

Now let us analyze the time intervals separated by the two states. Before state 1, the acrobat is undergoing
projectile motion. From one-dimensional kinematics, the vertical component of the position and velocity of
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the acrobat is given by

yA(t) = −g

2
t2 + vA0t+ yA0 = −g

2
t2 + v0t (2)

vA(t) = −gt+ vA0 = −gt+ v0 (3)

respectively, where yA0 = 0 and vA0 = v0 are the initial position and velocity of the acrobat as given in the
problem. At t = t1 the acrobat is at height y(t1) = h0, so we know

yA(t1) = h0 = −g

2
t21 + v0t1. (4)

Applying the quadratic formula, we find

t1 =
−v0 ±

√
v20 − 4(−g/2)(−h0)

2(−g/2)
=

v0 ∓
√
v20 − 2gh0

g
. (5)

Substituting this into equation (3) evaluated at t = t1 allows us to find the velocity immediately before the
collision

vA(t1) = ±
√
v20 − 2gh0 =

√
v20 − 2gh0, (6)

where we have taken the plus sign as we know the physical velocity must be positive.

Between states 1 and 2, we know from the impulse approximation that momentum is conserved

p⃗sys(t1) = p⃗sys(t2). (7)

Immediately before the collision, the momentum of the acrobat-clown system is only due to acrobat

p⃗sys(t1) = p⃗A(t1) + p⃗C(t1) = p⃗A(t1) = mAvA(t1)ŷ = mA

√
v20 − 2gh0ŷ, (8)

where we have used equation (6). Immediately after the collision, the acrobat and clown are moving together,
so the total momentum of the system is

p⃗sys(t2) = (mA +mC)vAC(t2)ŷ. (9)

Enforcing conservation of momentum (i.e. substituting equations (8) and (9) into equation (7)) allows us to
find the velocity of the acrobat and clown immediately after the collision

mA

√
v20 − 2gh0ŷ = (mA +mC)vAC(t2)ŷ ⇒ vAC(t2) =

mA

mA +mC

√
v20 − 2gh0. (10)

After state 2, the acrobat and clown experience projectile motion. Thus, their position and velocity is
given by

yAC(t) = −g

2
(t− t2)

2 + vAC0(t− t2) + yAC0 (11)

vAC(t) = −g(t− t2) + vAC0 (12)

respectively, where we have offset time such that yAC0 = yAC(t2) and vAC0 = vAC(t2) are the position and
velocity of the acrobat at t = t2. Just after the collision, the acrobat and clown are still at the level of the
platform so yAC0 = yAC(t2) = h0. Substituting this and equation (10) into equations (11) and (12) gives

yAC(t) = −g

2
(t− t2)

2 +
mA

mA +mC

√
v20 − 2gh0(t− t2) + h0 (13)

vAC(t) = −g(t− t2) +
mA

mA +mC

√
v20 − 2gh0. (14)

2



PHYS-101(en) Momentum and continuous mass transfer - Solutions to Problem Set 7

To find the maximum height of their trajectory (at a time we’ll call t3), we first use equation (14) to find
the elapsed time t3 − t2 at which the velocity is zero

vAC(t3) = 0 = −g(t3 − t2) +
mA

mA +mC

√
v20 − 2gh0 ⇒ t3 − t2 =

mA

mA +mC

1

g

√
v20 − 2gh0. (15)

We can substitute this into equation (13) to find that the maximum height is

yAC(t3) = hf =− g

2
(t3 − t2)

2 +
mA

mA +mC

√
v20 − 2gh0(t3 − t2) + h0 (16)

hf =
1

2g

(
mA

mA +mC

)2

(v20 − 2gh0) + h0. (17)

2. Falling raindrop

1. We start by choosing a coordinate system such that the ŷ direction points downwards in the direction
of the acceleration due to gravity. Note that the problem is one dimensional. Next, at an arbitrary
time t, we consider a system that is composed of the raindrop of instantaneous mass mr and a small
differential mass element ∆mc from the cloud. The raindrop is moving downwards at an instantaneous
velocity vr, while the differential mass element is at rest (since the cloud is stationary). Thus, we can
draw the momentum diagram shown below at time t. A very short time later at t+∆t, the differential
mass element from the cloud has been incorporated into the raindrop. This slightly changes the mass
of the raindrop to mr +∆mr as well as the velocity to vr +∆vr. This is reflected in the momentum
diagram shown below at time t+∆t.

mr

Δmc

vr

mr + Δmr

vr + Δvr

time t time t + Δt

g ̂y

From the momentum diagrams, we can use conservation of mass in the system to see that

mr +∆mc = mr +∆mr ⇒ ∆mc = ∆mr, (1)

though this will not actually be needed to solve this problem. Additionally, we see that the total
momentum of the system at time t is

p⃗sys(t) = mrvrŷ +∆mc(0) = mrvrŷ, (2)

while at time t+∆t it is
p⃗sys(t+∆t) = (mr +∆mr)(vr +∆vr)ŷ. (3)

We can now write down the generalized form of Newton’s second law and use the limit form of the
time derivative according to

F⃗ ext
net =

dp⃗sys
dt

= lim
∆t→0

∆p⃗sys
∆t

= lim
∆t→0

p⃗sys(t+∆t)− p⃗sys(t)

∆t
. (4)
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If we drew a free body diagram, we’d see that the only external force on the system is gravity mrgŷ.
Using this and substituting equations (2) and (3) into equation (4), we find

mrg = lim
∆t→0

(mr +∆mr)(vr +∆vr)−mrvr
∆t

= lim
∆t→0

mr∆vr +∆mrvr +∆mr∆vr
∆t

(5)

in the ŷ direction. We can neglect the final term ∆mr∆vr in this expression as it is product of
two differential elements. Since the differential elements are infinitesimally small, a product of two
differential elements will be much smaller than terms that include just one differential element (e.g.
∆mr∆vr ≪ mr∆vr). Thus, equation (5) becomes

mrg = mr

(
lim

∆t→0

∆vr
∆t

)
+

(
lim

∆t→0

∆mr

∆t

)
vr. (6)

Converting the limits back into derivatives, we find the differential equation

mrg = mr
dvr
dt

+
dmr

dt
vr. (7)

As an aside, note that this is equivalent to the standard generalized Newton’s second law applied to
the raindrop alone (i.e. F ext

net = dpr/dt = d(mrvr)/dt = (dmr/dt)vr + mr(dvr/dt) using the product
rule). This holds because the physical situation corresponds to a category 1 case (as defined in lecture
7a), in which the differential mass element carries no momentum. If the differential element did carry
momentum (e.g. problem 4 below), the situation becomes more complicated and using the generalized
Newton’s second law for the raindrop alone would no longer be accurate.

To find an equation for vr(t), we can substitute the rate of mass gain from the problem statement into
equation (7),

dmr

dt
= kmrvr, (8)

which fortunately causes all the factors of mr to cancel and gives

g =
dvr
dt

+ kv2r . (9)

This is the differential equation the problem asked for.

2. To calculate the terminal velocity v∞ of the raindrop, we could solve the differential equation and then
take the limit at t → ∞. However, there is a much easier way. We know that the raindrop will reach
terminal velocity only when its acceleration dvr/dt = 0 becomes zero. Otherwise the velocity would
still be changing with time, so it wouldn’t be “terminal”. Thus, we can use this fact to write equation
(9) as

g = 0 + kv2r∞ (10)

and find that

vr∞ =

√
g

k
. (11)

3. Falling chain

This problem is challenging. We start by taking a coordinate system with ŷ pointing downwards in the
direction of the acceleration due to gravity and note that the problem is one dimensional. We will let t = 0
be the moment that the chain is dropped. Next, we can divide up the chain into many differential elements,
each of length ∆y. Then, we will consider the differential element that starts a distance D above the scale
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and define its initial position as the origin of our coordinate system. You can’t push with a chain, so there
is no force from the ground that is transmitted up the chain to the differential elements still in the air. In
other words, each differential element of the chain is in free fall and governed by projectile motion until it
makes contact with the scale. Thus, given our coordinate system and the fact that the chain starts at rest,
the position and velocity of the differential element follows

r⃗(t) = y(t)ŷ =
1

2
gt2ŷ (1)

v⃗(t) = vy(t)ŷ = gtŷ (2)

respectively. Using equation (1), we can calculate the time t just before the differential element of interest
makes contact with the scale to be

y(t) = D =
1

2
gt2 ⇒ t =

√
2D

g
. (3)

Substituting this into equation (2), we see that the element is traveling with a velocity of

v⃗(t) = vy(t)ŷ = g

√
2D

g
ŷ =

√
2gDŷ (4)

just before it impacts the scale.

A very short time later t + ∆t, the differential element is at rest on the scale. We can calculate the force
required to cause this through the change in momentum of the differential element. First, we need the mass
∆m. We have choosen to divide up the rope into differential elements of length ∆y. Thus, given that the
linear mass density λ of the chain is uniform, we can find the mass according to

λ =
M

L
=

∆m

∆y
⇒ ∆m =

M

L
∆y. (5)

We can now define a system composed of exclusively the differential element of interest and draw momentum
diagrams at time t and t+∆t (see below). Using equations (4) and (5), the momentum of such a system at
time t is

p⃗sys(t) = ∆mv⃗(t) =

(
M

L
∆y

)(√
2gDŷ

)
=

√
2gD

M

L
∆yŷ, (6)

while at t+∆t the total momentum is

p⃗sys(t+∆t) = ∆m(0) = 0. (7)

Scale

D

t t + Δt

Scale
Δy

g ̂yvy(t)

DΔy

We can then write down the generalized form of Newton’s second law and use the limit form of the time
derivative according to

F⃗ ext
net =

dp⃗sys
dt

= lim
∆t→0

∆p⃗sys
∆t

= lim
∆t→0

p⃗sys(t+∆t)− p⃗sys(t)

∆t
. (8)
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The external force will be only the normal force from the scale on the differential element

F⃗ ext
net = −Fscaleŷ, (9)

which is what we are interested in calculating to determine the reading on the scale. This is because the
gravitational force can be neglected through the impulse approximation, since the time interval ∆t is so
short.

Substituting equations (6), (7) and (9) into equation (8), we find

−Fscale = lim
∆t→0

0−
√
2gD(M/L)∆y

∆t
= −

√
2gD

M

L

(
lim

∆t→0

∆y

∆t

)
(10)

in the ŷ direction. Converting the limit back into a derivative gives

Fscale =
√
2gD

M

L

dy

dt
. (11)

Using the definition of velocity as the derivative of position vy = dy/dt and making use of equation (4) gives

Fscale =
√
2gD

M

L
vy =

√
2gD

M

L

(√
2gD

)
= 2gD

M

L
, (12)

the magnitude of the upwards force exerted by the scale on the differential element of the chain.

If we drew a free body diagram for the scale at time t + ∆t, we would see that there are two forces from
the chain acting on it: the normal force from the differential element that just impacted the scale and the
normal force from the part of the chain that is already sitting stationary on the scale. The length of chain
already on the scale is D, so we can use the linear density to find its mass to be m = λD = D(M/L). Thus,
the part of the chain sitting on the scale exerts a downward force with a magnitude of mg = D(M/L)g.
Adding this to the action-reaction pair of equation (12) gives a total downwards force of the chain on the
scale of

Scale reading = D
M

L
g + 2gD

M

L
= 3gD

M

L
. (13)

This is our final answer for the reading on the scale.

Note that since D was an arbitrary location, we can use equation (3) to replace D in equation (13) with t.
This allows us to see how the scale reading depends on time

Scale reading =
3

2

M

L
g2t2. (14)

Thus, the scale reading increases quadratically with time. The top end of the chain will land on the scale
when D = L, at which time equation (13) becomes

Scale reading = 3Mg. (15)

In other words, the maximum reading of the scale is three times the mass of the rope. Of course, after the
entire chain has come to rest, the reading on the scale will drop to the weight of the chain, i.e.

Scale reading = Mg. (16)

4. Homework: Rocket with changing mass

We start by choosing a coordinate system such that y = 0 is the ground and the ŷ direction points upwards
in the opposite direction of the acceleration due to gravity. Note that the problem is one dimensional. Next,
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at an arbitrary time t, we consider a system that is composed of the rocket including all the fuel it currently
contains, which we will denote as having a total instantaneous mass mr. The instantaneous speed of the
rocket is vr, so we can draw the momentum diagram shown below at time t. A very short time later at
t+∆t, the rocket has ejected a differential mass element ∆mf of fuel, which slightly alters the mass of the
rocket to mr + ∆mr. Note that it is important allow an arbitrary change in the rocket’s mass by +∆mr.
This will help to prevent sign errors later in the derivation (e.g. accidentally accounting for the fact that the
rocket’s mass is decreasing twice) and accommodate more general calculations where the mass is changing
due to several mechanisms. After ejecting the differential mass element, the velocity of the rocket is also
slightly changed to be vr +∆vr. We must also include the momentum of the ejected fuel as it is still part
of the system. It has a mass of ∆mf and a velocity of −uŷ relative to the rocket. This means that it has a
velocity of (vr −u)ŷ in the inertial laboratory frame. We have drawn the momentum diagram at time t+∆t
below.

time t time t + Δt

g

mr

vr
vr + Δvr

Δmf

mr + Δmr

vr − u

̂y

From the momentum diagram, we can use conservation of mass in the system to see that

mr = mr +∆mr +∆mf ⇒ ∆mf = −∆mr. (1)

Additionally, we see that the total momentum of the system at time t is

p⃗sys(t) = mrvrŷ, (2)

while at time t+∆t it is

p⃗sys(t+∆t) = (mr +∆mr)(vr +∆vr)ŷ +∆mf (vr − u)ŷ = (mr +∆mr)(vr +∆vr)ŷ −∆mr(vr − u)ŷ, (3)

making use of equation (1). We can now write down the generalized form of Newton’s second law and use
the limit form of the time derivative according to

F⃗ ext
net =

dp⃗sys
dt

= lim
∆t→0

∆p⃗sys
∆t

= lim
∆t→0

p⃗sys(t+∆t)− p⃗sys(t)

∆t
. (4)

If we drew a free body diagram, we’d see that the only external force on the system is gravity F⃗ ext
net = −mrgŷ.

Using this and substituting equations (2) and (3) into equation (4), we find

−mrg = lim
∆t→0

(mr +∆mr)(vr +∆vr)−∆mr(vr − u)−mrvr
∆t

= lim
∆t→0

mr∆vr +∆mr∆vr +∆mru

∆t
(5)

in the ŷ direction. We can neglect the ∆mr∆vr term in this expression as it is product of two differential
elements. Since the differential elements are infinitesimally small, a product of two differential elements will
be much smaller than terms that include just one differential element (e.g. ∆mr∆vr ≪ mr∆vr). Thus,
equation (5) becomes

−mrg = mr lim
∆t→0

∆vr
∆t

+ lim
∆t→0

∆mr

∆t
u. (6)

7



PHYS-101(en) Momentum and continuous mass transfer - Solutions to Problem Set 7

Converting the limits back into derivatives, we find the differential equation

−mrg = mr
dvr
dt

+
dmr

dt
u. (7)

Now, as in problem 2, we must determine dmr/dt, the rate of change of the mass of the rocket (including
the fuel it contains). We know that, at take-off when t = 0, the total mass of the rocket and fuel is M .
Additionally, it ejects fuel at a constant rate of D. Thus, the total mass of the rocket as a function of time is

mr(t) = M −Dt, (8)

which gives
dmr

dt
= −D (9)

after taking a derivative. Substituting this result into equation (7) gives the differential equation

−mrg = mr
dvr
dt

−Du. (10)

Rearranging and using equation (8) gives

dvr
dt

= −g +
Du

M −Dt
. (11)

The problem statement ultimately asks us to find the speed and altitude of the rocket. Thus, we will integrate
equation (11) to find the velocity

vr(t) = −
∫

gdt+

∫
Du

M −Dt
dt. (12)

The first integral is straightforward, but to accomplish the second we must perform a change of variables.
We know the integral of 1/x1 is the natural logarithm, so we will let

x1 = M −Dt (13)

and rewrite
vr(t) = −

∫
gdt+Du

∫
1

x1

dt

dx1
dx1. (14)

Solving equation (13) for t = M/D−x1/D and taking a derivative gives dt/dx1 = −1/D. Substituting this,
taking the integrals, and using equation (13) gives

vr(t) = −
∫

gdt+Du

∫
1

x1

(
− 1

D

)
dx1 = −gt− u ln(x1) + C1 = −gt− u ln(M −Dt) + C1, (15)

where C1 is a constant of integration. It can be determined by using the initial condition that the rocket is
at rest at t = 0, i.e. vr(0) = 0. This gives

vr(0) = 0 = −u ln(M) + C1 ⇒ C1 = u ln(M). (16)

Substituting this into equation (15) and using the property of logarithms that ln(A)− ln(B) = ln(A/B) gives

vr(t) = −gt− u ln(M −Dt) + u ln(M) = −gt− u ln

(
M −Dt

M

)
. (17)

To find the altitude of the rocket, we must integrate once more in time to find the position

yr(t) = −
∫

gtdt− u

∫
ln

(
M −Dt

M

)
dt. (18)
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Again the first integral is straightforward, but the second is challenging. We can use the second hint in the
problem statement if we first perform a change of variables to

x2 =
M −Dt

M
. (19)

This allows us to write equation (18) as

yr(t) = −
∫

gtdt− u

∫
ln (x2)

dt

dx2
dx2. (20)

Solving equation (19) for t = −M/D(x2 − 1) and taking a derivative gives dt/dx2 = −M/D. Substituting
this, taking the integrals via hint 2, and using equation (19) gives

yr(t) = −
∫

gtdt− u

∫
ln (x2)

(
−M

D

)
dx2 = −g

2
t2 +

Mu

D
x2 (ln(x2)− 1) + C2 (21)

= −g

2
t2 +

Mu

D

M −Dt

M

(
ln

(
M −Dt

M

)
− 1

)
+ C2 = −g

2
t2 + u

M −Dt

D

(
ln

(
M −Dt

M

)
− 1

)
+ C2,

(22)

where C2 is an integration constant. It can be determined by using the initial condition that the rocket
starts on the ground at t = 0, i.e. yr(0) = 0. This gives

yr(0) = 0 = u
M

D
(ln (1)− 1) + C2 ⇒ C2 = −u

M

D
(−1) = u

M

D
. (23)

Substituting this into equation (22) gives

yr(t) = −g

2
t2 + u

[
M −Dt

D

(
ln

(
M −Dt

M

)
− 1

)
+

M

D

]
. (24)

Equations (17) and (24) are the speed and altitude as a function of time. To solve the problem, we are
interested in their values at the time that the fuel is exhausted, which we’ll denote by tf . We know that the
total amount of fuel is mt and it is ejected at a rate of D. Thus, the fuel will be completely used up at a
time tf = mt/D after launch. Substituting this into equations (17) and (24) gives

vr(tf ) = −g
mt

D
− u ln

(
M −mt

M

)
(25)

yr(tf ) = −g

2

(mt

D

)2

+ u

[
M −mt

D

(
ln

(
M −mt

M

)
− 1

)
+

M

D

]
. (26)

Plugging in the numerical values from the problem statement (and noting that 1 ton = 1000 kg) gives
tf = 160 s and

vr(tf ) = 3.2 km/s (27)
yr(tf ) = 160 km. (28)
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