
Solutions to Problem Set 6
Momentum, impulse, center of mass

PHYS-101(en)

1. Center of mass of a rod

Δm

Δx

x

x = L̂x

1. We start by choosing a coordinate system with the rod aligned along the x-axis and the origin located
at the left end of the rod. Next, we’ll decompose the rods into differential elements of mass ∆m and
consider the element located a distance x from the origin. Since the rod is uniform, the linear mass
density is

λ =
M

L
(1)

as well as
λ =

∆m

∆x
, (2)

where ∆x is the length of the differential element. Taking the limit of equation (2) as ∆x → 0 gives

λ =
dm

dx
. (3)

The center of mass for a continuous system is defined by

R⃗CM =

∫
M

r⃗dm∫
M

dm
, (4)

where
∫
M
(. . .)dm indicates an integral over the entire mass distribution of the whole object. We can

perform a change of variables from mass to position to find

R⃗CM =

∫ L

0
r⃗ dm

dx dx∫ L

0
dm
dx dx

, (5)

where
∫ L

0
(. . .)dx indicates an integral over the entire length of the object. Then substituting equation

(3) we find

R⃗CM =

∫ L

0
r⃗λdx∫ L

0
λdx

=

∫ L

0
(xx̂)λdx

λ(L− 0)
=

∫ L

0
xdxx̂

L
=

(x2/2]x=L
x=0

L
x̂ =

L2/2− 0

L
x̂ =

L

2
x̂. (6)

As expected from the symmetry of a uniform rod, the center of mass is exactly in the middle.
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2. We will use the same coordinate system as in part 1 and again consider a differential mass element
∆m located a distance x from the origin. The linear mass density λ(x) is no longer uniform along the
length of the rod, so λ ̸= M/L at every point. However, the definition of the local linear mass density
is

λ(x) = lim
∆x→0

∆m

∆x
, (7)

where ∆x is the length of the differential element. Since the right side is the definition of the derivative,
we have

λ(x) =
dm

dx
. (8)

Substituting the functional form of the density from the problem statement gives

dm

dx
= λ0

x

L
. (9)

The total mass is found by summing the mass elements over the entire length of the rod according to

M =

∫
M

dm. (10)

Performing a change of variables to position and substituting equation (9) gives

M =

∫ L

0

dm

dx
dx =

∫ L

0

λ0
x

L
dx =

λ0

L

∫ L

0

xdx =
λ0

L

(
x2

2

]x=L

x=0

=
λ0

2L
(L2 − 0) =

λ0

2
L. (11)

Since the problem gives us both M and L as known quantities, we can solve this equation for λ0 to
find

λ0 =
2M

L
. (12)

The definition of the center of mass is

R⃗CM =

∫
M

r⃗dm∫
M

dm
. (13)

We can calculate the numerator in a similar way as above to find

R⃗CM =

∫ L

0
r⃗ dm

dx dx

M
=

1

M

∫ L

0

(xx̂)λ0
x

L
dx =

λ0

ML

∫ L

0

x2dxx̂ =
λ0

ML

(
x3

3

]x=L

x=0

x̂ =
λ0L

2

3M
x̂, (14)

where we have used equation (9). Using equation (12), we can simplify further to find

R⃗CM =
2M

L

L2

3M
x̂ =

2

3
Lx̂. (15)

2. Center of mass of the particle-rod system

In this problem, we are tasked with finding the center of mass dynamics of the system that includes both
the particle and the rod. Thus, we will begin by writing down the expressions for the center of mass position
and velocity

R⃗CM (t) =

∑N
i=1 mir⃗i∑N
i=1 mi

=
m1r⃗1(t) +m2r⃗2(t)

m1 +m2
=

Mr⃗1(t) +Mr⃗2(t)

2M
=

r⃗1(t) + r⃗2(t)

2
(1)

V⃗CM (t) =

∑N
i=1 miv⃗i∑N
i=1 mi

=
m1v⃗1(t) +m2v⃗2(t)

m1 +m2
=

Mv⃗1(t) +Mv⃗2(t)

2M
=

v⃗1(t) + v⃗2(t)

2
(2)
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respectively, where r⃗1(t) is the position of the center of mass of the rod, r⃗2(t) is the position of the particle,
v⃗1(t) is the velocity of the center of mass of the rod, v⃗2(t) is the velocity of the particle. As for the center
of mass acceleration, since the net external force on the system is zero we know that the center of mass
acceleration is zero

F⃗ ext
net = MA⃗CM = 0 ⇒ A⃗CM = 0. (3)

Thus, due to the relationship between position, velocity, and acceleration, we know that the center of mass
velocity is constant in time

V⃗CM (t) = V⃗CM (0). (4)

As an aside, for systems with constant mass, having a constant center of mass velocity (V⃗CM (t) = constant)
is equivalent to conservation of momentum (p⃗sys(t) =

∑N
i=1 miv⃗i(t) = constant) as equation (2) shows that

V⃗CM (t) = p⃗sys(t)/
∑N

i=1 mi.

Next, if the center of mass velocity is constant, then we know that the center of mass position is linear in
time

R⃗CM (t) = V⃗CM (0)t+ R⃗CM (0). (5)

Thus, we just need to find the initial center of mass position R⃗CM (0) and initial center of mass velocity
V⃗CM (0). Since the problem statement gives us the state of the system at t = 0, we can compute these
quantities using equations (1) and (2).

We will first calculate the center of mass position. At t = 0, we can deduce that the center of mass of the
rod is

r⃗1(0) =
L

2
ŷ (6)

by symmetry. Alternatively, as in part 1 of problem 1 above, this could be found by integrating over the
constant mass distribution λ = M/L = dm/dy of the rod according to

r⃗1(0) =

∫
M

r⃗dm∫
M

dm
=

∫ L

0
r⃗λdy∫ L

0
λdy

=
λ
∫ L

0
yŷdy

λ
∫ L

0
dy

=

∫ L

0
ydy∫ L

0
dy

ŷ =
(y2/2]y=L

y=0

(y]L0
ŷ =

L2/2− 0

L− 0
ŷ =

L

2
ŷ, (7)

where
∫
M
(. . .)dm indicates an integral over the entire mass distribution of the whole object. At time t = 0,

the particle is at the origin, so its center of mass is at

r⃗2(0) = 0. (8)

Thus, substituting equations (6) and (8) into equation (1), we see that the center of mass of the whole system
at time t = 0 is

R⃗CM (0) =
(L/2)ŷ + 0

2
=

L

4
ŷ. (9)

The initial center of mass velocity can be found in a similar manner. The rod is at rest at t = 0, so v⃗1(0) = 0.
At time t = 0, the particle is moving in the positive x-direction with a velocity v⃗2(0) = V0x̂. Thus, equation
(2) tells us that the velocity of the center of mass of the system at t = 0 is

V⃗CM (0) =
0 + V0x̂

2
=

V0

2
x̂. (10)

Thus, substituting equation (10) into equation 4 gives

V⃗CM (t) =
V0

2
x̂ (11)

and substituting equations (9) and (10) into equation 5 gives

R⃗CM (t) =
V0

2
tx̂+

L

4
ŷ. (12)
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3. Two particles colliding

We will start by choosing a coordinate system with the origin defined to be the location of m1 at t = t0.
This choice is sensible as we will then know that

L = x1(t1), (1)

i.e. the position of m1 will be identical to the distance traveled since t = t0 (which is what the problem asks
us to calculate). Additionally we note that the problem is one-dimensional, so we will only need to consider
the x̂ direction.

Since there is no external force on the two-particle system, we know that the acceleration of the center of
mass is zero, regardless of the force between the objects. Thus, we know that the center of mass velocity is
constant in time

VCM (t) =

∑N
i=1 mivi∑N
i=1 mi

=
m1v1(t) +m2v2(t)

m1 +m2
= VCM (t0) (2)

and, thus, doesn’t change from its value at t = t0. This is significant because the problem statement gives
us information about the system at t = t0.

Since the center of mass velocity is constant, we know that the center of mass position is linear in time. We
can write it as

XCM (t) =

∑N
i=1 mixi∑N
i=1 mi

=
m1x1(t) +m2x2(t)

m1 +m2
= VCM (t0)(t− t0) +XCM (t0), (3)

where we have chosen the form of our linear function to depend only on quantities at t = t0, again because
that is the time that the problem statement gives us information about.

To determine the center of mass velocity at t = t0, we substitute the facts from the problem statement that
v1(t0) = v0 and v2(t0) = 0 into equation (2) to find

VCM (t0) =
m1v0 +m2(0)

m1 +m2
=

m1

m1 +m2
v0. (4)

To determine the center of mass position at t = t0, we substitute the facts from the problem statement that
x1(t0) = 0 (due to the definition of our origin) and x2(t0) = d into equation (3) to find

XCM (t0) =
m1(0) +m2d

m1 +m2
= VCM (t0)(t0 − t0) +XCM (t0) ⇒ XCM (t0) =

m2

m1 +m2
d. (5)

Thus, substituting equations (4) and (5) into (3), we find the center of mass position as a function of time
to be

XCM (t) =
m1

m1 +m2
v0(t− t0) +

m2

m1 +m2
d. (6)

The final crucial insight is to recognize that the center of mass position at t = t1 is position of the collision.
Since the particles are colliding (and are small), both particles are at the same location, which also must be
the center of mass. Thus, we have

x1(t1) = x2(t1) = XCM (t1). (7)

Evaluating equation (6) at t = t1 and combining it with equations (1) and (7) gives the final answer

XCM (t1) = L =
m1

m1 +m2
v0 (t1 − t0) +

m2

m1 +m2
d =

m1v0 (t1 − t0) +m2d

m1 +m2
. (8)

Note that we never needed to use the form of the force between the objects. It was enough to know that
there was no external force on the two particles and that they eventually collide.
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4. Drag force at low speeds

1. We start by applying Newton’s second law to the ball in the x̂ direction. The only force is drag, so

−βvx = max. (1)

Thus, we find the acceleration in the x̂ direction is

dvx
dt

= − β

m
vx. (2)

2. Next, we apply Newton’s second law in the ŷ direction. Given the coordinate system, gravity will
accelerate the ball downwards, so the drag force is upwards. Thus, in the ŷ direction we have

mg − βvy = may, (3)

which can be rearranged to find
dvy
dt

+
β

m
vy = g. (4)

3. To obtain vx(t), we must solve the differential equation given by equation (2). To do so, we can use
the technique of separation of variables to find∫

1

vx
dvx = − β

m

∫
dt ⇒ ln(vx(t)) = − β

m
t+ Cx (5)

⇒ vx(t) = exp

(
− β

m
t+ Cx

)
⇒ vx(t) = exp (Cx) exp

(
− β

m
t

)
. (6)

Making use of the initial condition that vx(0) = u, we see that the integration constant must satisfy
exp(Cx) = u, so

vx(t) = u exp

(
− β

m
t

)
. (7)

4. To obtain vy(t), we must solve the differential equation given by equation (4). This is a first-order inho-
mogeneous differential equation with constant coefficients. We can solve this equation by substitution.
If we define a new function Vy(t) such that

vy(t) = Vy(t) +
mg

β
, (8)

we can substitute it to get the homogeneous differential equation

dVy

dt
+

β

m
Vy(t) +

β

m

mg

β
= g ⇒ dVy

dt
+

β

m
Vy(t) = 0. (9)

This can be solved analogously to part 3 to find∫
1

Vy
dVy = − β

m

∫
dt ⇒ ln(Vy(t)) = − β

m
t+ Cy (10)

⇒ Vy(t) = exp

(
− β

m
t+ Cy

)
⇒ Vy(t) = exp (Cy) exp

(
− β

m
t

)
. (11)
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Substituting this solution back into equation (8) gives

vy(t) = exp (Cy) exp

(
− β

m
t

)
+

mg

β
, (12)

where we still must determine the integration constant Cy. This is done using the initial condition
vy(0) = 0, which implies that

vy(0) = 0 = exp (Cy) +
mg

β
⇒ exp (Cy) = −mg

β
. (13)

Substituting this into equation (12) gives the final answer of

vy(t) = −mg

β
exp

(
− β

m
t

)
+

mg

β
=

mg

β

(
1− exp

(
− β

m
t

))
. (14)

5. To calculate vx∞, we simply take the long time limit (i.e. t → ∞) of equation (7) and find

vx∞ = lim
t→∞

vx(t) = 0. (15)

6. To calculate vy∞, we simply take the long time limit (i.e. t → ∞) of equation (14) and find

vy∞ = lim
t→∞

vy(t) =
mg

β
. (16)
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