
Solutions to Problem Set 5
Applications of Newton’s second law

PHYS-101(en)

1. Painter on a platform

We will explain two different, equally valid approaches to this question.

The first method is to draw two separate free body diagrams, one for the painter and one for the platform
(both shown below). Since the pulleys are both massless and frictionless, the tension throughout each rope
is F , the magnitude of the force the painter applies to each rope. The painter pulls the ropes downward,
so the ropes exert an equal and opposite upward force on the painter by Newton’s third law. Thus, the
tension from the ropes pull upwards on both the painter and the platform. Additionally, the platform exerts
an upward normal force on the painter, the magnitude of which we denote as N . By Newton’s third law,
there is a reaction normal force from the painter on the platform, which has an equal magnitude N and is
in the opposite direction. Lastly, there is a downwards gravitational force m1g on the painter and m2g on
the platform.

Painter ̂y
F F

N

m1g

Platform

F F

N m2g

Let a1 denote the magnitude of the acceleration of the painter and a2 denote the magnitude of the acceleration
of the platform. Since the painter is standing on the platform, they both have the same acceleration upwards.
Thus, we know

a1 = a2 = a, (1)

where we have denoted the common acceleration by the symbol a.

Applying Newton’s second law to the painter in the vertical direction gives

2F +N −m1g = m1a, (2)

while applying Newton’s second law to the platform in the vertical direction gives

2F −N −m2g = m2a. (3)

By adding equations (2) and (3), we can eliminate the normal force entirely and find

4F − (m1 +m2)g = (m1 +m2)a. (4)
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Solving for the acceleration gives the final answer

a =
4F − (m1 +m2)g

m1 +m2
=

4F

m1 +m2
− g. (5)

A second method to find the same solution is to treat the painter and platform as a single system as we know
that they will move together. In this case, the internal forces do not appear in the free body diagram (shown
below). The four ropes still act on the combined painter-platform system with the same upward vertical
force. The gravitational force still pulls downwards, but acts on the total mass of the system (m1 +m2).

̂y

(m1 + m2)g

Painter and Platform

F F
FF

Applying Newton’s second law to the combined painter-platform system in the vertical direction gives

4F − (m1 +m2)g = (m1 +m2)a. (6)

This can be solved for the acceleration, yielding the same result as given in equation (5).

2. Blocks and pulleys

1. In this part, the vertical acceleration of block 3, a3y = a, is a given quantity. Let T be the tension in
the rope, which is constant throughout its length (as the rope is massless and the pulleys are massless
and frictionless). The free body diagram on block 3 is shown below.

Defining a coordinate system such that ŷ points up (antiparallel to gravity), we find Newton’s second
law becomes

2T −m3g = −m3a (1)

for block 3. We can solve this to find the tension

T =
1

2
m3(g − a). (2)
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The problem tells us that the tension T exceeds the static friction force limit on one block, but not
the other. To see which, we must calculate the static friction force, which requires us to know the
normal forces. Thus, we draw the free body diagrams for both blocks (shown below), where f1 and f2
represent the friction force on each. We know that the friction force (whether it be static or kinetic)
will point outwards as block 3 will tend to pull blocks 1 and 2 towards the pulleys.

Since blocks 1 and 2 do not accelerate vertically, Newton’s second law in the vertical direction gives

N1 −m1g = 0 ⇒ N1 = m1g (3)

and
N2 −m2g = 0 ⇒ N2 = m2g (4)

for blocks 1 and 2 respectively. Substituting this into the equation for the static friction force gives

f1 ≤ µsN1 = µsm1g (5)

and
f2 ≤ µsN2 = µsm2g, (6)

where we have used the same coefficient of static friction in both equations as the two blocks (and the
tables they sit on) are made of the same material. From this we conclude that block 1 does not move
and block 2 does move because the maximum static friction force is higher on block 1 since m1 > m2.

Since block 1 does not move, we can write the horizontal component of Newton’s second law as

T − f1 = 0, (7)

where we have defined x̂ to point towards the right. Solving this equation for the friction force and
substituting equation (2) gives the final answer — block 1 does not move and the friction force holding
it back points horizontally to the left with magnitude

f1 =
1

2
m3(g − a). (8)

Note we know that g > a as block 3 would only accelerate at g if it were in free fall. Any upwards
force (such as that from the rope) would only serve to slow its downwards acceleration.

2. Now consider the case where, after being released from rest, all three blocks begin to move. We are
trying to solve for the accelerations a1x, a2x, and a3y as well as the tension T in the rope. Thus, to
solve for these 4 unknowns we need four equations. The free body diagrams for all three blocks remain
the same (shown above), though all the friction forces are kinetic friction as every block is now moving.
For all objects, we will choose to use a single coordinate system with ŷ pointing upward and x̂ pointing
to the right, though other choices are possible. Given this coordinate system, Newton’s second law for
block 1 is

T − f1 = m1a1x (9)

in the horizontal direction, while it is
N1 −m1g = 0 (10)

3



PHYS-101(en) Applications of Newton’s second law - Solutions to Problem Set 5

in the vertical direction (since there is no vertical acceleration). Therefore, as in part 1, we find

N1 = m1g, (11)

so the kinetic friction force is
f1 = µkN1 = µkm1g. (12)

Substituting this into equation (9) gives

T − µkm1g = m1a1x. (13)

Next, we consider block 2. Given its free body diagram (shown above), Newton’s second law is

f2 − T = m2a2x (14)

in the horizontal direction, while it is
N2 −m2g = 0 (15)

in the vertical direction (since there is no vertical acceleration). Therefore, as in part 1, we find

N2 = m2g, (16)

so the kinetic friction force is
f2 = µkN2 = µkm2g. (17)

Substituting this into equation (14) gives

µkm2g − T = m2a2x. (18)

Lastly, we turn to block 3. Given its free body diagram (shown above), Newton’s second law is

2T −m3g = m3a3y (19)

in the vertical direction and 0 = 0 in the horizontal direction.
We can collect the equations for the three blocks (equations (13), (18), and (19)):

T − µkm1g = m1a1x (20)

µkm2g − T = m2a2x (21)

2T −m3g = m3a3y. (22)

g

x1 x2
m2m1

m3

y3

̂y
̂x

s3

s2s1
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However, we are still missing one equation (given that we have four unknowns and only three equations).
This is the constraint condition. More specifically, studying the geometry of the system (see the figure
above), we see that the motion of the three blocks is related by a geometrical constraint: because the
rope is inextensible (i.e. does not stretch), its length L is constant. However, quantifying its length is
complicated given that the blocks move. There are many different approaches to do this, which will
give the same answer. We choose to define a single coordinate system for all three blocks and place
its origin equidistant between the center of the two fixed pulleys (as shown above). Then we quantify
some missing fixed distances (e.g. the radii of the pulleys R), which, as we will see, won’t end up
mattering as they don’t change as the blocks move. Finally, we can add up all the sections of rope to
express the total length of the rope as

L = (−x1+s1)+
π

2
R+(−y3+s3)+πR+(−y3+s3)+

π

2
R+(x2−s2) = −x1+x2−2y3+s1−s2+2s3+2πR.

(23)
Note that we have accounted for the fact that some of the positions (e.g. x1 and y3) will be negative,
given our definitions of x̂ and ŷ. If we differentiate equation (23) twice with respect to time, we find

0 = −a1x + a2x − 2a3y. (24)

Note that all of the unknown distances, like R and s1, have disappeared as they don’t change with
time. Equation (24) is the equation that we were missing. We now have four equations (i.e. (20), (21),
(22), and (24)) with which we can solve for the four unknowns (a1x, a2x, a3y, and the tension T ).

We solve equation (20) to find

a1x =
T

m1
− µkg, (25)

equation (21) to find

a2x = µkg −
T

m2
, (26)

and equation (22) to find

a3y =
2T

m3
− g. (27)

Substituting these three results into equation (24) gives

0 = −
(

T

m1
− µkg

)
+

(
µkg −

T

m2

)
− 2

(
2T

m3
− g

)
. (28)

We rearrange this equation to find that the tension is

T =
2g(µk + 1)(

1
m1

+ 1
m2

+ 4
m3

) . (29)

We can now substitute our solution for the tension to find the accelerations. Equation (25) becomes

a1x =
2g(µk + 1)(

1 + m1

m2
+ 4m1

m3

) − µkg, (30)

equation (26) becomes

a2x = µkg −
2g(µk + 1)(

m2

m1
+ 1 + 4m2

m3

) , (31)
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and equation (27) becomes

a3y =
4g(µk + 1)(

m3

m1
+ m3

m2
+ 4

) − g. (32)

Note that the signs of these accelerations depend on the coordinate system used and so may be different
in your solution. However, the tension given by equation (29) is a physical force and is independent of
the choice of coordinates.

3. Tension in massive rotating rope

Given the circular motion of this problem, it is most convenient for us to use cylindrical coordinates. Since
the rope has mass, the tension will not be constant along its length. However, since it is uniform, it has a
constant linear mass density λ = m1/ℓ, which is everywhere equal to the total mass of the rope m1 divided
by its total length ℓ. We can divide the rope into very small pieces of length ∆ρ in the radial direction,
which each have a mass of

∆m = λ∆ρ =
m1

ℓ
∆ρ. (1)

̂z

ℓ

̂ρ

T(ρ + Δρ)T(ρ)

ρ
Δρ

T(ℓ)

Piece of rope

Mass m2

We start by considering a piece of the rope that is located an arbitrary distance ρ from the shaft, whose
free body diagram is shown above. The net radial force on the piece is equal to the difference between the
tension on either side ∑

Fρ = T (ρ+∆ρ)− T (ρ) = ∆T, (2)

which is simply the change in tension across the piece ∆T . Given that the piece is executing uniform circular
motion, we know it is experiencing a centripetal acceleration of a⃗ = −ρω2ρ̂. Thus, the radial component of
Newton’s second law must be ∑

Fρ = −∆mω2ρ. (3)

Combining equations (1), (2), and (3) gives

∆T = −∆mω2ρ = −m1

ℓ
∆ρω2ρ. (4)

Dividing by ∆ρ, we see that
∆T

∆ρ
= −m1

ℓ
ω2ρ. (5)
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In the limit that our very small pieces become infinitesimally small (i.e. ∆ρ → 0), equation (5) becomes the
differential equation

dT

dρ
= −m1

ℓ
ω2ρ. (6)

From this, we see immediately that the tension decreases with increasing radius as m1, ℓ, ω2, and ρ are all
positive quantities. We can solve this differential equation by direct integration of both sides of the equation
according to ∫

dT

dρ
dρ = −m1ω

2

ℓ

∫
ρdρ. (7)

This simplifies to

T (ρ) = −m1ω
2

2ℓ
ρ2 + C, (8)

where C is an integration constant that we still need to determine. To find it, we need to determine the
value of the tension at some location. To do so, we use the fact that the only radial force applied at the
end of the rope is by the mass m2. Using the free body diagram for mass m2 (shown above), we see that
Newton’s second law in the radial direction is

−T (ℓ)ρ̂ = −m2ω
2ℓρ̂ ⇒ T (ℓ) = m2ω

2ℓ. (9)

Evaluating equation (8) at ρ = ℓ and using equation (9) allows us to find

C =
m1ω

2

2ℓ
ℓ2 +m2ω

2ℓ. (10)

Substituting this into equation (8), we arrive at the final answer of

T (ρ) = −m1ω
2

2ℓ
ρ2 +

m1ω
2

2ℓ
ℓ2 +m2ω

2ℓ =
m1ω

2

2ℓ
(ℓ2 − ρ2) +m2ω

2ℓ = ω2

(
m1

(ℓ2 − ρ2)

2ℓ
+m2ℓ

)
. (11)

4. Racing around a turn

The most challenging part of this problem is understanding and determining the physical meaning of each
of the quantities from our derivation in class. In this solution we will simply state the physical meanings,
but these can be seen and justified through the derivation presented in class. The first thing to note is that
the mass of your own car m1 does not matter at all in this problem. We already know the motion of your
car (and importantly the motion of the reference frame it defines) and we are not interested in calculating
the forces on your car.

Since the cars are executing circular motion, we can define a fixed cylindrical coordinate system F with
the origin at the center of the circular curve and the ẑ direction defined such that ω1 and ω2 are both in
the positive ẑ direction. Additionally, we observe that both cars are moving with the same angular velocity,
which we will call ω⃗ = ωẑ = ω1ẑ = v1/R1ẑ = ω2ẑ = v2/R2ẑ. Next, we can write down the general coordinate
system transformation for forces between the fixed inertial reference frame F and a non-inertial reference
frame N rotating with an angular velocity ω⃗1. As derived in class, it is

ΣF⃗N = ΣF⃗F −m2A⃗FN − 2m2ω⃗1 × v⃗N −m2α⃗1 × r⃗N −m2ω⃗1 × (ω⃗1 × r⃗N ) . (1)

Here ΣF⃗N is the sum of the forces acting on your friend’s car, as perceived in the non-inertial reference frame
N (in this case defined by the motion of your car). This is what we want to determine in order to solve
the problem. The quantity ΣF⃗F is the sum of the standard forces acting on your friend’s car in the fixed
inertial reference frame F (i.e. someone standing at the center of the curve watching the cars drive by). In
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the inertial reference frame, your friend’s car is moving with uniform circular motion of radius R2, so the
sum of the forces acting on them must be a centripetal force

ΣF⃗F = −m2ω
2
2R2ρ̂. (2)

In practice this would be provided by the static friction force between the car tires and the road. Note that
all the masses that appear are m2 because we are only considering the forces acting on your friend’s car,
which has mass m2.

The rest of the terms represent fictitious forces. The first is the translational acceleration fictitious force.
The quantity A⃗FN is the acceleration of the reference frame N , as seen from the fixed frame F . Since the
reference frame N is defined by your car and you are executing uniform circular motion in frame F , we know
that the acceleration must be centripetal

A⃗FN = −ω2
1R1ρ̂. (3)

Note that the angular speed and radius are that of your car (i.e. ω1 and R1).

The next term is the Coriolis force, which includes the velocity of your friend’s car v⃗N as seen by you in frame
N . Intuitively, since both cars are traveling with the same angular velocity ω1 = ω2, from your perspective
your friend’s car is staying stationary beside you. Her position relative to you would be a constant vector
pointing outwards

r⃗N = (R2 −R1)ρ̂. (4)

Then, taking a derivative in time justifies our intuitive argument that

v⃗N = 0. (5)

Note, in this step we have considered the unit vectors to be constant as we are determining how the position
changes with time from the perspective of you within the reference frame N . In other words, from your
perspective facing forwards in your car (i.e. continuously facing in the ϕ̂ direction) and believing yourself to
be at rest, your friend’s position is not changing with time. Thus, the Coriolis force is zero.

The next term is the Euler force, where α⃗1 = ω̇1ẑ is the angular acceleration of reference frame N . Since
you are driving at a constant speed, ω̇1 = 0, so α⃗1 = 0 and the Euler force disappears.

The final term is the centrifugal force, where we have already determined that the position of your friend’s
car from your perspective in frame N is given by equation (4). Thus, the centrifugal force is non-zero and
equation (4) can be substituted into equation (1).

Collecting all of the results from above, we can rewrite equation (1) as

ΣF⃗N = −m2ω
2
2R2ρ̂+m2ω

2
1R1ρ̂−m2ω1ẑ × (ω1ẑ × (R2 −R1)ρ̂) . (6)

Using the fact that ω = ω1 = ω2 and taking the scalars out in front of the cross products allows us to simplify
to

ΣF⃗N = −m2ω
2(R2 −R1)ρ̂−m2ω

2(R2 −R1)ẑ × (ẑ × ρ̂) . (7)

In the right-handed (ρ, ϕ, z) coordinate system, we can use the right hand rule to see that ẑ × ρ̂ = ϕ̂ and
ẑ × (ẑ × ρ̂) = ẑ × ϕ̂ = −ρ̂, so

ΣF⃗N = −m2ω
2(R2 −R1)ρ̂+m2ω

2(R2 −R1)ρ̂ = 0. (8)

Thus, from your perspective in the non-inertial reference frame N of your car, you see no net force acting
on your friend’s car. This differs from a fixed reference frame F , in which you would observe a physical
centripetal force (provided by static friction between your friend’s car and the road) as given by equation
(2). The lack of a net force in frame N arises from a cancellation between the physical centripetal force, the
translational acceleration fictitious force, and the centrifugal fictitious force.
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Since the net force is zero, Newton’s first or second laws tells us that the acceleration a⃗N is zero. Newton’s
first and second laws (but not the third) are still valid in non-inertial reference frames, as long as all of the
fictitious forces are properly included. Alternatively, a⃗N = 0 can be seen by taking the time derivative of
equation (5).

5. Homework: Angular speed of coins

1. We choose to use a cylindrical coordinate system (because of the circular motion). For this part of the
problem, it would be more efficient to analyze the situation by considering the two coins as a single
combined object, which enables us to ignore internal forces (e.g. the normal and friction forces between
the two coins). However, it will be helpful for the second part of this problem to treat the two coins
separately. Thus, we will start by drawing separate free body diagrams for each coin (shown below).
We have the weight of each coin mg⃗, the forces of static friction between the coins (both action f⃗bt
and reaction f⃗tb = −f⃗bt), the force of static friction from the turntable on the bottom coin f⃗gb, the
normal forces between the coins (both action N⃗bt and reaction N⃗tb = −N⃗bt), and the normal force of
the turntable on the bottom coin N⃗gb. Here the top coin is denoted by the t subscript, the bottom
coin by b, and the turntable by g.

R

ω
̂ρ̂ẑϕ

Top coin

Nbt

fbt
mg

Bottom coin
Ngb

ftb
mgNtb

fgb

To determine the magnitude of the radial force exerted by the turntable on the bottom coin f⃗gb, we
will apply Newton’s second law to each coin. A key point is that the static friction between the coins
form an action-reaction pair, so the static friction that makes the top coin accelerate inward also acts
to push the bottom coin radially outward.
The radial component of Newton’s second law for the bottom coin is

ftb − fgb = −mRω2, (1)

where we’ve used that the centripetal acceleration is a⃗ = −Rω2ρ̂. The radial component of Newton’s
second law on the top coin is given by

−fbt = −mRω2 ⇒ fbt = mRω2. (2)

Since the static friction force of the bottom coin on the top coin fbt and the static friction force of
the top coin on the bottom coin ftb are an action-reaction pair, Newton’s third law requires that their
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magnitudes respect fbt = ftb. Substituting this into equation (2) gives

ftb = mRω2. (3)

Then substituting equation (3) into equation (1) yields

mRω2 − fgb = −mRω2. (4)

Hence the turntable exerts a inward radial force on the bottom coin with a magnitude of

fgb = 2mRω2. (5)

Comparing with equation (2), we see that the static friction force on the bottom coin from the turntable
is twice as large as the static friction force on the top coin.

2. When two surfaces slip, it is because the static friction force required to hold them in place has exceeded
its maximum possible strength of fmax = µN . To calculate this, we must first find the magnitude of
the normal force N between the relevant surfaces. Applying Newton’s second law to the top coin in
the vertical ẑ direction yields

Nbt −mg = 0, (6)

where we note that none of the objects in this problem are accelerating vertically so az = 0. Thus, we
can calculate the normal force of the bottom coin on the top coin to be

Nbt = mg. (7)

Since this force forms an action-reaction pair with the normal force of the top coin on the bottom coin,
we know that their magnitudes follow Ntb = Nbt = mg.

Substituting equation (7) into the form of the static friction force, we see that the top coin will slip
when the static friction between the two coins reaches its maximum value of

fmax
bt = µ2Nbt = µ2mg. (8)

We then substitute this result into equation (2) to find

µ2mg = mR (ωmax
t )

2
, (9)

where ωmax
t is the maximum angular speed for which the top coin does not slip. Rearranging this, we

find

ωmax
t =

√
µ2g

R
. (10)

Newton’s second law for the bottom coin in the ẑ direction is

Ngb −Ntb −mg = 0. (11)

Noting again from Newton’s third law that Ntb = Nbt = mg, we can rearrange this equation to show
that the normal force between the turntable and the bottom coin is

Ngb = 2mg. (12)

Using this and the form of the static friction force, we see that the bottom coin will slip when the
static friction between it and the turntable exceeds

fmax
gb = µNgb = 2µ1mg. (13)
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From equation (5), we can determine that the maximum angular speed after which the bottom coin
slips will satisfy

2µ1mg = 2mR (ωmax
b )

2
. (14)

Rearranging we find that

ωmax
b =

√
µ1g

R
. (15)

Comparing equations (10) and (15) and remembering that µ2 < µ1, we see that

ωmax
t < ωmax

b . (16)

Thus, as we increase the angular velocity of the turntable, the top coin will slip first.
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