
Solutions to Problem Set 4
Circular motion
PHYS-101(en)

1. Circular motion: banked turn

1. In this part, the static friction can be considered to be Fs ≈ 0 because the coefficient of static friction
is so small. As we are analyzing circular motion, we choose a cylindrical coordinate system as shown
in the figure below, where the unit vector ρ̂ points in the outward radial direction, ϕ̂ points into the
page around the curve, and ẑ points upwards. The free body diagram on the car is also shown.
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Given the free body diagram and the form of the centripetal acceleration a⃗ = −(v20/R)ρ̂ for circular
motion, Newton’s second law

∑
F⃗ = ma⃗ in the ρ̂ direction is

−N sinα = −mv20
R

.

We can tell that the trigonometric function in this equation is sine rather than cosine by imagining the
case that α = 0. If α = 0, the ρ̂ component of N⃗ would be 0. Since sin(0) = 0 and cos(0) = 1, the ρ̂

component of N⃗ should contain sin(α). In the ẑ direction Newton’s second law is

N cosα−mg = maz.

Because the car is traveling in a circle and does not slide up or down, the acceleration in the ẑ direction
is zero az = 0. Thus, the components of Newton’s second law become

N sinα =
mv20
R

and
N cosα = mg.

Dividing these equations to eliminate N yields

tanα =
v20
Rg

,

which we can solve for the speed v0 that is necessary to maintain circular motion. We find

v0 =
√

Rg tanα.
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2. We now reconsider the problem with a non-zero coefficient of static friction µs. In this part, the speed
of the car v = vmin is so slow that it just barely doesn’t slip down the bank. The static friction force
must point up the incline as we know that it is preventing the car from slipping down. The free body
diagram on the car is shown in the figure below, from which we see that Newton’s second law is

−N sinα+ Fs cosα = −mv2

R

in the ρ̂ direction and
N cosα+ Fs sinα−mg = maz

in the ẑ direction.
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When v = vmin, the car still isn’t slipping so the acceleration in the ẑ direction az = 0 is still zero, but
the static friction has its maximum magnitude of Fs = µsN . Thus, Newton’s second law becomes

−N sinα+ µsN cosα = −mv2min

R

and
N cosα+ µsN sinα = mg.

Dividing these equations to eliminate N yields

− sinα+ µs cosα

cosα+ µs sinα
= −v2min

Rg
,

which can then be solved for the minimum speed necessary to avoid sliding down the embanked turn

vmin =

√
Rg

sinα− µs cosα

cosα+ µs sinα
=

√
Rg

tanα− µs

1 + µs tanα
.

The limiting cases of this result can be checked. In the limit µs → 0, vmin →
√
Rg tanα, which is

consistent with the result for part 1. In the limit µs → tanα, vmin → 0, which is the solution for the
static case of a block sitting on an incline.

3. We now consider the case where the car is at the maximum speed v = vmax such that it is almost
slipping up the inclined plane. For this case, the direction of static friction now points down the incline
plane and the free body diagram is shown below.
The analysis is identical to the previous case, except the static friction force changes sign. Thus
Newton’s second law become

−N sinα− Fs cosα = −mv2

R
(1)

in the ρ̂ direction and
N cosα− Fs sinα−mg = 0 (2)
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α

R

⃗vN

mgFs

̂z

̂ϕ ̂ρ

in the ẑ direction. When v = vmax, the static friction has its maximum value of Fs = µsN , so Newton’s
second law becomes

−N sinα− µsN cosα = −mv2max

R
and

N cosα− µsN sinα = mg.

Dividing these two equations to eliminate N yields

− sinα− µs cosα

cosα− µs sinα
= −v2max

Rg
,

which can then be solved for the maximum speed vmax to avoid sliding up the embanked turn

vmax =

√
Rg

sinα+ µs cosα

cosα− µs sinα
=

√
Rg

tanα+ µs

1− µs tanα
.

This solution is identical to that of part 2, except the sign in front of µs is opposite.
The figure below shows a plot of v2/(Rg) versus µs when α = 45◦. The shaded area represents the set
of (µs, v

2/(Rg)) points where the car remains in a circular path. Above the shaded region the car will
slid up and out, while below the shaded region the car will slide down and in.

μ
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Skid outwards

Follow circular path

Skid inwards

4. The analysis is the same as in part 3, but the magnitude of the static friction is less than its maximum
value. However, now the problem statement gives us the velocity v as a known quantity. Hence, we
can combine equations (1) and (2) to eliminate N and solve for Fs. To do so, we multiply (1) by cosα
and (2) by sinα to find

−N sinα cosα− Fs cos
2 α = −mv2

R
cosα
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and
N cosα sinα− Fs sin

2 α−mg sinα = 0.

Adding these two equations yields

−Fs

(
cos2 α+ sin2 α

)
−mg sinα = −mv2

R
cosα.

Using the identity cos2 α+ sin2 α = 1 gives

Fs = m

(
v2

R
cosα− g sinα

)
for the magnitude of the static friction force.

2. Swinging ball

1. The free body diagram for the ball is shown below. Note the ϕ̂ component of the tension arises because
Sally’s hand does not stay in the center of the circle, so the string does not pull precisely in the radial
direction. From the free body diagram, we see that Newton’s second law

∑
F⃗ = ma⃗ in the radial

g
mg

Tρ

Tϕ

θ

direction is
−Tρ −mg cos θ = −mRω2,

where we have used the fact that the centripetal acceleration needed for circular motion is a⃗ = −Rω2ρ̂.
Rearranging, we find the tension to be

Tρ = mRω2 −mg cos θ.

Because the angular frequency is related to the period through ω = 2π/t0, the magnitude of the radial
component of the tension in the string is

Tρ(θ) =
4π2mR

t20
−mg cos θ.

2. A string cannot push. Thus, the magnitude of the radial component of the tension in the string Tρ

must be greater than zero at all points in the circular motion. If Tρ < 0 the ball will move inwards
and the path will no longer be circular. This means that, using the final result from part 1, circular
motion will not be maintained if

Tρ(θ) =
4π2mR

t20
−mg cos θ < 0
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at any point along the trajectory. From this equation we see that θ = 0 (i.e. the top of the circle)
is the most prone location to breakdown. This is because the gravitational term −mg cos θ makes its
largest negative contribution to the required radial force Tρ (since cos(0) = 1 is the maximum value of
cos θ). Thus, taking θ = 0 and solving the above equation for the period t0 gives the condition for the
breakdown of circular motion. We find that circular motion will not be maintained if

t0 > 2π

√
R

g
.

3. Spiral motion of a point mass

1. We start by representing the system in polar coordinates, as shown below. Note that, until we solve the
equations of motion, we don’t know the direction of v⃗ and, hence, F⃗2, so we draw it with an arbitrary
direction (and include both radial and azimuthal components to be as general as possible).
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⃗F 2̂ϕ
P
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2. We are given that the forces acting on the mass are

F⃗1 = −mk2r⃗

F⃗2 = −2mλv⃗ where 0 < λ < k.

To calculate motion from forces, we will apply Newton’s second law∑
F⃗ = F⃗1 + F⃗2 = ma⃗,

but we must first rewrite F⃗1, F⃗2, and a⃗ in polar coordinates. The position vector in polar coordinates
is r⃗ = ρρ̂ (which does not include a ϕ̂ component because the direction of the radial unit vector ρ̂
changes with time such that it always points at the point mass). Thus, the spring-like force can be
written as

F⃗1 = −mk2 (ρρ̂) .

The problem statement gives the form of the velocity in polar coordinates, which we can substitute to
write the friction-type force as

F⃗2 = −2mλ
(
ρ̇ρ̂+ ρϕ̇ϕ̂

)
.

Lastly, the problem statement tells us that the acceleration vector is

a⃗ =
(
ρ̈− ρϕ̇2

)
ρ̂+

(
ρϕ̈+ 2ρ̇ϕ̇

)
ϕ̂
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in polar coordinates.

Substituting these three equations into Newton’s second law gives the equations of motion

ρ̈+ 2λρ̇+
(
k2 − ϕ̇2

)
ρ = 0

in the ρ̂ direction and
ρϕ̈+ 2 (ρ̇+ λρ) ϕ̇ = 0

in the ϕ̂ direction. Since ϕ̇ ̸= 0 and ϕ̈ = 0, the equation in the ϕ̂ direction simplifies to

ρ̇ = −λρ.

3. Given the solution form in the problem statement, we can immediately solve the ϕ̂ equation and use
the initial condition ρ(0) = ρ0 = C to find

ρ (t) = ρ0e
−λt.

We can then rearrange the ρ̂ equation to isolate ϕ̇ according to

ϕ̇2 =
ρ̈

ρ
+

2λρ̇

ρ
+ k2.

Substituting our solution for ρ(t), we find

ϕ̇ = ±
√
k2 − λ2,

where we note that this is a real number as the problem statement tells us that k > λ. Integrating this
equation with respect to time and using the initial condition that ϕ (0) = 0 to determine the integration
constant, we find

ϕ (t) = ±t
√

k2 − λ2.

Solving this for t and substituting it into our expression for ρ(t) gives

ρ (ϕ) = ρ0e
∓ λϕ√

k2−λ2 .

From the problem statement we know that the velocity in polar coordinates is

v = ρ̇ρ̂+ ρϕ̇ϕ̂.

Substituting our solutions from above, we find

v⃗(t) = −ρ(t)
(
λρ̂∓

√
k2 − λ2ϕ̂

)
.

The speed is just the norm of this, which simplifies to

v(t) = kρ(t).

4. Circular motion of the earth
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1. The rotational period of the earth is given by

Te = (23 hr)
(
60

min
hr

)(
60

s
min

)
+ (56 min)

(
60

s
min

)
+ 4 s = 86164 s,

which is less than 24 hr. Twenty-four hours is one solar day (i.e. noon to noon), while the above period
is one “sidereal” day. “Sidereal” means with respect to the fixed stars and, if you think about things,
you should be able to see why the two are different. A person at EPFL undergoes circular motion
about the axis of the earth (as shown in the picture). The radius of the orbit is given by

R = Re sin θ,

where θ is the angle between EPFL and the axis of rotation as shown in the figure. Since the latitude
λ = 46◦31′N = (46 + 31/60)◦ = 46.52◦ is measured from the equator,

θ =
π

2
− λ

and
sin θ = sin

(π
2
− λ

)
= cosλ

using trigonometric identities. The angle θ is sometimes called the “colatitude”. The radius of the orbit
of a person at EPFL is

R = Re cosλ =
(
6.38× 106 m

)
cos(46.52◦) = 4.39× 106 m.

Because the circular motion is uniform, during one period of rotation T the person travels a distance

d = 2πR = vT

at a constant speed v, where d = 2πR is the circumference. Solving for the speed gives

v =
2πR

T
.

Thus a person at EPFL has a velocity of

v⃗ =
2πR

T
ϕ̂ =

2π
(
4.39× 106 m

)
(86164 s)

ϕ̂ =
(
320

m
s

)
ϕ̂,

where ϕ̂ is the unit vector pointing east.

7



PHYS-101(en) Circular motion - Solutions to Problem Set 4

2. The centripetal acceleration is given by

a⃗ = −v2

R
ρ̂ = − (320 m/s)2(

4.39× 106 m
) ρ̂ = −2.33× 10−2 m

s2
ρ̂,

where −ρ̂ is the unit vector pointing towards the closest point on the axis of rotation (not towards the
center of the earth).

5. Homework: Pushing a book against a wall

1. Let m, µs, and α be defined as in the problem and let F⃗f represent the friction force. Additionally,
let F⃗p be the force of your push on the book. We will define our coordinate system such that x > 0
corresponds to the wall, so that you are pushing from the x < 0 side. The free body diagrams for both
cases are given below. Note that the static friction force opposes the direction that the book is almost
moving in.

x

y

α FpFf

mg

N

About to fall down

x

y
α Fp

Ff
mg

N

About to slip up

2. We first consider the case when the book is almost falling down. The frictional force points up and
has its maximum value, meaning it has a norm given by

Ff = µsN.

Applying Newton’s second law and requiring equilibrium (i.e. a⃗ = 0) gives

N = Fp sinα

in the x̂ direction and
µsN + Fp cosα−mg = 0

in the ŷ direction. Using these two equations to eliminate the normal force N and solve for Fp gives
the solution of

Fp =
mg

cosα+ µs sinα
.

Next we consider the case when the book is about to slip up. The frictional force points down and has
its maximum value, meaning it has a norm given by

Ff = µsN.

Applying Newton’s second law and requiring equilibrium (i.e. a⃗ = 0) gives

N = Fp sinα
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in the x̂ direction and
−µsN + Fp cosα−mg = 0

in the ŷ direction. Using these two equations to eliminate the normal force N and solve for Fp gives
the solution of

Fp =
mg

cosα− µs sinα
.

3. To find the force for which the friction is zero, we can take the limit that µs → 0 in either of the
solutions to part 2. This gives

Fp =
mg

cosα
.

Alternatively, one could draw the free body diagrams without the friction force and solve the resulting
components of Newton’s second law, which gives the same answer.

When α = 0, Fp = mg/ cos (0) = mg and when α = 90◦, Fp = mg/ cos (90◦) → ∞, which are both
consistent with our intuition.
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