
Solutions to Problem Set 3
Free body diagrams

PHYS-101(en)

1. Balancing forces

1. The forces exerted on the ball are the weight W = mg, the tension force exerted by the right cable F1,
and the tension force exerted by the left cable F2.

x

y

αβ

m
F2

F1

W
2. The forces in the x̂ direction are

Wx = 0

F1x = F1 sinα

F2x = −F2 sinβ

and the forces in the ŷ direction are
Wy = −W = −mg

F1y = F1 cosα

F2y = F2 cosβ.

3. The ball undergoes no acceleration, so Newton’s second law is ΣF⃗ = 0 and we have

W⃗ + F⃗1 + F⃗2 = 0. (1)

We project this in the x̂ direction to get

F1 sinα− F2 sinβ = 0.

Rearranging, we find

F1 = F2
sinβ

sinα
. (2)

We then project equation (1) in the ŷ direction to get

F1 cosα+ F2 cosβ −mg = 0. (3)
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Substituting (2) into (3) gives

F2
sinβ

sinα
cosα+ F2 cosβ −mg = 0 ⇒ F2

(
sinβ

sinα
cosα+ cosβ

)
= mg.

Solving for F2 gives

F2 =
mg

sin β
sinα cosα+ cosβ

=
mg sinα

sinβ cosα+ sinα cosβ
= mg

sinα

sin (α+ β)
,

where in the last step we have used the sine angle sum trigonometric identity. By substituting this
into equation (2) we find the final answer for F1 of

F1 = mg
sinβ

sin (α+ β)
.

From equation (2), we see that, if α = β, then F1 = F2 as would be expected from the symmetry of
the problem.

2. Triangular trolley

1. The free body diagrams for both trolleys are shown below. The forces on the small trolley are the
weight mg⃗ and the normal force from the triangular trolley S⃗. The forces on the triangular trolley are
the weight Mg⃗, the normal force from the small trolley Q⃗, the normal force from the ground T⃗ , and
the external force F⃗ .

̂y
̂x

2. The forces on the small trolley are the weight mg⃗ and the normal force S⃗ from the triangular trolley
acting on the small trolley. Thus, from Newton’s second law the acceleration of the small trolley a⃗ is

mg⃗ + S⃗ = ma⃗ ⇒ a⃗ = g⃗ +
S⃗

m
.

Projecting this in the x̂ and ŷ directions gives

ax =
S sin θ

m
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and
ay =

S cos θ

m
− g.

The forces on the triangular trolley are the weight Mg⃗, the externally applied force F⃗ , the normal
force T⃗ from the ground acting on the triangular trolley, and the normal force Q⃗ from the small trolley
acting on the triangular trolley.

We can recognize that S⃗ and Q⃗ are action-reaction pairs. Thus, from Newton’s third law we know that

Q⃗ = −S⃗.

Using this, Newton’s second law for the triangular trolley becomes

Mg⃗ + T⃗ + F⃗ + Q⃗ = MA⃗ ⇒ A⃗ = g⃗ +
T⃗

M
+

F⃗

M
− S⃗

M
.

Projecting this in the x and y directions gives

Ax =
F

M
− S sin θ

M

and
Ay = −g +

T

M
− S cos θ

M
,

where F and T are the norms of F⃗ and T⃗ respectively.

Since the triangular trolley is not accelerating vertically, we can take Ay = 0 to show that

T = Mg + S cos θ.

We want to find the force that leaves the small trolley immobile on the larger one, so we require

Ax = ax

Ay = ay,

which corresponds to
F

M
− S sin θ

M
=

S sin θ

m

0 =
S cos θ

m
− g

respectively. From the second equation we see that

S =
mg

cos θ
,

which can be substituted into the first to find the final answer,

F = g (M +m) tan θ.

3. Force with friction

The free body diagram for the books on their own is shown below, where we have the normal force of the
table on the books N⃗b, the static friction force from the table on the books f⃗s, and the weight of the books
mg⃗.
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There is no motion in the ŷ direction, so Newton’s second law tells use that the weight is balanced by the
normal force Nb according to

Nb −mg = 0 ⇒ Nb = mg. (4)

The only horizontal force on the books is the static friction force fs, which is equal to its maximum value
of fs = µsNb when Carl is applying the maximum force for which the books do not slide. By applying
Newton’s second law in the x̂ direction, we find∑

F = ma ⇒ fs = ma ⇒ µsNb = ma ⇒ a =
µsNb

m
.

Therefore, using equation (4) we see that the acceleration is

a = µsg. (5)

Now consider the table, whose free body diagram is shown below and includes a lot of forces. There is the
normal force from the ground N⃗T , the force applied by Carl F⃗ , the kinetic friction force from the floor f⃗d,
the weight mg⃗, the normal force from the books on the table −N⃗b, and the static friction force from the
books −f⃗s. Note that the static friction force on the table is an action-reaction pair with the static friction
force in the free body diagram for the books, so it must be equal in magnitude and opposite in direction.
Similarly the normal force from the books on the table is an action-reaction pair with the normal force in
the free body diagram for the books.

In order to avoid sliding, the table and books must accelerate identically. The kinetic friction force f⃗d
between the table and the floor has a magnitude of fd = µdNT .

Since the table does not accelerate in the ŷ direction, Newton’s second law gives

NT −Nb −Mg = 0 ⇒ NT = Nb +Mg = (m+M) g, (6)

where we have used equation (4). In the x̂ direction, Newton’s second law for the table is

F − fd − fs = Ma.
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By substituting equations (4) through (6) and the forms of the friction forces (i.e. fs = µsNb and fd = µdNT )
from above, we obtain

F − µdNT − µsNb = Mµsg ⇒ F − µd (m+M) g − µsmg = Mµsg.

Solving for this equation for F gives the final answer of

F = µd (m+M) g + µs (m+M) g ⇒ F = (µd + µs) (M +m) g

and we can plug in numbers to find
F = 159 N.

4. Challenge: Rugby up-and-under play

As indicated in the title, this problem is challenging. We start by defining the coordinate system such that
y is upwards in the vertical direction and x is in the horizontal direction of the initial velocity of the ball.
The origin is located at the position where the ball is kicked. We will denote the initial speed of the ball
by vbi, which we know must be less than vmax

bi . Using our general solution for projectile motion along with
the initial position (x0 = 0 and y0 = 0) and velocity (vx0 = vbi cosα and vy0 = vbi sinα), we can write the
equations of motion for the ball as

a⃗b(t) = −gŷ (7)

v⃗b(t) = vx0x̂+ (−gt+ vy0) ŷ = vbi cosαx̂+ (−gt+ vbi sinα) ŷ (8)

r⃗b(t) = (vx0t+ x0) x̂+
(
−g

2
t2 + vy0t+ y0

)
ŷ = vbit cosαx̂+

(
−g

2
t2 + vbit sinα

)
ŷ. (9)

1. We want to find the distance at which the player catches the ball. To do so, we must first find the time
at which the ball returns to the ground, which we will call t1. The condition for the ball returning to
the ground is yb(t1) = 0, so we can substitute the ŷ component of equation (9) to find

yb(t1) = 0 = −g

2
t21 + vbit1 sinα. (10)

This equation has two solutions, t1 = 0 and

t1 =
2vbi
g

sinα. (11)

The first solution corresponds to the time of the kick and the second corresponds to the catch, so the
second solution is what we’re looking for. By substituting this time into the equation for the horizontal
position of the ball from equation (9), we can find the distance at which the ball lands to be

xb(t1) = vbit1 cosα =
2v2bi
g

sinα cosα. (12)

Now we must analyze the player’s motion. Since she runs at a constant velocity (that we will call vp)
and her initial position is at the origin, her position is given by

xp(t) = vpt. (13)

Thus, at time t = t1 her position is

xp(t1) = vpt1 =
2vbivp

g
sinα, (14)
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where we have made use of equation (11).

The ball and the player must be at the same location for a catch to occur, which we will call ℓ =
xb(t1) = xp(t1). Thus, we require equations (12) and (14) to be equal, which allows us to determine
the initial angle of the ball

vbi cosα = vp ⇒ cosα =
vp
vbi

⇒ α = arccos

(
vp
vbi

)
. (15)

To use this information to find a simple expression for ℓ, we can draw the triangle implied by this
equation (shown below). After using the Pythagorean theorem to find that the length of the missing

vp

vbi

α

side is
√
v2bi − v2p, we see that

sinα =

√
v2bi − v2p

vbi
. (16)

Substituting this result into equation (14) (or equation (12)) gives

ℓ =
2

g
vp

√
v2bi − v2p. (17)

This is the expression for the distance at which the ball lands, which we want to maximize. To do so,
we can immediately see that we want to increase the initial velocity of the ball as much as possible by
setting

vbi = vmax
bi . (18)

This is also intuitively obvious. The harder you kick the ball, the more time it will be in the air and
the more time the player will have to run. The dependence on vp is more complicated. We see that
increasing it will increase the multiplying factor in front of the square root (thereby increasing ℓ), but
it will also decrease the quantity in the square root (thereby decreasing ℓ). To find the maximum, we
can remember our past analysis of projectile motion. The maximum vertical position occurred where
the vertical velocity (which is the derivative of the vertical position) went to zero. This is a general
technique to find the extrema (i.e. both maxima and minima) of functions: calculate the derivative
and solve for the locations at which it is zero. Thus, we take equation (17) and calculate

dℓ

dvp
= 0 =

2

g

√
v2bi − v2p +

2

g
vp

1

2

−2vp√
v2bi − v2p

 =
2

g

√
v2bi − v2p −

2

g

v2p√
v2bi − v2p

=
2

g
√
v2bi − v2p

(
v2bi − 2v2p

)
(19)

using the chain rule and product rules. Simplifying this expression, we find that there is only one
extrema and it occurs at

vp =
vbi√
2
. (20)

6



PHYS-101(en) Free body diagrams - Solutions to Problem Set 3

Substituting this result into equation (17) and comparing with any other choice of vp (e.g. vp = 0), we
can verify that this extrema is, in fact, a maxima (as opposed to a minima). Thus, this is the optimal
speed that the player would ideally run at. If this isn’t possible because vp = vbi/

√
2 > vmax

p , the
player should run as close as possible to this value, namely at their maximum speed of vmax

p . Therefore,
we have to explicitly distinguish these two possibilities by writing

vp =

{
vmax
p if vbi/

√
2 > vmax

p

vbi/
√
2 otherwise

. (21)

Combining equations (17), (18), and (21), we find that the maximum distance to catch the ball is

ℓ =

{
(2vmax

p /g)
√
(vmax

bi )2 − (vmax
p )2 if vmax

bi /
√
2 > vmax

p

(vmax
bi )2/g otherwise

. (22)

Combining equations (15), (18), and (21), we find that ideal angle to kick the ball is

α =

{
arccos

(
vmax
p /vmax

bi

)
if vmax

bi /
√
2 > vmax

p

arccos
(
1/
√
2
)
= π/4 = 45◦ otherwise

. (23)

The interpretation of these results is that if you are sufficiently fast (i.e. vmax
p is sufficiently large), the

second case in all three equations applies. In this case, you want to kick the ball at α = 45◦, as this is
the angle that maximizes the distance traveled by the ball, and run below your maximum speed, such
that you arrive at the same time and place as the ball when it lands. However, the more realistic case
is the first, that you can out-kick your running speed. In this case you want to run at your maximum
speed and angle your kick higher (i.e. α > 45◦) so that the ball stays in the air for longer and you
have more time to run.

2. The position of the ball is given by equation (9). Using equations (15) and (16), we can write equation
(9) as

r⃗b(t) = vptx̂+
(
−g

2
t2 + t

√
v2bi − v2p

)
ŷ.

Solving the x component of this equation (i.e. xb(t) = vpt) for time gives t = xb/vp, which we can
substitute into the y component to find

yb(xb) = −g

2

(
xb

vp

)2

+
xb

vp

√
v2bi − v2p = − g

2v2p
x2
b + xb

√
v2bi
v2p

− 1.

This is the trajectory of the ball. To find where the defense should be placed, we need to determine at
what x position the height of the ball is equal to that of the defense player’s hand. Therefore, we set
yb(xb) = h to find

h = − g

2v2p
x2
b + xb

√
v2bi
v2p

− 1 ⇒ 0 =
g

2v2p
x2
b − xb

√
v2bi
v2p

− 1 + h,

which we want to solve for xb. This is a quadratic equation, which we can solve by first computing the
discriminant

∆ =
v2bi
v2p

− 1− 4
gh

2v2p
=

v2bi − v2p − 2gh

v2p

and then the solution
xb =

vp
g

(√
v2bi − v2p ±

√
v2bi − v2p − 2gh

)
.
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We see there are 2 solutions — the shorter distance corresponds to the defense player catching the ball
on its way up, and the longer distance corresponds to catching it on the way down. We arrive at the
final answer by substituting equations (18) and (21) into the longer distance to get

xb =

{
(vmax

p /g)
(√

(vmax
bi )2 − (vmax

p )2 +
√

(vmax
bi )2 − (vmax

p )2 − 2gh
)

if vmax
bi /

√
2 > vmax

p

(vmax
bi /(2g))

(√
(vmax

bi )2 +
√
(vmax

bi )2 − 4gh
)

otherwise
.

5. Homework: Elevator

1. The acceleration, velocity, and position as a function of time are plotted below.

2. There are three stages of motion given in the problem and we note that the problem is one-dimensional.
The first and third stages are at constant acceleration and the second stage is at constant velocity.
We have seen similar problems before. The connection between the stages is that the final speed after
the first stage is the constant speed during the second stage and the initial speed for the third stage.
Additionally, the position at the end of the first stage is the initial position for the second stage and
the position at the end of the second stage is the initial position for the third stage.

3. From projectile motion, we know the general solution for the acceleration, velocity, and position during
any constant acceleration a is

a(t) = a

v(t) = at+ v0
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y(t) =
a

2
t2 + v0t+ y0

respectively. During the first stage the acceleration is a = a. Thus, after a time interval t1 the elevator
has an upward speed and displacement of

v1 = v(t1) = at1

∆y1 = y(t1)− y0 =
a

2
t21

respectively, where we must remember that the acceleration a is positive and unknown.

During the second stage, the elevator has a constant acceleration of a = 0, so the upward speed and
displacement are

v(t) = v0 = v1 = at1

y(t)− y0 = v0t = v1t = at1t,

where we note that here t is the time since the second stage began. Thus, after a time interval ∆t2 = 4t1
the elevator has a velocity and displacement of

v2 = v(∆t2) = at1

∆y2 = y(∆t2)− y0 = 4at21.

During the third stage, we have constant acceleration of a = −a, so the upward speed and displacement
are

v(t) = −at+ v0 = −at+ at1

y(t)− y0 = −a

2
t2 + v0t = −a

2
t2 + at1t.

After a time interval ∆t3 = t1, the upward speed and displacement is

v3 = v(∆t3) = 0

∆y3 = y(∆t3)− y0 = −a

2
t21 + at1t1 =

a

2
t21

respectively.

Thus, the total distance traveled is the sum of the displacements in the three stages and is also equal
to the height of the building h, so

h = ∆y1 +∆y2 +∆y3 =
a

2
t21 + 4at21 +

a

2
t21 = 5at21.

Solving this equation for the acceleration gives the solution of

a =
h

5t21
.

4. Let’s assume that the sixth floor is about h ≈ 25 m above the ground. This happens to be a slow
elevator, taking approximately 30 s to reach the top so t1 ≈ 5 s. Therefore, the acceleration is:

a ≈ 25 m
5× (5 s)2

≈ 0.2
m
s2
.

This number is reasonable as it is around 2% of the gravitational acceleration. In a slow elevator, one
barely notices that the elevator is accelerating.
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