Solutions to Problem Set 3

Free body diagrams
PHYS-101(en)

1. Balancing forces

1. The forces exerted on the ball are the weight W = mg, the tension force exerted by the right cable F,
and the tension force exerted by the left cable F5.

2. The forces in the Z direction are

W, =0

Flw = F1 sin av
ng = —F2 Sinﬁ

and the forces in the ¢ direction are
Wy =-W =-mg

Fiy = Ficosa
Fyy = Fycos 3.
3. The ball undergoes no acceleration, so Newton’s second law is SF =0 and we have
W+ Fy + F, =0. (1)
We project this in the & direction to get
Fisina — Fysin B = 0.
Rearranging, we find
sin
R = 50 (2)

sin o

We then project equation in the g direction to get

Ficosa+ Fycos 8 —mg = 0. (3)
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Substituting into (3) gives

ﬂcosoH—Fgcos,B—mg:O = Fg(s,lnﬂcosoz+cosﬂ>:mg.
sin a

Fy—
sin a

Solving for Fy gives
mg mg sin a sin «

. = — . =mg—r——
:;Ezcosa+cosﬂ sin 3 cos o + sin « cos 3 sin (o + )’

Fy =

where in the last step we have used the sine angle sum trigonometric identity. By substituting this
into equation we find the final answer for F of

sin 8

F=mg—22
! mgsin(a—i—ﬂ)

From equation , we see that, if & = 3, then F} = F5 as would be expected from the symmetry of
the problem.

2. Triangular trolley

1. The free body diagrams for both trolleys are shown below. The forces on the small trolley are the
weight mg and the normal force from the triangular trolley S. The forces on the triangular trolley are
the weight M ¢, the normal force from the small trolley Q, the normal force from the ground f, and
the external force F.

Q/ QF ~ mg

2. The forces on the small trolley are the weight mg and the normal force S from the triangular trolley
acting on the small trolley. Thus, from Newton’s second law the acceleration of the small trolley @ is

mj+S=ma = a=g+

3wy

Projecting this in the & and g directions gives

_ Ssind
T om

Ay
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and
_ Scosd B

m

ay
The forces on the triangular trolley are the weight Mg, the externally applied force F , the normal

force T from the ground acting on the triangular trolley, and the normal force @ from the small trolley
acting on the triangular trolley.

We can recognize that S and @ are action-reaction pairs. Thus, from Newton’s third law we know that
G--§
Using this, Newton’s second law for the triangular trolley becomes
Mij+T+F+G=MA = A=g+

Projecting this in the x and y directions gives

F S'sin 6
A =31~
and
A B +£_Scos€
vETITN T T M

where F and T are the norms of F and T respectively.

Since the triangular trolley is not accelerating vertically, we can take A, = 0 to show that
T = Mg+ Scosb.
We want to find the force that leaves the small trolley immobile on the larger one, so we require
A, = ay
Ay = ay,

which corresponds to
o Ssinf  Ssin6
M M om
0= Scosf g

m

respectively. From the second equation we see that

mg

cosf’

which can be substituted into the first to find the final answer,

F=g(M+m)tan6.

3. Force with friction

The free body diagram for the books on their own is shown below, where we have the normal force of the
table on the books N, the static friction force from the table on the books fs, and the weight of the books
mg.
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Nb

— f;

mg

There is no motion in the g direction, so Newton’s second law tells use that the weight is balanced by the
normal force IV, according to
Ny—mg=0 = Np=mg. (4)

The only horizontal force on the books is the static friction force f,, which is equal to its maximum value
of fs = pusNp when Carl is applying the maximum force for which the books do not slide. By applying
Newton’s second law in the Z direction, we find

N,
ZF:ma = fs=ma = pusNy=ma = q = Hst¥o
m
Therefore, using equation we see that the acceleration is
a = Hsg. (5)

Now consider the table, whose free body diagram is shown below and includes a lot of forces. There is the
normal force from the ground NT, the force applied by Carl F the kinetic friction force from the floor fd,
the weight mg, the normal force from the books on the table —Nb, and the static friction force from the
books — f; Note that the static friction force on the table is an action-reaction pair with the static friction
force in the free body diagram for the books, so it must be equal in magnitude and opposite in direction.
Similarly the normal force from the books on the table is an action-reaction pair with the normal force in
the free body diagram for the books.

In order to avoid sliding, the table and books must accelerate identically. The kinetic friction force f:i
between the table and the floor has a magnitude of fg = pgNr.

Nt

fi <——@——F

N = Mg

Since the table does not accelerate in the g direction, Newton’s second law gives
NTbefMg:() = NT:Nb+Mg:(m+M)g, (6)
where we have used equation . In the  direction, Newton’s second law for the table is

F_fd_fs:Ma
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By substituting equations (4 through @ and the forms of the friction forces (i.e. fs = pusNy and fq = paNr)
from above, we obtain

F — paNt — psNoy = Mpsg = F —pa(m+M)g— psmg = Mpsg.
Solving for this equation for F' gives the final answer of
F=pg(m+M)g+ps(m+M)g = F=(ua+ps)(M+m)g
and we can plug in numbers to find

F =159 N.

4. Challenge: Rugby up-and-under play

As indicated in the title, this problem is challenging. We start by defining the coordinate system such that
y is upwards in the vertical direction and z is in the horizontal direction of the initial velocity of the ball.
The origin is located at the position where the ball is kicked. We will denote the initial speed of the ball
by vs;, which we know must be less than v;7**. Using our general solution for projectile motion along with
the initial position (zg = 0 and yo = 0) and velocity (vyo = vp; cos o and vyg = vp; sina), we can write the
equations of motion for the ball as

ap(t) = —gy (7)
Tp(t) = vp0Z + (—gt + vyo) § = vp; cos & + (—gt + vp; sina) Y (8)
7p(t) = (vgot + x0) T + (—%tQ + vyot + yo) 7 = vpit cos al + (—th + vp;t sin a) 7. (9)

1. We want to find the distance at which the player catches the ball. To do so, we must first find the time
at which the ball returns to the ground, which we will call ¢;. The condition for the ball returning to
the ground is y;(t1) = 0, so we can substitute the § component of equation @ to find

(1) =0= —%t% + vty sin . (10)
This equation has two solutions, ¢t; = 0 and
20p; .
t; = % Sina. (11)
g

The first solution corresponds to the time of the kick and the second corresponds to the catch, so the
second solution is what we’re looking for. By substituting this time into the equation for the horizontal
position of the ball from equation @D, we can find the distance at which the ball lands to be

2

207
xp(t1) = vpity cosa = i sin a cos a. (12)

g

Now we must analyze the player’s motion. Since she runs at a constant velocity (that we will call v),)
and her initial position is at the origin, her position is given by

xp(t) = vpt. (13)
Thus, at time t = ¢; her position is
2 .
2p(t1) = vpty = 2 ginq, (14)
g
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where we have made use of equation .

The ball and the player must be at the same location for a catch to occur, which we will call ¢ =
xp(t1) = xp(t1). Thus, we require equations and to be equal, which allows us to determine
the initial angle of the ball
Yp Up
VpiCOSQL =V, = COSQx=— = «=arccos| — |. (15)
Vpi Vbi
To use this information to find a simple expression for ¢, we can draw the triangle implied by this
equation (shown below). After using the Pythagorean theorem to find that the length of the missing

i

A ia a2 a2
side is | /vy; — vy, we see that

2 _ 2
Vyi Up

inag=-+——. 16
sin « . (16)

Substituting this result into equation (or equation (12)) gives

2
{ = =vp\/vg; — V2. (17)

g
This is the expression for the distance at which the ball lands, which we want to maximize. To do so,
we can immediately see that we want to increase the initial velocity of the ball as much as possible by

setting
vy = vt (18)

This is also intuitively obvious. The harder you kick the ball, the more time it will be in the air and
the more time the player will have to run. The dependence on v, is more complicated. We see that
increasing it will increase the multiplying factor in front of the square root (thereby increasing £), but
it will also decrease the quantity in the square root (thereby decreasing ¢). To find the maximum, we
can remember our past analysis of projectile motion. The maximum vertical position occurred where
the vertical velocity (which is the derivative of the vertical position) went to zero. This is a general
technique to find the extrema (i.e. both maxima and minima) of functions: calculate the derivative
and solve for the locations at which it is zero. Thus, we take equation and calculate

ae 2 2 1 —2v 2 2 v 2
%:025\/ ﬁi—v§+§vp PR = > :g\/vgi_vg_g 2p S 5 2(”§i_2”127)
p Vi — VUp Uy — Up g\/vbi—vp
(19)

using the chain rule and product rules. Simplifying this expression, we find that there is only one
extrema and it occurs at

Vbi

7

'Up:

(20)



PHYS-101(en) Free body diagrams - Solutions to Problem Set 3

Substituting this result into equation and comparing with any other choice of v, (e.g. v, =0), we
can verify that this extrema is, in fact, a maxima (as opposed to a minima). Thus, this is the optimal
speed that the player would ideally run at. If this isn’t possible because v, = vy;/ V2 > v, ", the

player should run as close as possible to this value, namely at their maximum speed of v;"**. Therefore,
we have to explicitly distinguish these two possibilities by writing
max if X 2 max
vp =17 i w2 > e (21)
Vpi/ V2 otherwise

Combining equations 7 , and 7 we find that the maximum distance to catch the ball is

. (QUgmaz/g)\/(UgrimzP _ (’U;nar)Q if Ugl?az/\/i > 'U;nam . (22)
(vl?izam)2/g otherwise

Combining equations 7 , and 7 we find that ideal angle to kick the ball is

_ Jarccos (v fuper) if vpar /2 > ymer (23)
| arccos (1/v2) = m/4 = 45° otherwise

The interpretation of these results is that if you are sufficiently fast (i.e. v,'** is sufficiently large), the

second case in all three equations applies. In this case, you want to kick the ball at o = 45°, as this is
the angle that maximizes the distance traveled by the ball, and run below your maximum speed, such
that you arrive at the same time and place as the ball when it lands. However, the more realistic case
is the first, that you can out-kick your running speed. In this case you want to run at your maximum
speed and angle your kick higher (i.e. a > 45°) so that the ball stays in the air for longer and you
have more time to run.

2. The position of the ball is given by equation @ Using equations and , we can write equation

@ as
F(t) = wpti + (26 41/, —02) 5.

Solving the z component of this equation (i.e. x(t) = v,t) for time gives ¢ = z}/v,, which we can
substitute into the y component to find

2 2
g x Ty [ 4 2 g o Ubi

Tp) === — ) +—1/v5 —v ——=xp + XTpy | — — L.
w(ap) = =35 (Up> op VI T U T Tt T o

p

This is the trajectory of the ball. To find where the defense should be placed, we need to determine at
what z position the height of the ball is equal to that of the defense player’s hand. Therefore, we set
yp(xp) = h to find

V2 vZ,
hz—%xﬁ—t—xb —b;—l = Oz%x%—ajb —bg—l—i—h,
2vp vy 2vp vy

which we want to solve for x;. This is a quadratic equation, which we can solve by first computing the
discriminant ) ) )
v gh vy — v, — 2gh
A=-—2—-1-4--=——"7>"—

2 2
vy 2vp vg

and then the solution

xb:v?p (\/vgi—vgj: vfi—vg—Qgh).
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We see there are 2 solutions — the shorter distance corresponds to the defense player catching the ball
on its way up, and the longer distance corresponds to catching it on the way down. We arrive at the
final answer by substituting equations and into the longer distance to get

o L)) (o) = g 4\ oo — (o) —2gh) it wgen/VE > e
(vpr** /(2g)) (\/ vaT)2 + \/ V)2 4gh) otherwise

5. Homework: Elevator

1. The acceleration, velocity, and position as a function of time are plotted below.
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2. There are three stages of motion given in the problem and we note that the problem is one-dimensional.
The first and third stages are at constant acceleration and the second stage is at constant velocity.
We have seen similar problems before. The connection between the stages is that the final speed after
the first stage is the constant speed during the second stage and the initial speed for the third stage.
Additionally, the position at the end of the first stage is the initial position for the second stage and
the position at the end of the second stage is the initial position for the third stage.

3. From projectile motion, we know the general solution for the acceleration, velocity, and position during
any constant acceleration @ is
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a
y(t) = §t2 + vot + Yo

respectively. During the first stage the acceleration is @ = a. Thus, after a time interval ¢; the elevator
has an upward speed and displacement of
vy = o(t) = aty

a
2
respectively, where we must remember that the acceleration a is positive and unknown.

Ay =y(t1) —yo = 517

During the second stage, the elevator has a constant acceleration of @ = 0, so the upward speed and
displacement are
v(t) = vy =v1 = aly

y(t) — yo = vot = vit = atyt,

where we note that here ¢ is the time since the second stage began. Thus, after a time interval Aty = 4¢;
the elevator has a velocity and displacement of

Vo = ’U(Atg) = (ltl
Ayy = y(Aty) — yo = 4at3.

During the third stage, we have constant acceleration of @ = —a, so the upward speed and displacement
are
v(t) = —at +vg = —at + aty

y(t) — o = —%t2 + gt = —gﬁ +atyt.

After a time interval Ats = t1, the upward speed and displacement is

V3 = U(Atg) =0
a a
Ays = y(Ats) —yo = *it% +atity = Etf

respectively.

Thus, the total distance traveled is the sum of the displacements in the three stages and is also equal
to the height of the building h, so

a a

Solving this equation for the acceleration gives the solution of

h
a4 = —F.
5t3

4. Let’s assume that the sixth floor is about h =~ 25 m above the ground. This happens to be a slow
elevator, taking approximately 30 s to reach the top so t; & 5 s. Therefore, the acceleration is:

25 m m
~——— =02 —.
“ 5x (5s)? s2

This number is reasonable as it is around 2% of the gravitational acceleration. In a slow elevator, one
barely notices that the elevator is accelerating.



