
Solutions to Problem Set 2
Ballistics

PHYS-101(en)

1. The crow and the fox

Crow

Fox
O

x

y ⃗v0

α

L

H

g

1,1. We start by taking the diagram provided with the question and defining the angle α as well as a
convenient coordinate system. The origin O is the position of the fox, the angle α defines the direction
of the initial velocity of the stone relative to the x axis, the y axis is defined to be anti-parallel to g⃗,
and the x axis is defined to be in the direction of the initial horizontal velocity of the stone.

Both objects experience projectile motion, so we can directly write their equations of motion. For the
stone we have

xs (t) = vsx0t+ xs
0

and
ys (t) = −1

2
gt2 + vs0yt+ ys0.

Similarly, for the cheese we have
xc (t) = vcx0t+ xc

0

and
yc (t) = −1

2
gt2 + vc0yt+ yc0.

The initial conditions of the stone are xs
0 = 0, ys0 = 0, vsx0 = v0 cosα, and vsy0 = v0 sinα, while the

initial conditions of the cheese are xc
0 = L, yc0 = H, vcx0 = 0, and vcy0 = 0. Substituting these values

gives
xs (t) = v0t cosα (1)

ys (t) = −1

2
gt2 + v0t sinα (2)
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for the stone and
xc (t) = L (3)

yc (t) = −1

2
gt2 +H. (4)

for the cheese.
For the stone and cheese to collide, there must be a single time t = tcoll for which they are at the exact
same position. We can write this condition as

xs (tcoll) = xc (tcoll) (5)

and
ys (tcoll) = yc (tcoll) . (6)

The simplest approach to finding tcoll is to recognize that the cheese does not move in the x direction.
Substituting the equations of motion for the stone and cheese from above, equation (5) becomes

v0tcoll cosα = L,

which implies that

tcoll =
L

v0 cosα
.

Using basic trigonometry and the Pythagorean theorem, the figure above shows that cosα = L/
√
L2 +H2.

Substituting this gives the collision time

tcoll =

√
L2 +H2

v0
. (7)

2. For a collision to always occur (using the assumption that v0 is sufficiently large to ensure a collision),
the collision cannot depend on the value of v0. To show that this is the case, we can solve for tcoll
using the equations of motion in the y direction.
In the y direction we use equation (6), which is

−1

2
gt2coll + v0tcoll sinα = −1

2
gt2coll +H.

Crucially, we see that the gravitational acceleration terms on both sides cancel and gravity disappears
from the problem, leaving

v0tcoll sinα = H.

Solving for the time and using trigonometry to show sinα = H/
√
L2 +H2, we find that

tcoll =
H

v0 sinα
=

√
L2 +H2

v0
. (8)

We see that the collision times we calculated in equations (7) and (8) are identical. This means we
really do have a collision – the stone and cheese are at the same x and y location at the same time.
This occurs at time

tcoll =

√
L2 +H2

v0
.

Note that the fact that there is a collision does not depend on the value of v0 nor g! Conceptually, this
is this case because in the absence of gravity, the stone would collide with the cheese at y = H. As
gravity is the only force acting on both the stone and the cheese, the displacement in the y direction
from H after tcoll is the same for the two objects. This ensures that at the time of the collision, the
stone and the cheese will have the same y position regardless of v0.
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3. The position of the collision can be found by substituting the collision time tcoll back into the equations
of motion. Using equation (1) or (3), the x position is simply

xs (tcoll) = xc (tcoll) = L. (9)

Using equation (2) or (4) and a bit of algebra, we find that the y location of the collision is

ys (tcoll) = yc (tcoll) = −1

2
gt2coll +H = −g

2

L2 +H2

v20
+H. (10)

4. Above, we have shown that the stone and cheese always collide, without posing any restriction on the
initial speed of the stone. However, in reality there is a restriction to impose – if the initial speed is
not large enough, the stone will hit the ground before it hits the cheese. This does not contradict the
above derivation – for low initial speeds the above derivation simply predicts that the collision would
take place underground (i.e. at y < 0). In order for the collision to take place above ground, we must
enforce that

yc (tcoll) > 0.

Using equation (10), this is equivalent to

−g

2

L2 +H2

v20
+H > 0.

Rearranging, we see that the constraint on the initial speed is

v0 >

√
g
L2 +H2

2H
.

2. Sherlock Holmes

a. For Sherlock to hear the object hit the ground, the object must reach the ground and then the sound
from the impact must travel back to him. Let t1 be the time it takes for the magnifying glass to hit
the ground, t2 be the time it takes for the sound to travel back to Sherlock, and t3 = t1 + t2 be the
total elapsed time between Sherlock releasing the magnifying glass and the noise reaching his ears. Let
h be the height of the Eiffel tower. We take the x axis to go upwards, with the origin at the ground as
shown in the figure below.
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b. The magnifying glass undergoes one-dimensional motion under constant acceleration, so we use

x(t) =
1

2
at2 + v0t+ x0,

where a = −g. Here the sign of the acceleration must be negative since we defined the positive x
direction to be upwards. The initial velocity of the magnifying glass can be assumed to be v0 = 0,
while the initial position is x0 = h. Thus, we find

x (t) = −1

2
gt2 + h.

We have defined the time t1 as the time the magnifying glass hits the ground, so we know that

x (t1) = −1

2
gt21 + h = 0. (11)

We can solve this equation to find

t1 =

√
2h

g
. (12)

The speed of sound vs is constant in the Earth’s atmosphere. When a noise is emitted it travels
outwards at this speed in all directions. Thus, the first sound to reach Sherlock travels in a straight
line at a constant speed vs from the ground to Sherlock’s ears. By integrating this constant velocity
with respect to time, we see that the position of the sound is given by

x (t) = vst+ x0.

Given our coordinate system, the initial position of the sound is x0 = 0. From our definition of the
time t2, we know that x (t2) = h, so we have

x (t2) = h = vst2.

From this we can calculate the elapsed time

t2 =
h

vs
. (13)

Lastly, we know that the total time is simply the sum of the time for the magnifying glass to reach the
ground and the time for the sound to travel back to Sherlock

t3 = t1 + t2.

Substituting equations (12) and (13), we find

t3 =

√
2h

g
+

h

vs
,

where we are interested in finding the height h.
Rearranging gives a quadratic polynomial in

√
h, which is

0 =
1

vs

(√
h
)2

+

√
2

g

√
h− t3.

Using the quadratic formula, we can solve for
√
h and find two solutions

√
h =

−
√

2
g ±

√
2
g + 4 1

vs
t3

2
vs

, (14)

4



PHYS-101(en) Ballistics - Solutions to Problem Set 2

which correspond to the plus versus minus signs. Squaring this equation gives

h =

−
√

2
g ±

√
2
g + 4 1

vs
t3

2
vs

2

. (15)

This is an acceptable answer, but we will rearrange it further to arrive at something simpler. First we
will factor out a factor of

√
2/g from the numerator and combine it with the denominator to get

h =

(
vs
2

√
2

g

(
−1±

√
1 +

2gt3
vs

))2

. (16)

Then we will take the common factor out of the square to arrive at our final answer of

h =
v2s
2g

(
−1±

√
1 +

2gt3
vs

)2

. (17)

c. The units of the equation can be written as

[m] =

[m
s

]2[m
s2
] ([1]±√[1] +

[m
s2
]
[s][m

s

] )2

.

From this, we see that the entire contents of the parentheses has no units, so

[m] = [m]

as required.

d. Equation (17) contains two solutions (one with the + and one with the −), only one of which is
physically valid. To identify the correct solution, we consider the case where vs → ∞ is very large. In
this case, the term 2gt3/vs becomes much smaller than 1, so it can be ignored. This yields

h =
v2s
2g

(−1± 1)
2
. (18)

We see that if we take the “−” solution, the height h definitely becomes infinite due to the prefactor
v2s/(2g) growing as vs → ∞. This does not make physical sense. On the other hand, if we take the
“+” solution, as 2gt3/vs becomes negligibly small, the factor in the parenthesis becomes zero and can
counteract the fact that the prefactor v2s/(2g) is becoming very large. Thus, it can (and does) give a
finite answer. A more sophisticated analysis using a Taylor expansion (beyond the scope of this course)
shows that the “+” solution gives h = gt23/2 in the limit of vs → ∞. This is the expected result as t2
becomes 0 according to equation 13, so the total time t3 = t1 can be found using just equation (12).
Thus, the physical solution is

h =
v2s
2g

(
−1 +

√
1 +

2gt3
vs

)2

. (19)

e. Plugging in t3 = 9 s, vs = 320 m/s, and g = 10 m/s2 into equation (19) gives h = 320 m.
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3. Vectors

1. See figure below.

x

y

⃗v 1

⃗v 2

⃗v 3

⃗v 4
− ⃗v 2

2. We can divide the main triangle ABC into two parts using a line perpendicular to a⃗ as shown in the
figure.

b⃗

⃗c

⃗a

θ

A

D

B

C

α

For the triangle BCD, simple trigonometry gives

sin θ =
CD

b
, (20)

where b = |⃗b| is the magnitude (i.e. length) of b⃗ and CD is the length of the line connecting points C
and D. Similarly, we can see that

cos θ =
BD

b
, (21)

where BD is the length of the line connecting points B and D.

For the triangle ACD, the Pythagorean theorem gives

c2 = AD2 + CD2, (22)
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where c = |⃗c| and AD is the length of the line connecting points A and D.

Lastly, we see from the figure that
AD +BD = a, (23)

where a = |⃗a|.

Since a⃗, b⃗, and θ are given, we see that equations (20) through (23) are four equations that contain four
unknowns (CD, BD, AD, and c). We can solve equations (20) and (23) for CD and AD respectively.
Then, substitute the results into equation (22) to find

c2 = (a−BD)2 + (b sin θ)2. (24)

Now we solve equation (21) for BD and substitute the result to find

c2 = (a− b cos θ)2 + (b sin θ)2. (25)

Simplifying this expression and using the trigonometric identity sin2 θ + cos2 θ = 1 gives

c =
√
a2 + b2 − 2ab cos θ, (26)

which is the law of cosines.

3. From the above figure we see that

sinα =
CD

c
.

Then solving equation (20) for CD and substituting, we find

sinα =
b

c
sin θ.

Therefore, the solution is

α = arcsin

(
b

c
sin θ

)
.

4. Dropping a stone from a sailboat

For parts 1 and 2 of this problem, we choose a coordinate system at rest with respect to the land when the
boat is docked. The z axis is parallel to the mast and the x axis is horizontal (i.e. along to the ground). The
origin corresponds to the foot of the mast at time t = 0, when the stone is dropped. In part 3, we choose a
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frame of reference relative to the fixed stars. The idea is to have a frame of reference that is fixed while the
sailboat or the stone moves.

In this problem, it is crucial to realize that the initial velocity of the dropped stone is equal to the velocity
of the sailboat at the precise moment when the stone is dropped.

1. The dropped stone undergoes constant acceleration due to gravity g in the downwards direction. Thus,
we can apply the equations of projectile motion

zstone (t) = −1

2
gt2 + vz0t+ z0.

Given our coordinate system, the initial conditions of the stone are vz0 = 0 and z0 = h. Thus, the
equation of motion for the stone is

zstone (t) = −1

2
gt2 + h.

The time it takes the stone to reach the foot of the mast tfall is determined by the condition
zstone (tfall) = 0, so we find

tfall =

√
2h

g
.

The dimensions are consistent as [s] =
√
[m]/[m/s2] as required.

The distance that the stone lands relative to the foot of the mast is given by

d = |xstone (tfall)− xfoot (tfall)| = 0,

where | . . . | is the absolute value (or magnitude) of the quantity within and xfoot(t) is the horizontal
location of the foot of the mast. In the horizontal direction, the equation of motion for the stone is

xstone(t) = vx0t+ x0. (27)

However, since the initial conditions are vx0 = 0 and x0 = 0, we find simply

xstone(t) = 0.

Likewise, since the sailboat has no motion in the x direction, the equation of motion for the foot of
the mast is also xfoot(t) = 0. Thus, we find

d = 0.

2. Since the velocity of the sailboat is solely in the x direction, the equation of motion in z is identical to
that of part 1,

zstone (t) = h− 1

2
gt2.

Therefore, the time it takes for the stone to land remains

tfall =

√
2h

g
.

Now, since the sailboat moves with a constant velocity in the horizontal direction, the equation of
motion in x for the foot of the mast is changed to

xfoot (t) = v0t.
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However, the horizontal motion of the stone is also changed. Since the girl is riding the moving sailboat,
when she drops it with no initial velocity in her reference frame, it has an velocity v⃗0 with respect to
the reference frame of the land (in which we are doing the calculation). Thus, equation (27) becomes

xstone (t) = v0t.

Nevertheless, the distance the stone lands relative to the foot of the mast remains unchanged

d = |xstone (tfall)− xfoot (tfall)| = v0tfall − v0tfall = 0.

3. Again, you must determine the equations of motion for the stone and the foot of the mast in the z and
x directions.

In this part, we take a frame of reference at rest relative to the stars. As soon as the stone is released,
it no longer experiences the constant acceleration. Thus, in the z direction, the stone follows

zstone (t) = v0t+ h,

where we have already substituted the initial velocity and position of the stone. In the x direction, the
stone has no initial motion or acceleration, so it follows

xstone (t) = 0.

The foot of the mast stays with the ship and continues to experience constant acceleration, so it follows

zfoot(t) =
1

2
at2 + v0t.

The mast has no motion in the x direction, so

xfoot(t) = 0.

The stone reaches the foot of the mast when

zstone (tfall) = zfoot(tfall).

Substituting the equations of motion for both sides gives

v0tfall + h =
1

2
at2fall + v0tfall.

Therefore,

tfall =

√
2h

a
.

Since a = g, the time it takes the stone to reach the foot of the mast tfall remains the same as in parts
1 and 2.

The distance the stone lands relative to the foot of the mast is still given by

d = abs (xstone (tfall)− xfoot (tfall)) ,

so, as before, the stone falls at the foot of the mast

d = 0.
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5. Optional: The tortoise and the hare revisited

In this problem we take as given the length of the race L, the distance to the bridge L′, the velocity of the
tortoise vt, and the initial velocity of the hare vh. We must calculate the accelerate a needed for the hare to
win the race.

As in problem 3 of problem set 1, we will define t0 = 0 as the time the race starts, t1 as the time at which
the tortoise reaches the bridge (which is when the hare starts to accelerate), and t2 as the arrival time of
the tortoise. Additionally, can also define the time durations ∆t = t1 − t0 and ∆t′ = t2 − t1 of the first and
second phases of the race respectively. We draw a schematic of the race in the figure below, where xt is the
position of the tortoise and xh is the position of the hare.

h

During both phases of the race, the tortoise travels at the same constant speed vt. Given that we have
defined the origin to be its initial position, the tortoise’s equation of motion is

xt(t) = vtt.

Thus, it reaches the bridge when
xt(t1) = L′ = vtt1,

so
t1 =

L′

vt
. (28)

Similarly, the tortoise reaches the finish line when

xt(t2) = L = vtt2,

so
t2 =

L

vt
. (29)

During the first phase of the race (from t0 to t1), the hare maintains a constant speed vh. Thus, its equation
of motion is

xh(t) = vht.

However, when the tortoise reaches the bridge at time t1, the hare’s motion changes to constant acceleration
a. At t1, the hare’s velocity is still vh and we can calculate its position to be

xh(t1) = vht1.

By substituting equation (28), we find
xh(t1) = L′ vh

vt
.

10
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The general equation of motion for constant acceleration can be found by integration (as we have done for
the vertical direction of projectile motion) to be

xh(t) =
a

2
t2 + vh0t+ xh0.

From our analysis of the first phase, we know the initial position of the second phase is xh0 = L′vh/vt, while
the initial velocity of the second phase is vh0 = vh. Therefore, the equation of motion becomes

xh(t) =
a

2
t2 + vht+ L′ vh

vt
.

Note that in this equation we have adopted a new time coordinate system, defined such that the time t = 0
corresponds to the start of the second phase of the race. Given this, we know that the hare must arrive at
the finish line x = L at a time t = t2 − t1 after the start of the second phase in order to tie the tortoise.
This corresponds to the condition

xh(t2 − t1) =
a

2
(t2 − t1)

2 + vh(t2 − t1) + L′ vh
vt

= L.

Using equations (28) and (29) to replace t1 and t2, we find

a

2

(
L

vt
− L′

vt

)2

+ vh

(
L

vt
− L′

vt

)
+ L′ vh

vt
= L.

This equation contains only a and known quantities. To produce the simplest expression, we will first
multiply the entire equation by 2v2t to find

a (L− L′)
2
+ 2vtvh (L− L′) + 2vtL

′vh = 2v2tL.

Rearranging produces
a (L− L′)

2
= 2v2tL− 2vtvhL.

Finally, simplifying further yields the solution of

a =
2vtL (vt − vh)

(L− L′)
2 .

Therefore, in order for the hare to win the race, it must accelerate faster than this, producing the condition
that

a >
2vtL (vt − vh)

(L− L′)
2 .

To verify our result, we can check the units[m
s2
]
=

[m
s

]
[m]
[m

s

]
[m]2

.

We can also check the following limiting cases.

Limiting case 1: The tortoise has an initial velocity that is much greater than that of the hare. For this,
we expect that the acceleration of the hare must be very large in order to beat the tortoise. Mathematically,
we write this as vt → ∞. In this case the acceleration becomes

lim
vt→∞

a = lim
vt→∞

2vtL (vt − vh)

(L− L′)
2 = ∞
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Limiting case 2: The tortoise and the hare have an equal velocity before the bridge. For this we expect
that the hare does not need to accelerate at all in order to tie the race. Mathematically, we write this as
vt = vh. We see that

a =
2vtL (vt − vh)

(L− L′)
2 = 0.

Limiting case 3: The bridge is situated close to the finish line, making the second phase of the race very
short. For this we expect that the hare’s acceleration will need to be very large in order to win the race.
Mathematically, we write this as L′ → L. We see that

lim
L′→L

a = lim
L′→L

2vtL (vt − vh)

(L− L′)
2 = ∞.
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6. Optional: Reference frames

We choose to use a coordinate system where x points east, y points north, and z is vertical and points to
the sky. The origin of the coordinate system coincides with the initial position of the ball.

Figure 1: Cartoon of dynamics in the reference frame of the ship

a. The ship sails with a constant velocity, so the only acceleration in the entire system is due to gravity.
Thus, in the ship frame the ball undergoes projectile motion, which has equations of motions given by

xs(t) = vx0t+ x0

ys(t) = vy0t+ y0

zs(t) = −1

2
gt2 + vz0t+ z0

in the reference frame of the ship. Given the choice of the origin of our coordinate system, x0 = y0 =
z0 = 0. Additionally, since the ball is thrown from the ship due east, the initial velocity vy0 = 0.
Using the above diagram and trigonometric identities, we see that vx0 = vb cos θ and vz0 = vb sin θ.
Substituting these initial conditions yields

xs(t) = vbt cos θ

ys(t) = 0

zs(t) = −1

2
gt2 + vbt sin θ.

These equations represent a parametric form for the trajectory. Alternatively, we can solve the equation
in the x direction for time to get

t =
xs

vb cos θ
,

which we substitute into the equation in the z direction to find

zs(xs) = − g

2v2b cos
2 θ

x2
s + xs tan θ.

This is the equation of a parabola lying in the xz plane (as y is a constant and equal to zero).
Substituting numbers, we find

zs = −0.029x2
s + 0.58xs

13
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and
ys = 0.

Figure 2: Cartoon of dynamics in the laboratory reference frame

b. In this part, we want to take the motion we found for the ship frame in part a and convert it into
the laboratory frame. Later in the course, we will rigorously derive how to convert motion between
different coordinate systems. However, here the situation is simple enough that you can visual how
the motion of the ship and the ball will combine.
In the laboratory frame, there is no additional acceleration as the ship sails at constant velocity. Thus,
the equations of motion remain

xl(t) = vx0t+ x0

yl(t) = vy0t+ y0

zl(t) = −1

2
gt2 + vz0t+ z0.

Given the choice of the origin of our coordinate system, we also retain x0 = y0 = z0 = 0. However,
the initial velocities are different. Though the boy throws the ball due east from his perspective, the
fact that he is moving on a ship adds a new component to the ball’s velocity. Specifically, the initial
velocity is the velocity of the ball from the boy’s perspective plus the velocity of the boy.
In the figure above, the velocity of the ball from the boy’s perspective is indicated in green, while
the velocity of the boy (which is the same as that of the ship) is indicated in brown. Thus, from
trigonometry we see that vx0 = vb cos θ + v cosα, vy0 = −v sinα, and vz0 = vb sin θ, where α = 45◦ is
the angle of the ship’s velocity relative to due east. Substituting these initial conditions gives

xl(t) = (vb cos θ + v cosα) t

yl(t) = −vt sinα

zl(t) = −1

2
gt2 + vbt sin θ.
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These equations are a parametric form of the trajectory of the ball. Alternatively, we can solve the
equation in the y direction for time to get

t = − yl
v sinα

,

which we substitute into the equations in the x and z directions to find

xl(yl) = −
(
vb cos θ

v sinα
+

cosα

sinα

)
yl

zl(yl) = − g

2v2 sin2 α
y2l −

vb
v

sin θ

sinα
yl.

These are equations for a parabola, but one that does not lie in the x-z, nor y-z plane. Substituting
numbers for the angles, we find

xl(yl) = −

(√
3

2

vb
v

+ 1

)
yl

zl(yl) = − g

v2
y2l −

1√
2

vb
v
yl.

Substituting numbers for the speeds (note that v = 18 km/hr = 5 m/s) and assuming that g = 9.81
m/s2, we find

xl(yl) = −4.67yl

zl(yl) = −0.39y2l − 2.12yl.
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