
Solutions to Problem Set 1
Motion in one dimension

PHYS-101(en)

1. Review: Units

Note that, in the solutions below, we give our answers with the same number of significant digits as was
provided in the question. This isn’t absolutely crucial, but in physics (and science in general) there is always
uncertainty. It doesn’t make sense to take quantities that are only roughly known and use them to calculate
a quantity that appears to have incredible precision. Typically, the number of significant digits in the results
should be similar to the number of significant digits in the input quantities.

a. We convert the units as follows

5.00
m
hr

= 5.00
m
hr

× 1 mile
1609.31 m

× 24 hr
1 day

× 14 day
1 fortnight

= 1.04
miles

fortnight
.

b. We apply same reasoning as above to find

1
g

cm3
= 1

g
cm3

× 1 kg
1000 g

×
(
100 cm
1 m

)3

= 103
kg
m3

1
g

cm3
= 1

g
cm3

×
(
10 cm
1 dm

)3

= 103
g

dm3

1
g

cm3
= 1

g
cm3

× 1 kg
1000 g

×
(

1 cm
10 mm

)3

= 10−6 kg
mm3

.

c. The distance light travels during a certain amount of time can be calculated from

L = vt,

where L is the total distance traveled, v = 3.0× 108 m/s is the speed, and t = 365.24 days is the time
elapsed. However, first we need to convert days into seconds according to

t = 365.24 days = 365.24 days × 24 hr
1 day

× 60 min
1 hr

× 60 s
1 min

= 31556736 s.

Now we can use the equation for the distance to find

L =
(
3.0× 108

m
s

)
× 31556736 s = 9.5× 1015 m.

Converting from meters to kilometers, we find

L = 9.5× 1015 m × 1 km
1000 m

= 9.5× 1012 km.

2. Review: Uncertainty and significant figures
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a. The number of significant figures is

1. 1 significant figure

2. 5 significant figures

3. It could be either 1, 2, or 3 significant figures, but you can’t tell which

4. 2 significant figures

5. 1 significant figure because the number of significant figures of the result corresponds to the
minimum number of significant digits among the input quantities

6. 2 significant figures

b. The result is the mean, defined as

x =
1

N

N∑
i=1

xi,

where xi is each individual measurement and N is the total number of measurements. The estimation
of the error of the mean value is the standard error, given by

SE =
σ√
N

where σ is the standard deviation, defined as

σ =

√∑N
i=1(xi − x)2

N − 1
.

Plugging in values, we find the mean to be x = 0.346 s and the standard deviation to be σ = 0.077 s.
Thus, with N = 5, the solution is

0.35 s ± 0.015 s.

3. The tortoise and the hare

To help visualize the problem, we will start by drawing the situation, which we show in figure 1(a). Here xt

is the position of the tortoise, xh is the position of the hare, and it is helpful to define the following times:

• t0 = 0 (the time at which the race starts),

• t1 (the time at which the tortoise reaches the bridge, which is when the hare starts to accelerate), and

• t2 (the arrival time of the tortoise and hare).

To sketch the plot, we first consider the tortoise. It has a constant velocity throughout the entire race. A
constant velocity corresponds to a position that is linear with time, so we can draw a straight line between
the points (t = t0, x = 0) and (t = t2, x = L). The trajectory of the hare is a bit more complicated. The
hare starts at a constant velocity that is slower than that of the tortoise and maintains the constant velocity
until t = t1. Thus, we can draw a straight line between the points (t = t0, x = 0) and (t = t1, x = L′),
where the slope of the line is less than that of the tortoise’s. At this moment, the hare begins to accelerate
with a constant positive acceleration. This means the slope of the line is constantly increasing. However,
we know that the hare ties with the tortoise at the end of the race, so the hare’s line must end at the point
(t = t2, x = L). The final sketch is shown in figure 1(b), where the dashed line is trajectory of the tortoise
and the solid line is trajectory of hare.
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(a)

h

(b)

Figure 1: (a) A rough sketch of the problem as well as a plot of the positions of the tortoise (dashed) and
the hare (solid) with time.

4. The jumping salmon

a. We start with the equation of motion
ẍ = a,

where a is a constant. We integrate once in time to find the velocity

ẋ = at+ C,

where C is an integration constant. To solve for C, we evaluate this equation at t = 0 and find

ẋ = 0 + C = C.

Thus, the constant C is equal to the velocity at t = 0, which we represent as v0 = C. This shows that
the velocity is given by

ẋ = v(t) = at+ v0. (1)
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We integrate a second time to find the position as a function of time

x(t) =
1

2
at2 + v0t+ C ′,

where C ′ is another integration constant. To solve for C ′, we evaluate this equation at t = 0 and find

x(t = 0) = 0 + 0 + C ′ = C ′.

Thus, the constant C ′ is equal to the position at t = 0, which we represent as x0 = C ′. Finally, we can
write the solution to the equation of motion ẍ = a as

x(t) =
1

2
at2 + v0t+ x0. (2)

Here v0 is the initial velocity at t = 0 and x0 is the initial position at t = 0.

Note that a way to check that this solution is correct is by taking the second derivative with respect
to time to ensure that ẍ = a. This method produces

ẍ(t) =
d2x

dt2
=

d2

dt2
(
1

2
at2 + v0t+ x0) =

d

dt
(at+ v0) = a.

b. The best way to understand the problem is to first make a drawing that displays all information given
in the problem (e.g. figure 2). At t = 0, the salmon comes out of the lake with a vertical velocity v0
upwards. Throughout the jump, the fish is subject to an acceleration −g due to gravity. The salmon’s
motion as a function of time can be found from our solution to part (a) of this problem. Its position
is given by equation (2) and its velocity is given by equation (1), where a = −g.

Figure 2: A sketch of problem, with important information indicated.

Graphically, the position and velocity as a function of time are shown in figure 3, from which we can
note a few things:

• The position as a function of time is given by a second degree polynomial (i.e. equation (2)),
which corresponds to a parabola. The maximum of the parabola is the maximum height reached
by the salmon. We can denote the time at which this occurs as t = tmax.
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Figure 3: The position (left) and velocity (right), both as a function of time.

• The velocity decreases linearly. Graphically, this is a straight line and the slope of this line is the
acceleration of the salmon.

• At t = tmax, the velocity intersects the horizontal axis, which means that the velocity of the salmon
is 0 at the maximum height attained. In any case, the velocity corresponds to the derivative of
the position. Thus, at t = tmax a velocity of zero corresponds to the vertex of the parabola where
the slope is 0.

• The parabola has reflectional symmetry about t = tmax. This implies that tjump = 2tmax, where
tjump is the time at which the fish reenters the water (i.e. the second time when x = 0).

c. To find hmax, we start by using equations (1) and (2) from part (a), using a = −g. We also choose
to define x = 0 as the surface of the lake, so x0 = 0, and take the positive x direction to be upwards.
Thus, equations (1) and (2) become

x(t) = −1

2
gt2 + v0t (3)

and
v(t) = −gt+ v0

respectively. From part (b), we know that at the top of the parabola the salmon has zero velocity.
Therefore, v(tmax) = 0, which we can solve to find tmax. We find that

v(tmax) = 0 = −gtmax + v0 ⇒ tmax =
v0
g
.

At this time the fish is at its maximum height hmax = x(tmax). Thus, by inserting our result for tmax

into equation (3) for the position, we obtain

hmax = −1

2
gt2max + v0tmax = −1

2
g
v20
g2

+ v0
v0
g

⇒ hmax =
1

2

v20
g
. (4)

Checking the units for this equation gives

[m] =
[m

s

]2[m
s2
] = [m],
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showing that our solution is plausible.

We can calculate tjump using the final condition x(tjump) = 0 when the fish reenters the water. We
find

x(tjump) = 0 = −1

2
gt2jump + v0tjump =

(
v0 −

g

2
tjump

)
tjump.

There are two possible solutions to this equation: tjump = 0 and

tjump = 2
v0
g
. (5)

We can discard the first one because it corresponds to the time that the fish first jumps out the water.
The second result is the solution we are looking for and confirms that tjump = 2tmax (just as expected
from the symmetry property mentioned in the solution to part (b)). We can also check the units to
find

[s] =
[m

s

][m
s2
] = [s],

again showing that our solution is plausible.

Plugging the numerical values into our solutions given by equations (4) and (5), we find

hmax =
1

2

v20
g

= 0.45 m

and
tjump = 2

v0
g

= 0.6 s.

Lastly, we can ask ourselves “Are these results reasonable?” We see that both hmax and tjump are
positive as they should be (see figure 2). Moreover, the values of hmax = 0.45 m and tjump = 0.6 s
agree with our intuition for roughly how far and for how long a fish could jump out of the water.

5. The train

The motion of the train can be broken into three time intervals:

1. acceleration (for a duration of 60 s),

2. constant speed (for a duration of 300 s), and

3. deceleration (for a duration of 120 s).

Given the information from the problem, we can directly calculate the acceleration in each time interval to
be

a1 =
∆v1
∆t1

=
72 km

hr − 0 km
hr

1 min
= 72

km
hr-min

× 1 hr
60 min

× 1 min
60 s

× 1 min
60 s

× 1000 m
1 km

=
1

3

m
s2

a2 =
∆v2
∆t2

=
72 km

hr − 72 km
hr

5 min
= 0

a3 =
∆v3
∆t3

=
−∆v1
2∆t1

= −1

2
a1 = −1

6

m

s2
,

where the subscript refers to the first, second, and third time intervals respectively. In figure 4, we use these
values to plot the acceleration as a function of time.
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Figure 4: The acceleration of the train (in m/s2) as a function of time (in s).

Given that we know the acceleration, it is natural to calculate the velocity next. We will denote the velocity
throughout each of the time intervals by vi(t), where the subscript i equals 1, 2, or 3 and refers to the first,
second, or third time interval respectively. Similarly, we will denote the initial velocity of the ith time interval
to be v0,i. During all time intervals the acceleration is constant, so we can apply equations (1) and (2) from
problem 4. Equation (1) becomes

vi(t) = ait+ v0,i, (6)

where ai is the acceleration during the time interval that we have calculated above.

Importantly, using the form of equation (1) requires that we define the start of each time interval to be t = 0.
This means that we are defining a separate time coordinate system for each time interval. Keeping track and
correctly handling these different time coordinates is one of the most challenging parts of the problem. It is
possible to calculate everything on a single time coordinate, but the mathematics become more complicated.

Since the train started with v0,1 = 0, during the first time interval equation (6) is

v1(t) = a1t =

(
1

3

m
s2

)
t.

Therefore, at the interface between time intervals 1 and 2, the train is traveling at v1(60 s) = 20 m/s = v0,2.
Substituting this initial velocity and a2 = 0 into equation (6), we see that the velocity during the second
interval is a constant value of

v2(t) = v0,2 = 20
m
s
.

Thus, the initial condition for the third time interval is v2(300 s) = 20 m/s = v0,3, so

v3(t) = a3t+ v0,3 =

(
−1

6

m
s2

)
t+ 20

m
s
.

To produce the plot for velocity we need to combine these three results. However, we must remember to
account for the different time coordinate systems by shifting the second time interval by 60 s and the third
time interval by 300 s + 60 s = 360 s. This gives figure 5.

Lastly, we can calculate the positions analogously to the velocities, using equation (2) instead of equation
(1). We see that the position during each time interval changes quadratically as a function of time according
to

xi(t) =
1

2
ait

2 + v0,it+ x0,i, (7)
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Figure 5: The velocity of the train (in m/s) as a function of time (in s).

where x0,i is the initial position of the train during the ith time interval. Again, we are defining a separate
time coordinate for each time interval such that the start of every time interval is t = 0. We will take
x = x0,1 = 0 to be the initial location of the train at the start of the first time interval. We showed above
that v0,1 = 0, so during the first time interval equation (7) becomes

x1 =
1

2

(
1

3

m
s2

)
t2 =

(
1

6

m
s2

)
t2.

At the interface between time intervals 1 and 2, the train is located at x1(60 s) = 600 m = x0,2. Given that
we found v0,2 = 20 m/s above, the position throughout the second time interval is

x2 =
(
20

m
s

)
t+ 600 m.

At the interface between time intervals 2 and 3, the train is located at x2(300 s) = 6600 m = x0,3. Given
that v0,3 = 20 m/s from above, the position throughout the third time interval is

x3 =
1

2

(
−1

6

m
s2

)
t2 +

(
20

m
s

)
t+ 6600 m.

Again combining the three time intervals, shifting the second and third in time by 60 s and 360 s respectively,
we produce figure 6.
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Figure 6: The position of the train (in m) as a function of time (in s).
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