
Solutions to Problem Set 11
Rigid body rotation and static equilibrium

PHYS-101(en)

1. The beam

The are three forces acting on the beam. The gravitational force (which acts at the beam’s center of mass),
the tension force from the rope (which acts at the point of connection between the rope and the beam), and
the normal force from the wall (which acts at the point of contact between the wall and the beam). These
are illustrated in the figure below.
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The beam is in equilibrium when ∑
F⃗ = 0 (1)

and ∑
τ⃗ = 0, (2)

where we will choose to calculate the torque about an axis of rotation in the ẑ direction passing through the
origin (i.e. the leftmost end of the beam). Given the forces in the problem, equation (1) gives

N⃗ + T⃗ + F⃗g = 0, (3)

where

N⃗ = Nxx̂+Ny ŷ (4)

T⃗ = −T cosαx̂+ T sinαŷ (5)

F⃗g = −Mgŷ. (6)

Thus, the x component of equation (3) is

Nx − T cosα = 0 ⇒ Nx = T cosα (7)

1



PHYS-101(en) Rigid body rotation and static equilibrium - Solutions to Problem Set 11

and the y component is
Ny + T sinα−Mg = 0 ⇒ Ny = Mg − T sinα. (8)

To calculate the torques τ⃗ = r⃗ × F⃗ for use in equation (2), we must consider the position vector r⃗ from the
origin to the point of application of the force. For the normal force from the wall this is r⃗N = 0 as the force
is applied at the origin. For the gravitational force this is r⃗g = (L/2)x̂ as it acts at the center of mass, which
is in the middle (given that the beam is uniform). The point of application of the tension is shown in the
problem statement to be r⃗T = (3L/4)x̂. Thus, equation (2) becomes∑

τ⃗ = r⃗N × N⃗ + r⃗g × F⃗g + r⃗T × T⃗ =
L

2
x̂× (−Mgŷ) +

3

4
Lx̂× (−T cosαx̂+ T sinαŷ) = 0, (9)

where we have used equations (5) and (6). Using the right-hand rule to simplify the cross products (e.g.
x̂× x̂ = 0), we find

−MgL

2
ẑ +

3

4
LT sinαẑ = 0 ⇒ T =

2Mg

3 sinα
. (10)

Plugging this result into equation (5) gives

T⃗ =
2Mg

3

(
−1

tanα
x̂+ ŷ

)
. (11)

To determine the normal force, we substitute equation (10) into equations (7) and (8) to find

Nx =
2Mg

3 tanα
(12)

Ny = Mg − 2Mg

3
=

Mg

3
. (13)

From equation (4) we see that

N⃗ =
Mg

3

(
2

tanα
x̂+ ŷ

)
. (14)

Thus, the vector expressions for the forces are given by equations (6), (11), and (14), while the points of
application are indicated in the above plot.

2. The leaning ladder

The forces acting on the ladder are

• its weight F⃗g = −mgŷ applied at the ladder’s center of mass,

• the normal force of the ground N⃗1 = N1ŷ applied at the point of contact between the ladder and the
ground,

• the normal force of the wall N⃗2 = N2x̂ applied at the point of contact between the ladder and the wall,
and

• the friction force between the ladder and the ground F⃗f = −Ff x̂ applied at the point of contact between
the ladder and the ground.

These are shown in the figure below, where we have define a Cartesian coordinate system with its origin at
the center of mass of the ladder.
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We know that when α < αm, the ladder is in equilibrium. In this case, Newton’s second law (for the extended
system composed of the entire ladder) can be written as∑

F⃗ = ma⃗ ⇒ mg⃗ + N⃗1 + N⃗2 + F⃗f = 0. (15)

Projecting this into the x̂ and ŷ directions gives

N2 − Ff = 0 ⇒ N2 = Ff (16)

and
N1 −mg = 0 ⇒ N1 = mg (17)

respectively.

Equations (16) and (17) represent a system of two equations, but we have three unknowns: N1, N2, and Ff

(we know the maximum value of the friction force is Fmax
f = µN1, but we don’t know how Ff depends on

α). To solve the problem, we must consider the torque on the ladder τ⃗ = r⃗ × F⃗ . In equilibrium, the ladder
does not turn, so the net torque must be zero. We choose the center of mass of the ladder (i.e. the origin in
the above diagram) to be the pivot point. Then, we write down the net torque about this point from all the
forces in the problem

τ⃗net =
∑

τ⃗ = r⃗g × F⃗g + r⃗N1 × N⃗1 + r⃗N2 × N⃗2 + r⃗f × F⃗f = 0, (18)

where the position vectors go from the pivot point to the point of application of the force (as shown in the
above diagram). Given that the position vector for the gravitational force is r⃗g = 0, we find

r⃗N1 × N⃗1 + r⃗N2 × N⃗2 + r⃗f × F⃗f = 0. (19)

The magnitude of all the other position vectors is |r⃗N1| = |r⃗N2| = |r⃗f | = L/2. Using the right-hand rule
for the cross product, we can determine the direction of each term in equation (19). Each one is in the ẑ

direction, however the sign is positive for N⃗1 and negative for F⃗f and N⃗2. Next, we can use the cross product
definition that A⃗× B⃗ = |A⃗||B⃗| sin θ = AB sin θ (where θ is the angle between A⃗ and B⃗). This gives

L

2
N1 sinα− L

2
N2 sin

(π
2
− α

)
− L

2
Ff sin

(π
2
− α

)
= 0. (20)
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Using the trigonometric identity that sin (π/2− α) = cosα gives

N1 sinα−N2 cosα− Ff cosα = 0. (21)

This is the third equation that we need to solve our system of equations. Thus, we substitute equations (16)
and (17) to obtain

mg sinα− Ff cosα− Ff cosα = 0 ⇒ Ff =
mg

2
tanα. (22)

The static friction will be able to restrain the ladder as long as

FFr < Fmax
Fr = µN1 = µmg, (23)

where we have used equation (17). Substituting equation (22) into equation (23) allows us to determine the
maximum angle for which the ladder does not fall down to be

tanαm = 2µ ⇒ αm = arctan(2µ). (24)

This condition is independent of the mass of the ladder m.

3. Frictionless funicular

Since there are no nonconservative forces in the problem, we can impose conservation of mechanical energy
on the entire system (i.e. car, counterweight, and pulley) and write

Emi = Emf , (1)

where the i subscript indicates the state just before the funicular is released and the f subscript indicates
the state after the car has moved a distance d. We will quantify the positions of the car and counterweight
(x2 and y1 respectively) using the coordinate systems shown in the diagram below.

θ

R

m1
m2mp

x2

y1

We will choose the reference point for the gravitational potential energy to be at the height of the center of
the pulley, which we see is at x2 = 0 and y1 = 0.

The initial mechanical energy is only the gravitational potential energy of the car and counterweight (as the
center of mass of the pulley is at the reference point of the gravitational potential). Thus, we have

Emi = Ugi = −m1gy1i −m2gx2i sin θ, (2)

where y1i is the initial position of the counterweight and x2i is the initial position of the car.

After the cart has moved by a distance d, the mechanical energy is composed of the gravitational potential
energy of the car and counterweight, the translational kinetic energy of the car and counterweight, and the
rotational kinetic energy of the pulley. This can be written as

Emf = Ugf +Kf = (−m1gy1 −m2gx2 sin θ) +

(
m1

2
v21 +

m2

2
v22 +

Ip
2
ω2

)
, (3)

where x2 and y1 are the locations of the car and counterweight respectively, v1 and v2 are the speeds of the
counterweight and car respectively, and ω is the angular speed of the pulley.
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Since the rope is inextensible and directly connects the two blocks, the car and the counterweight (as well
as every point of the rope) move at the same speed. This is the constraint condition, which is expressed as

v = v1 = v2. (4)

Since the rope does not slip on the pulley, the points on the outer rim of the pulley move with a tangential
speed vϕ equal to the speed of the rope, car, and counterweight

vϕ = Rω = v ⇒ ω =
v

R
. (5)

Thus, using equations (4) and (5), we can write equation (3) as

Emf = −m1gy1 −m2gx2 sin θ +
m1

2
v2 +

m2

2
v2 +

Ip
2

v2

R2
. (6)

Substituting equations (2) and (6) into the conservation of mechanical energy given by equation (1) yields

−m1gy1i −m2gx2i sin θ = −m1gy1 −m2gx2 sin θ +
m1

2
v2 +

m2

2
v2 +

Ip
2

v2

R2
, (7)

which simplifies to

−m1g (y1i − y1)−m2g (x2i − x2) sin θ =
1

2

(
m1 +m2 +

Ip
R2

)
v2. (8)

From the geometry of the problem and the fact that d is the distance the car travels down the inclined plane
(and must be a positive number), we see that

d = x2 − x2i, (9)

while
d = y1i − y1. (10)

Substituting these gives

gd (−m1 +m2 sin θ) =
1

2

(
m1 +m2 +

Ip
R2

)
v2. (11)

We can now solve the for the speed as a function of the distance, which gives

v(d) =

√
2gd

m2 sin θ −m1

m1 +m2 + Ip/R2
. (12)

Since the problem statement tells us that Ip = mpR
2/2, we can also write this as

v(d) =

√
2gd

m2 sin θ −m1

m1 +m2 +mp/2
. (13)

4. Pendulum and disk

1. The total moment of inertia of a system about the axis of rotation P is defined to be

ItotP =

∫
M

ρ2dm, (1)
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where ρ is the distance from the axis P and the integral is performed over the entire mass of the object.
Since an integral is just a sum of infinitesimal elements, we can divide the integral into the sum of
integrals over the two parts of the system according to

ItotP = IrodP + IdiskP , (2)

where
IrodP =

∫
rod

ρ2dm (3)

and
IdiskP =

∫
disk

ρ2dm. (4)

We will first calculate IdiskP . Using the parallel axis theorem, we can relate the moment of inertia of
the disk about point P IdiskP to its moment of inertia about its center of mass IdiskCM according to

IdiskP = IdiskCM +m2L
2
2. (5)

The moment of inertia of a disk about its center of mass can be found from a table, which is perfectly
acceptable. However, here we will show how to derive it from the definition of the moment of inertia

IdiskCM =

∫
disk

ρ2dm, (6)

where ρ is the distance from the center of mass of the disk. Since the disk is uniform, we know that
its center of mass is at its geometric center and it has an areal density of

σ =
m2

πr22
=

∆m

∆A
, (7)

where ∆A is a differential element of area. We can use σ to rewrite the integral over mass in equation
(6) as an integral over area according to

IdiskCM =

∫
disk

ρ2σdA. (8)

While the differential area is dA = dxdy in Cartesian coordinates, we would like to use polar coordinates
to reflect the geometry of the disk. In polar coordinates dA = ρdϕdρ, which you can see by calculating
the area of a differential element with a small extent in radius ρ and angle ϕ. Thus, we can write

IdiskCM =

∫ r2

0

∫ 2π

0

ρ2σρdϕdρ, (9)

where we’ve chosen the bounds such that the integrals span the entire disk. Since the argument of the
integral has no ϕ dependence, we find

IdiskCM = 2πσ

∫ r2

0

r3dr. (10)

The integral over radius is also straightforward, giving

IdiskCM = 2πσ

(
r42
4

− 0

)
=

m2

2
r22, (11)

where we have substituted in equation (7). Combining this with equation (5) gives the final expression
for the moment of inertia of the disk about P

IdiskP =
m2

2
r22 +m2L

2
2. (12)
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To calculate the moment of inertia of the rod, we can use the result from a table, which again is
perfectly acceptable. However, here we will again show how to derive it from the definition of the
moment of inertia

IrodP =

∫
rod

ρ2dm, (13)

where ρ is the distance from the axis P passing through the end of the rod. Since the rod is uniform,
we know that it has an linear density of

λ =
m1

L1
=

∆m

∆ρ
, (14)

where ∆ρ is a linear differential element along the length of the rod. We can use λ to rewrite the
integral over mass in equation (13) as an integral over length according to

IrodP =

∫
rod

ρ2λdρ. (15)

Thus, the integral over the entire rod is just

IrodP = λ

∫ L1

0

ρ2dρ = λ

(
L3
1

3
− 0

)
=

m1

3
L2
1. (16)

Substituting this and equation (12) into equation (2) gives the final answer of

ItotP =
m1

3
L2
1 +

m2

2
r22 +m2L

2
2. (17)

2. The center of mass of any system is given by

R⃗CM =

∑
i mir⃗i∑
i mi

. (18)

Here our system has two objects: the rod and the disk. Given that the rod is uniform, we know that
its center of mass is at its midpoint, which is a distance L1/2 from the point P. Similarly, since the
disk is uniform, its center of mass is at its geometric center, which is a distance L2 from the axis P.
The calculation is one dimensional as both of these distances are in the same direction (i.e. along the
length of the rod). Plugging this information into equation (18) gives a distance of

RCM =
m1(L1/2) +m2(L2)

m1 +m2
=

m1L1/2 +m2L2

m1 +m2
. (19)

3. As all of the forces acting on the pendulum system are conservative, we can impose conservation of
mechanical energy

Emi = Emf (20)

between the initial state described in the problem (denoted by the subscript i) and the final state when
the pendulum is at the bottom of its swing (denoted by the subscript f). The only forces involved are
gravity, so equation (20) is

Ki + Ugi = Kf + Ugf . (21)

The system is released from rest, so Ki = 0. Additionally, we will define the reference point for the
gravitational potential energy to be the location of the center of mass when the pendulum is at the
bottom of its swing, so Ugf = 0. Thus, we can use the forms of the rotational kinetic energy and
gravitational potential energy to write equation (21) as

0 + (m1 +m2) g∆h =
ItotP

2
ω2
f + 0, (22)
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where ∆h is the change in height of the center of mass from its final position to its initial position
and ωf is the angular speed that we are trying to find. From the picture below, we see that ∆h =
RCM −RCM cos θ0. Substituting this into equation (22) along with equations (17) and (19) gives

(m1 +m2) g (RCM −RCM cos θ0) =
1

2

(m1

3
L2
1 +

m2

2
r22 +m2L

2
2

)
ω2
f (23)

⇒ g
(m1

2
L1 +m2L2

)
(1− cos θ0) =

1

2

(m1

3
L2
1 +

m2

2
r22 +m2L

2
2

)
ω2
f (24)

⇒ ωf =

√
2g

(
m1

2 L1 +m2L2

)
(1− cos θ0)

m1

3 L2
1 +

m2

2 r22 +m2L2
2

. (25)

θ0

P

CMΔh

RCM
RCM

8


