

Mock exam 2 PHYS-101(en) 3 December 2024

Problem booklet

Problems

Problem 1 – 8 points – page 3

 $Problem\ 2-8\ points-page\ 4$

Mock exam 2 1/10

THIS PAGE IS INTENTIONALLY LEFT BLANK

Mock exam 2 2/10

1. Spring and loop (8 points)

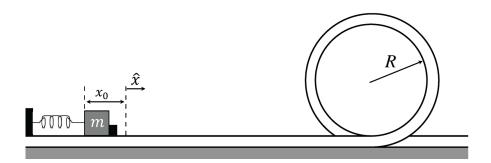


Figure 1: Situation with no friction.

A small block of mass m is pushed against a spring with spring constant k and is held in place with a latch. The spring is compressed an unknown distance x_0 (see figure 1). When the latch is released, the block leaves the spring and slides along a frictionless track with a circular loop of radius R. There is no air drag.

a. Assuming that the block is able to go around the loop, what is the speed of the block after exiting the loop? What is its velocity?

Give the answer in terms of m, k, and x_0 .

b. If the force exerted by the loop on the block (i.e., the normal force) at the top of the loop is equal to the weight, find the speed of the block at the top of the loop in terms of g and R.

What is the initial spring compression x_0 required for this to occur?

c. What is the minimum value of x_0 required for the block to complete the loop without ever losing contact with the track?

Hint: What must the value of the normal force be at the top of the loop in the limiting case?

Mock exam 2 3/10

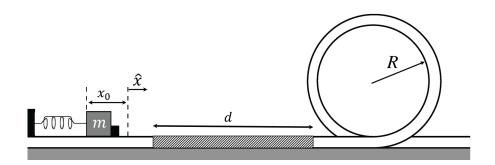


Figure 2: Situation including friction.

- d. Now consider the situation in which the block has to move a distance d across a rough surface with a constant coefficient of kinetic friction μ_k before entering the loop (see figure 2).
 - Compute the work done by friction on the block.
- e. What is the minimum value of x_0 required for the block to make it all the way across the rough surface?
- f. What is the minimum value of x_0 required for the block to complete the loop without ever losing contact with the track? This is different from part (c) in that, now, the block has to move across the rough surface.

What is the speed of the block after exiting the loop?

Mock exam 2 4/10

2. Fragmenting projectile (8 points)

At time t = 0, a cannon in the middle of a flat desert fires a projectile of mass M with a speed v_0 at an angle α with respect to the horizontal. At the peak of its trajectory, the projectile explodes into two fragments of mass m_1 and m_2 , respectively. The velocities of the two fragments immediately after the explosion are purely horizontal. Neglect air drag.

- a. Make a sketch of the problem. Define clearly your reference frame.
- b. At what time does the explosion occur?
- c. Determine the position at which the explosion occurs.

To simplify your answer, you may use the identity $\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$.

- d. At what time do the fragments hit the ground? Why do they hit the ground at the same time?
- e. Determine the distance from the cannon at which the center of mass (CM) intercepts the ground.

Hint: How does the explosion of the projectile affect the motion of its CM?

f. Consider the case in which fragment m_1 reaches the cannon. At what distance from the cannon does m_2 land?

Express your answer in terms of M, m_1 , v_0 , g, and α .

- g. What would the landing distance of m_2 be if, instead, m_1 landed at half the distance between the cannon and the horizontal location of the explosion?
- h. Assuming that m_1 reaches the cannon, as in part (f), what are the velocities of m_1 and m_2 immediately after the explosion?

Express your answer in terms of M, m_1 , v_0 , and α .

Mock exam 2 5/10