

General Physics: Mechanics

PHYS-101(en)

Math review

$$e^{i\pi} + 1 = 0$$

Dr. Justin Ball Justin.Ball@epfl.ch

Math review

- You are expected to know how to perform standard derivatives and integrals, the most common of which are listed in slides 3 through 5
- The remaining slides contain a summary of all types of differential equations that are planned to appear in this course
- This is not a math course, so you can take these solutions as given and apply them without justification
- You can also copy them onto your final exam "cheat sheet"

List of common derivatives

• Polynomial function (where A and n are constants)

$$x(t) = At^n \implies \frac{dx}{dt} = nAt^{n-1}$$

ullet Exponential function (where A and b are constants)

$$x(t) = Ae^{bt} \implies \frac{dx}{dt} = bAe^{bt}$$

Logarithmic function (where A, b, and c are constants)

$$x(t) = A \ln(bt + c) \implies \frac{dx}{dt} = \frac{Ab}{bt + c}$$

• Sine (where A, b, and c are constants)

$$x(t) = A\sin(bt + c) \implies \frac{dx}{dt} = bA\cos(bt + c)$$

• Cosine (where A, b, and c are constants)

$$x(t) = A\cos(bt + c) \implies \frac{dx}{dt} = -bA\sin(bt + c)$$

List of common indefinite integrals

• Polynomial function (where A and n are constants and D is an integration constant)

$$x(t) = At^n \implies \int x(t)dt = \frac{A}{n+1}t^{n+1} + D$$

• Exponential function (where A and b are constants and D is an integration constant)

$$x(t) = Ae^{bt} \implies \int x(t)dt = \frac{A}{b}e^{bt} + D$$

• Reciprocal function (where A, b, and c are constants and D is an integration constant)

$$x(t) = \frac{A}{bt+c} \implies \int x(t)dt = \frac{A}{b}\ln(bt+c) + D$$

Sine (where A, b, and c are constants and D is an integration constant)

$$x(t) = A\sin(bt + c) \implies \int x(t)dt = -\frac{A}{b}\cos(bt + c) + D$$

• Cosine (where A, b, and c are constants and D is an integration constant)

$$x(t) = A\cos(bt + c) \implies \int x(t)dt = \frac{A}{b}\sin(bt + c) + D$$

List of common definite integrals

Polynomial function (where A and n are constants)

$$x(t) = At^n \implies \int_{t_i}^{t_f} x(t)dt = \frac{A}{n+1} (t_f^{n+1} - t_i^{n+1})$$

Exponential function (where A and b are constants)

$$x(t) = Ae^{bt} \implies \int_{t_i}^{t_f} x(t)dt = \frac{A}{b}(e^{bt_f} - e^{bt_i})$$

Reciprocal function (where A, b, and c are constants)

$$x(t) = \frac{A}{bt+c} \implies \int_{t_i}^{t_f} x(t)dt = \frac{A}{b}(\ln(bt_f+c) - \ln(bt_i+c)) = \frac{A}{b}\ln\left(\frac{bt_f+c}{bt_i+c}\right)$$

Sine (where A, b, and c are constants)

$$x(t) = A\sin(bt + c) \implies \int_{t_i}^{t_f} x(t)dt = -\frac{A}{b}\cos(bt_f + c) + \frac{A}{b}\cos(bt_i + c)$$

Cosine (where A, b, and c are constants)

$$x(t) = A\cos(bt + c) \implies \int_{t_i}^{t_f} x(t)dt = \frac{A}{b}\sin(bt_f + c) - \frac{A}{b}\sin(bt_i + c)$$

Direct integration

$$1. \ \frac{dx}{dt} = f(t)$$

• For example:
$$\frac{dx}{dt} = -gt + v_0$$
 (ballistic motion)

$$\frac{dv}{dt} = \frac{F(t)}{m}$$
 (Newton's second law)

$$F(x) = -\frac{dU}{dx}$$
 (potential energy)

• Solved by direct integration: $x(t) = \int f(t)dt$

Separation of variables

$$2. \ \frac{dx}{dt} = f(t)x^n$$

• For example:
$$m\frac{dv}{dt} = -\beta v$$
 (laminar air drag)

$$m\frac{dv}{dt} = -\beta v^2 \quad \text{(turbulent air drag)}$$

• Solved by separation of variables: $\frac{1}{x^n} \frac{dx}{dt} = f(t)$

$$\int \frac{1}{x^n} \frac{dx}{dt} dt = \int f(t)dt \quad \Rightarrow \quad \int \frac{1}{x^n} dx = \int f(t)dt$$

Inhomogeneous with constant coeff. [Lecture 6b]

$$3. \ \frac{dx}{dt} + A_1 x = A_2$$

- 3. $\frac{dx}{dt} + A_1 x = A_2$ E.g. $m\frac{dv}{dt} = -\beta v + mg \quad \text{(laminar drag with gravity)}$

$$\frac{dX}{dt} + A_1 X = 0$$

- Then X(t) can be found according to the previous slide
- Lastly, take this solution for X(t) and substitute it back into $x(t) = X(t) + A_2/A_1$ to arrive at the final answer

Rocket equation

[Lectures 7a, 12a]

$$4. A \frac{dx}{dt} + x \frac{dy}{dt} = 0$$

• E.g.
$$m_r \frac{dv_r}{dt} + \frac{dm_r}{dt}u = 0$$
 (rocket equation)

Solved by separation of variables:

$$\frac{1}{x}\frac{dx}{dt} = -\frac{1}{A}\frac{dy}{dt} \implies \frac{d}{dt}\left(\ln(x)\right) = -\frac{d}{dt}\left(\frac{y}{A}\right)$$

$$\int \frac{d}{dt} \left(\ln(x) \right) dt = -\int \frac{d}{dt} \left(\frac{y}{A} \right) dt \quad \Rightarrow \quad \ln(x) = -\frac{y}{A} + C$$

$$5. \ \frac{d^2x}{dt^2} + \omega_0^2 x = 0$$

• E.g.
$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$
 (spring harmonic oscillator)

$$\frac{d^2x}{dt^2} + \frac{g}{\ell}x = 0 \quad \text{(oscillating pendulum)}$$

- Solved with the form: $x(t) = A \cos(\omega_0 t + \varphi)$
- Use A and ϕ to satisfy initial conditions

Damped harmonic eq.

6.
$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega_0^2 x = 0$$

• E.g.
$$-\beta \frac{dx}{dt} - kx = m \frac{d^2x}{dt^2}$$
 (damped harmonic motion)

Solved with the form:

$$x(t) = e^{-\lambda t} \left(A_1 e^{t\sqrt{\lambda^2 - \omega_0^2}} + A_2 e^{-t\sqrt{\lambda^2 - \omega_0^2}} \right)$$

• Use A_1 and A_2 to satisfy initial conditions

Forced damped harmonic eq.

7.
$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega_0^2 x = \frac{F_d}{m}\cos(\omega_d t)$$

- E.g. Forced damped harmonic motion
- Solved with the form:

$$x(t) = e^{-\lambda t} \left(A_1 e^{t\sqrt{\lambda^2 - \omega_0^2}} + A_2 e^{-t\sqrt{\lambda^2 - \omega_0^2}} \right) + A_d(\omega_d, F_d) \cos(\omega_d t + \varphi(\omega_d))$$

where

$$A_{d}(\omega_{d}, F_{d}) = \frac{F_{d}/m}{\sqrt{(2\lambda\omega_{d})^{2} + (\omega_{0}^{2} - \omega_{d}^{2})^{2}}} \text{ and } \varphi(\omega_{d}) = \tan^{-1}\left(\frac{2\lambda\omega_{d}}{\omega_{d}^{2} - \omega_{0}^{2}}\right)$$

• Use A_1 and A_2 to satisfy initial conditions

Forced damped harmonic eq.

8.
$$\frac{d^2x}{dt^2} + 2\lambda \frac{dx}{dt} + \omega_0^2 x = \frac{F_d}{m} \cos(\omega_d t) + C$$

- E.g. damped harmonic motion with a constant forcing
- Solved with the form:

$$x(t) = e^{-\lambda t} \left(A_1 e^{t\sqrt{\lambda^2 - \omega_0^2}} + A_2 e^{-t\sqrt{\lambda^2 - \omega_0^2}} \right)$$
$$+ A_d(\omega_d, F_d) \cos(\omega_d t + \varphi(\omega_d)) + \frac{C}{\omega_0^2}$$

where $A_d(\omega_d, F_d)$ and $\varphi(\omega_d)$ are shown on previous slide

- Use A_1 and A_2 to satisfy initial conditions
- C term can be viewed as forcing term with $\omega_d=0$