

General Physics: Mechanics

PHYS-101(en)

Lecture 8a: Kinetic energy and work

Dr. Marcelo Baquero marcelo.baquero@epfl.ch November 4th, 2024

Émilie du Châtelet (circa 1740)

Today's agenda (Serway 7-8, MIT 13-14) Swiss Plasma Center

- 1. Energy and work
 - Kinetic energy
 - Work done by a force
 - Work-kinetic energy theorem
 - To be continued next week...

DEMO (556)

The skiers

DEMO (556)

The skiers

- 1) What are the final speeds of the two skiers?
- 2) Which skier would win in a race?

Energy

- Energy is one of the most fundamental and important concepts in physics
- It is possessed by objects, in various forms, and can be transferred between them
- Can be understood intuitively from its Greek origin ἐνέργεια, meaning "activity"
- It is given an exact and rigorous definition in the language of mathematics
- It is so important because it is conserved (as we will see next lecture)
- Similar to momentum, but more complex as it has many different forms (like force)

Kinetic energy

 Kinetic energy is a type of energy associated with the motion of an object

$$K = \frac{m}{2}v^2$$

 Kinetic energy is a type of energy associated with the motion of an object

$$K = \frac{m}{2}v^2$$

 Seems random, but it will make more sense later today

Kinetic energy

 Kinetic energy is a type of energy associated with the motion of an object

$$K = \frac{m}{2}v^2$$

 Seems random, but it will make more sense later today

- Émilie du Châtelet used observations of brass weights, dropped into clay from various heights, to motivate the importance of a quantity proportional to mv^2
- All forms of energy have units of Joules (J) = [kg·m²/s²] = [N·m]

responseware.eu Session ID: epflphys101en

Conceptual question

Consider two carts, of mass m and 2m, at rest on an air track. If you push the first cart for 3 s and then the other for the same length of time, exerting equal force on each, the **momentum** of the light cart is...

- A. 4 times...
- B. 2 times...
- C. equal to...
- D. half...
- E. one-fourth...

the momentum of the heavy cart.

Conceptual question

Consider two carts, of mass m and 2m, at rest on an air track. If you push the first cart for 3 s and then the other for the same length of time, exerting equal force on each, the **kinetic energy** of the light cart is...

- A. greater than...
- B. equal to...
- C. less than...

the kinetic energy of the heavy cart.

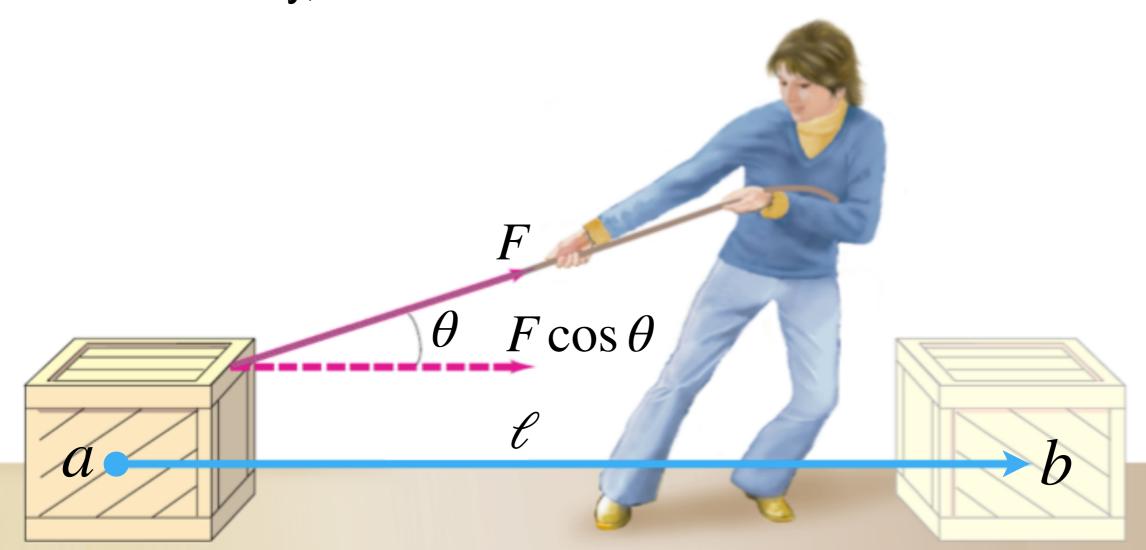
Work

- Work arises when a force is applied along the direction of the displacement of an object
- It is a scalar quantity, typically represented by W, that has units of force times distance $[N \cdot m] = [kg \cdot m^2/s^2] = Joule (J)$
- Work is said to be done by a force (or the object exerting the force) on an object

Work

- Work arises when a force is applied along the direction of the displacement of an object
- It is a scalar quantity, typically represented by W, that has units of force times distance $[N \cdot m] = [kg \cdot m^2/s^2] = Joule (J)$
- Work is said to be done by a force (or the object exerting the force) on an object
- This can be positive if the force is in the direction of motion or negative if the force opposes the direction of motion
- Work is to kinetic energy as impulse is to momentum

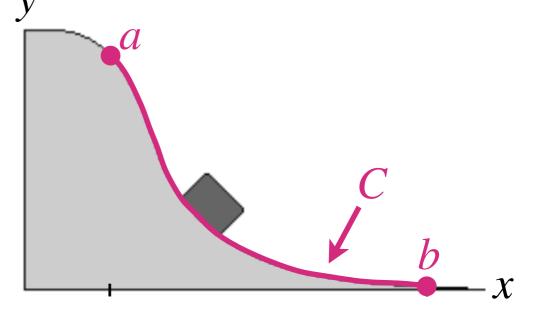
Work done by a constant force



 The work done by a <u>constant</u> force is defined as the distance traveled multiplied by the component of the force in the direction of the displacement

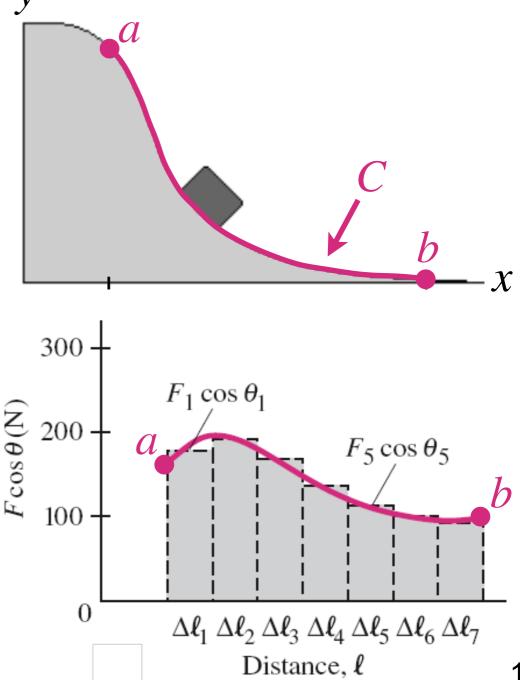
Work done by a constant force

- The work done by a <u>constant</u> force is defined as the distance traveled multiplied by the component of the force in the direction of the displacement
- Mathematically, this is $W = \overrightarrow{F} \cdot \overrightarrow{\ell} = F \ell \cos \theta$



 The work done by a <u>variable</u> force can be found by adding up constant forces over a lot of infinitesimally small

distances

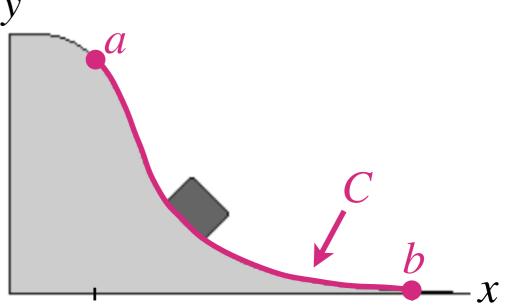

Work done by a variable force

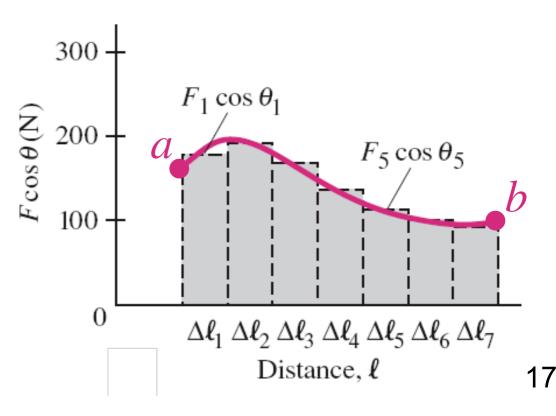
 The work done by a <u>variable</u> force can be found by adding up constant forces over a lot of infinitesimally small distances

Mathematically, each segment contributes

$$\Delta W_i = \overrightarrow{F}_i \cdot \Delta \overrightarrow{\ell}_i$$

Work done by a variable force



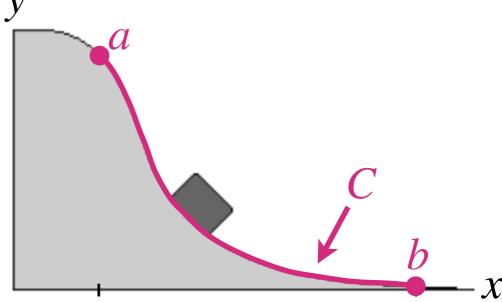

- The work done by a <u>variable</u> force can be found by adding up constant forces over a lot of infinitesimally small distances
- Mathematically, each segment contributes

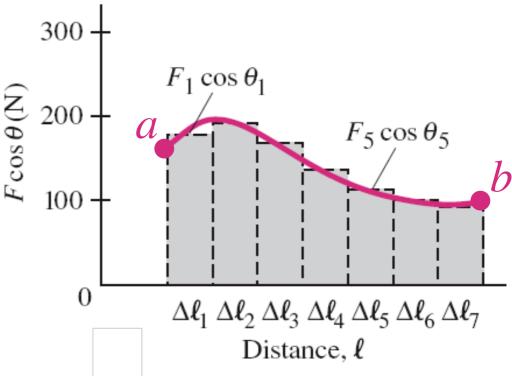
$$\Delta W_i = \overrightarrow{F}_i \cdot \Delta \overrightarrow{\ell}_i$$

The sum is

$$W = \lim_{\Delta \mathcal{E}_i \to 0} \sum_{i} \overrightarrow{F}_i \cdot \Delta \overrightarrow{\mathcal{E}}_i$$
$$= \int_a^b \overrightarrow{F} \cdot d\overrightarrow{\mathcal{E}}$$

Work done by a variable force

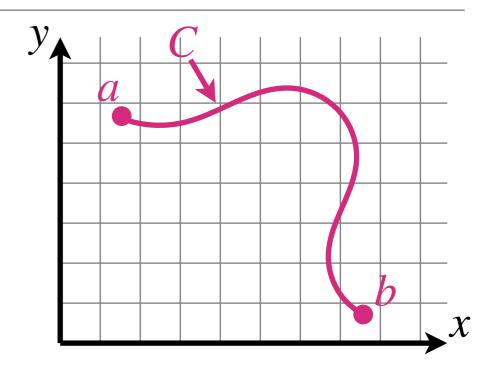

- The work done by a <u>variable</u> force can be found by adding up constant forces over a lot of infinitesimally small distances
- Mathematically, each segment contributes


$$\Delta W_i = \overrightarrow{F}_i \cdot \Delta \overrightarrow{\ell}_i$$

The sum is

$$W = \lim_{\Delta \mathcal{E}_i \to 0} \sum_{i} \overrightarrow{F}_i \cdot \Delta \overrightarrow{\mathcal{E}}_i$$

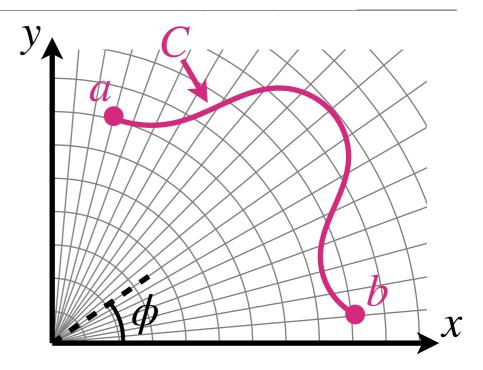
$$= \int_{a}^{b} \overrightarrow{F} \cdot d\overrightarrow{\mathcal{E}} = \int_{C} \overrightarrow{F} \cdot d\overrightarrow{\mathcal{E}}$$



Work in various coordinate systems

Swiss
Plasma
Center

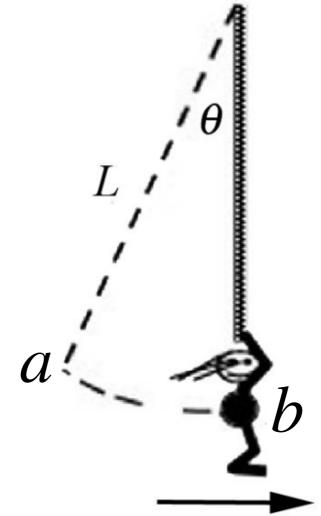
Cartesian:



Work in various coordinate systems

Swiss
Plasma
Center

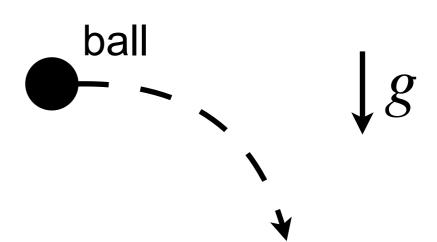
• Polar (and cylindrical):



Conceptual question

A person swings on an inextensible rope that is attached to a fixed point. The rope exerts a tension T on the person. The work done by tension on the person as she moves from a to b is:

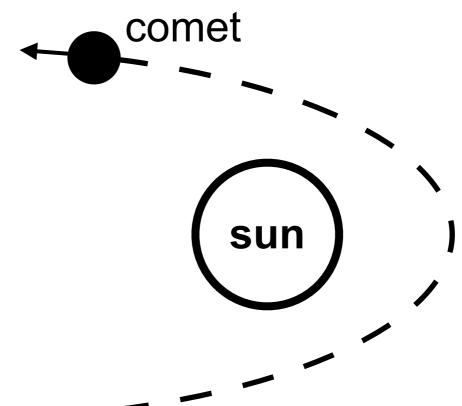
- A. *T*
- B. TL
- C. $TL\theta$
- D. $mgL(1 \cos \theta)$
- **E**. 0


Conceptual question

A ball is given an initial horizontal velocity and allowed to fall under the influence of gravity, as shown below.

The work done by the force of gravity on the ball is...

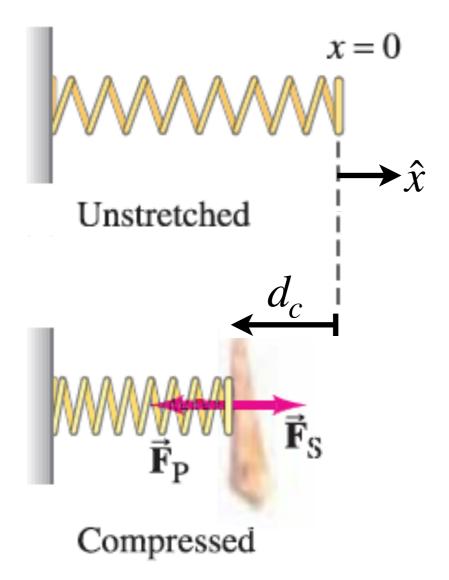
- A. positive.
- B. zero.
- C. negative.



SPEED! conceptual question

responseware.eu
Session ID: epflphys101en
Swiss
Plasma
Center

A comet is on a hyperbolic orbit around the Sun. While the comet is moving <u>away</u> from the Sun, the work done by the Sun on the comet is...


- A. positive.
- B. zero.
- C. negative.

Work done by a spring

• A person compresses a spring by a distance d_c from its equilibrium position. What is the work done by the spring on the person as it stretches back towards the equilibrium position?

Work-kinetic energy theorem

- Doing work on a system changes its kinetic energy
- Seems sensible, given colloquial definitions of the words

Work-kinetic energy theorem

- Doing work on a system changes its kinetic energy
- Seems sensible, given colloquial definitions of the words
- Work-kinetic energy theorem:

For a constant mass system, the total work done by all the forces equals the change in the kinetic energy of the system.

Work-kinetic energy theorem

- Doing work on a system changes its kinetic energy
- Seems sensible, given colloquial definitions of the words
- Work-kinetic energy theorem:

For a constant mass system, the <u>total</u> work done by <u>all</u> the forces equals the change in the kinetic energy of the system.

In mathematics, this is

$$W_{net} = \Delta K$$

Proving the work-kinetic energy theorem

• An object at rest falls directly downwards from a height y = h to the ground at y = 0 under the sole influence of gravity. What is the work done by gravity? What is the change in kinetic energy?

• An object at rest falls directly downwards from a height y = h to the ground at y = 0 under the sole influence of gravity. What is the work done by gravity? What is the change in kinetic energy?

responseware.eu Session ID: epflphys101en Swiss Plasma Center

Conceptual question

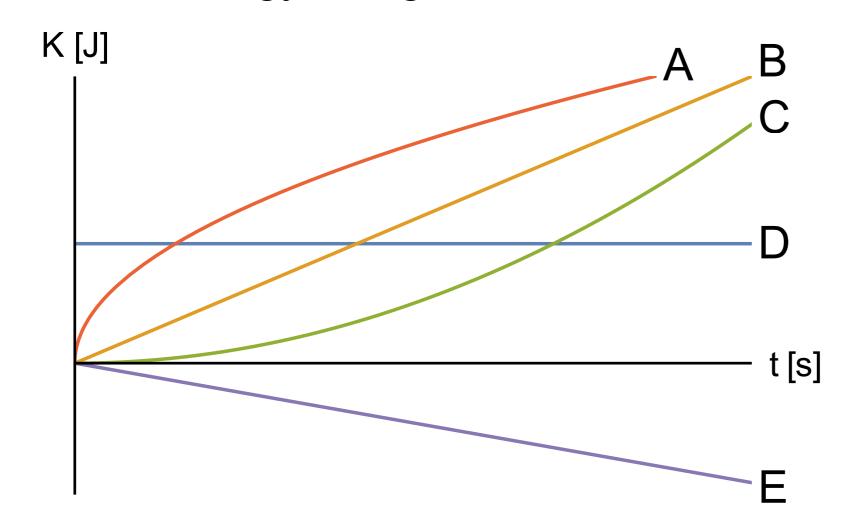
The same horizontal force, of magnitude F, is applied to two different blocks, of mass m and 3m respectively. The blocks move on a frictionless surface and both blocks begin from rest. If each block moves the same distance as the force is applied, the heavier block acquires...

- A. 9 times as much...
- B. 3 times as much...
- C. the same...
- D. 1/3 times as much...
- E. 1/9 times as much...

kinetic energy as the lighter block.

Conceptual question

Compared to the amount of energy required to accelerate a car from rest to 10 km/h, the work required to accelerate the same car from 10 km/h to 20 km/h is...


- A. the same.
- B. twice as much.
- C. three times as much.
- D. four times as much.

responseware.eu Swiss

Session ID: epflphys101en Center

Conceptual question

An acorn falls to the earth from a tree. Which of the following graphs best represents the time dependence of the acorn's kinetic energy? Neglect air resistance.

Conservative and nonconservative forces

A force is called conservative if

The work done by the force on a particle moving between any two points is independent of the path taken by the particle.

Conservative and nonconservative forces

A force is called conservative if

The work done by the force on a particle moving between any two points is independent of the path taken by the particle.

or equivalently

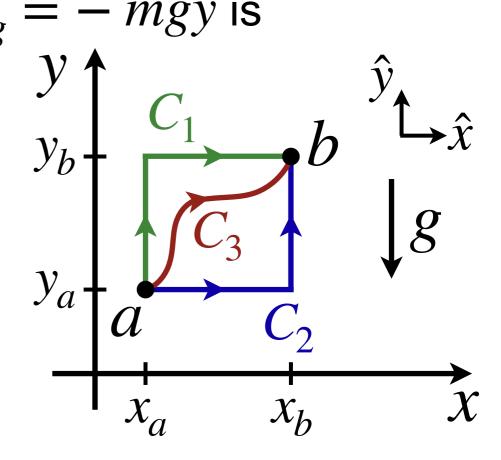
The net work done by the force on a particle moving around any closed path is zero.

Conservative and nonconservative forces

A force is called conservative if

The work done by the force on a particle moving between any two points is independent of the path taken by the particle.

or equivalently


The net work done by the force on a particle moving around any closed path is zero.

- Otherwise the force is non-conservative
- Gravity and springs are conservative, while friction and air drag are non-conservative

Path independence of gravity

• Show that the gravitational force \overrightarrow{F}_g conservative

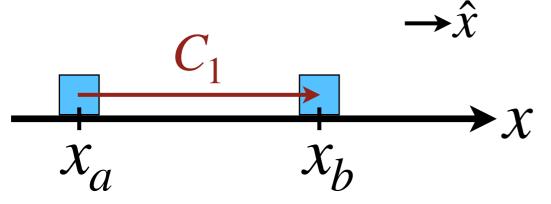
DEMO (635)

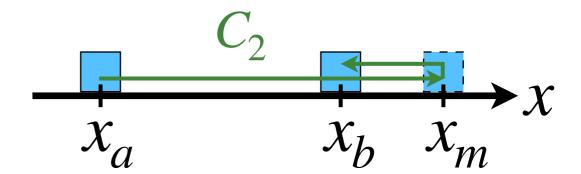
1) What are the final speeds of the two skiers?

DEMO (556)

2) Which skier would win in a race?

Rules of thumb for mechanics problems




- Do you need to know information at particular times or at particular locations?
 - Care about timings: Use Newton's laws (as it requires the equation of motion)
 - Care about locations: Use work and energy
- Are the forces constant?
 - Yes: Use Newton's laws
 - No: Use work and energy
- Work and energy are scalar quantities, so they cannot determine the direction of velocity or acceleration

Path dependence of kinetic friction

• Show that the kinetic friction force $\overrightarrow{F}_f = \pm \, \mu_k N \hat{x}$ is not conservative

Summary

- Kinetic energy is defined by $K = \frac{m}{2}v^2$ and has units of Joules
- The work done by a force \overrightarrow{F} is

$$W = \int_{a}^{b} \overrightarrow{F} \cdot d\overrightarrow{\ell}$$

 Work-kinetic energy theorem: The total (net) work done on an object equals the change in its kinetic energy

$$W_{net} = \Delta K = \frac{m}{2} v_b^2 - \frac{m}{2} v_a^2$$

 The work done by conservative forces does not depend on the path, while it does for nonconservative forces

Competitive marble racing tomorrow

