

General Physics: Mechanics

PHYS-101(en)

Lecture 7a:
Conservation of momentum,
center of mass and
continuous mass transfer

Dr. Marcelo Baquero marcelo.baquero@epfl.ch October 28th, 2024

Announcement

- Mini mock exam tomorrow
 - In-class (SG1) during normal lecture hours (10:15-11:00)
 - The format is very similar to the exam. You will be given a "booklet" with the questions and space to write your solutions
 - "Cheat" sheet, notes, computer, calculator, etc. are all allowed, just no talking with neighbors
 - Take to your TA at this week's Wednesday exercise session, to be graded and returned on Wednesday November 6th

• In general quite positive, but...

- In general quite positive, but...
 - sound quality in classroom is not great

- In general quite positive, but...
 - sound quality in classroom is not great
 - my handwriting is difficult to understand

- In general quite positive, but...
 - sound quality in classroom is not great
 - my handwriting is difficult to understand
 - availability of blank lecture notes

- In general quite positive, but...
 - sound quality in classroom is not great
 - my handwriting is difficult to understand
 - availability of blank lecture notes
 - example problems are too long or too short

- In general quite positive, but...
 - sound quality in classroom is not great
 - my handwriting is difficult to understand
 - availability of blank lecture notes
 - example problems are too long or too short
 - problem sets are difficult

Today's agenda (Serway 6, 9 and MIT 8 -12)

1. Brief review of last week

- 2. Some examples
 - Conservation of momentum
 - Motion of Center of mass

- 3. Systems with variable mass
 - Rocket science and interstellar space travel!

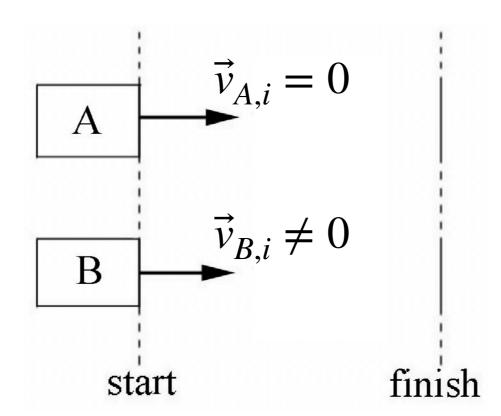
DEMO (113)

Recoil of a cart

Review of last week — Momentum

- Momentum: A vector quantity defined as $\vec{p} = m\vec{v}$
- Conservation of momentum: Total momentum of a system stays constant, if the net external force on it is zero and matter is not exchanged
- Impulse: Integral of net force over a time interval, or change in momentum over a time interval
- Center of mass: For extended bodies, the one point that would move in the same path as a point mass subjected to the same net force

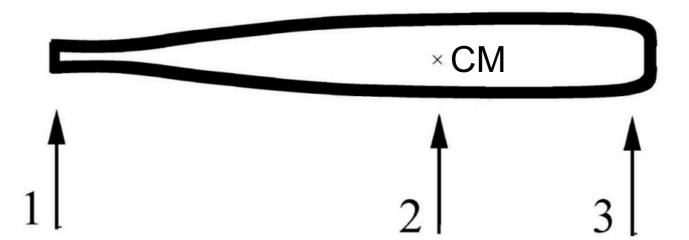
$$\overrightarrow{F}_{net}^{ext} = \frac{d\overrightarrow{p}_{sys}}{dt} = M\overrightarrow{A}_{CM}$$


You drop a stone from the top of a high cliff. Consider the earth and stone as a system (neglecting the effects of the sun, moon, and other astronomical objects). As the stone falls, the momentum of this system...

- A. increases in the downwards direction.
- B. decreases in the downwards direction.
- C. stays the same.

responseware.eu Session ID: epflphys101en Center

Identical constant forces push two identical objects A and B continuously from a start line to a finish line. If A is initially at rest and B is initially moving to the right...



- object A has the larger change in momentum.
- B. object B has the larger change in momentum.
- C. Both objects have the same change in momentum.

The greatest acceleration of the center of mass (CM) of the baseball bat will be produced by pushing with a force F at

- A. Position 1
- B. Position 2
- C. Position 3
- D. All are the same.

Today's agenda (Serway 6, 9 and MIT 8 -12)

1. Brief review of last week

2. Some examples

- Conservation of momentum
- Motion of Center of mass

- 3. Systems with variable mass
 - Rocket science and interstellar space travel!

Example: Consevation of momentum

A kid of mass m_k sees that his dog (mass m_d) is playing on a flat icy surface. The dog suddenly falls and starts sliding with velocity \vec{v}_d . The kid runs after the dog, but upon touching the icy surface he also falls and slides with velocity \vec{v}_k . Fortunately, he has aimed right and reaches the dog.

Upon touching the dog the kid holds on to it and both keep sliding together. What is their velocity \vec{v}_f ?

Example: Consevation of momentum

DEMO (766)

Inelastic collision

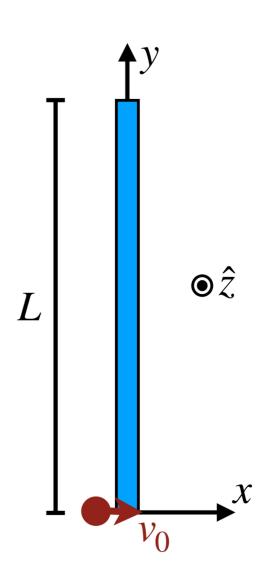
Today's agenda (Serway 6, 9 and MIT 8 -12)

1. Brief review of last week

2. Some examples

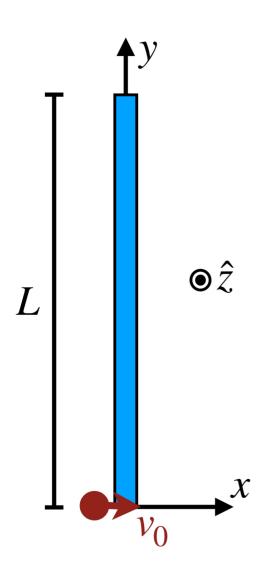
- Conservation of momentum
- Motion of Center of mass

- 3. Systems with variable mass
 - Rocket science and interstellar space travel!

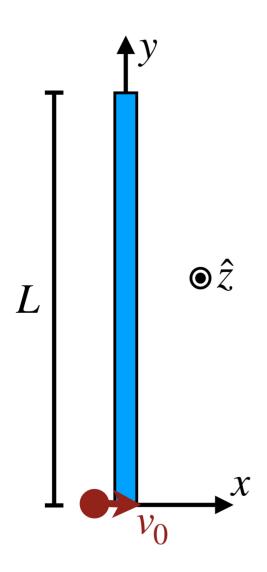

Example: Motion of center of mass (CM)

Swiss Plasma Center

A slender rod of length L and mass M rests along the y-axis on a flat icy surface. The linear mass density of the rod $\lambda(y)$ varies quadratically with the distance from the origin.


A particle of mass 2M that moves along the x-axis with speed v_0 strikes the rod at the instant of time $t=t_0$.

Find the position $\overrightarrow{R}_{\mathit{CM}}$ of the center of mass as a function of t .


Example: Motion of center of mass (CM)

Example: Motion of center of mass (CM)

Today's agenda (Serway 6, 9 and MIT 8 -12)

1. Brief review of last week

2. Some examples

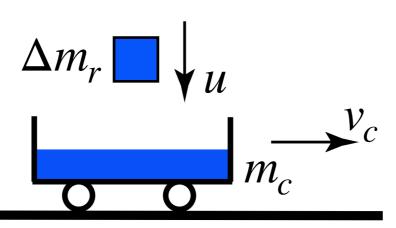
- Conservation of momentum
- Motion of Center of mass

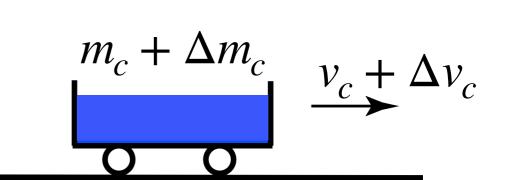
3. Systems with variable mass

Rocket science and interstellar space travel!

DEMO (178)

Falling chain


Types of systems with changing mass

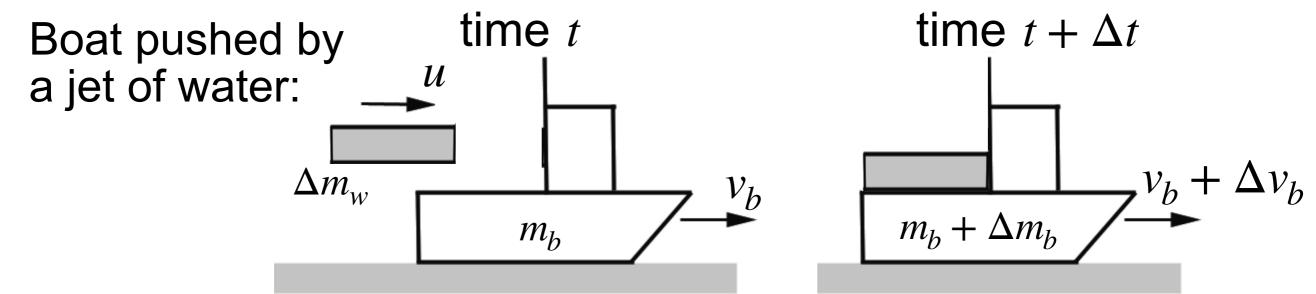

1. Transfer of mass to an object, but no transfer of momentum along the axis of motion

Rain falling into a cart:

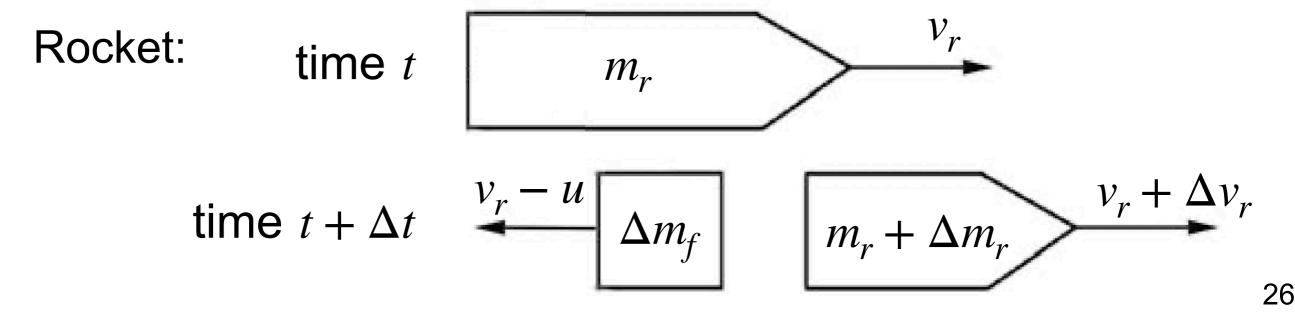
time t

2. Transfer of mass from an object, but no transfer of momentum along the axis of motion

Ice skater with a leaky water bottle: time t


 m_p

time $t + \Delta t$


EPFL Swiss Plasma

Types of systems with changing mass

 Mass <u>hits</u> an object, <u>providing an impulse</u> that transfers momentum along the direction of motion

4. Mass is <u>ejected</u> from an object, <u>resulting in a recoil</u> along the direction of motion

DEMO (113)

Recoil of a cart (ejection of gas)

Center

Tackling systems with changing mass

Determine the speed of an object with changing mass

- Determine the speed of an object with changing mass
- Choose reference frame and define system
- 2. Draw **momentum diagrams** at different times
- 3. Apply conservation of mass

- Determine the speed of an object with changing mass
- Choose reference frame and define system
- 2. Draw **momentum diagrams** at different times

- 3. Apply conservation of mass
- 4. Use generalized version of Newton's 2nd law

$$\overrightarrow{F}_{net}^{ext} = \frac{d\overrightarrow{p}_{sys}}{dt}$$

Swiss
Plasma
Center

- Determine the speed of an object with changing mass
- Choose reference frame and define system
- 2. Draw **momentum diagrams** at different times

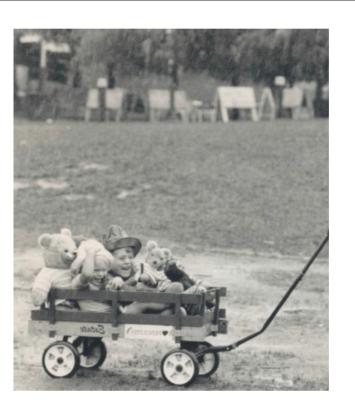
- 3. Apply conservation of mass
- 4. Use generalized version of Newton's 2nd law

$$\overrightarrow{F}_{net}^{ext} = \frac{d\overrightarrow{p}_{sys}}{dt} = \lim_{\Delta t \to 0} \frac{\overrightarrow{p}_{sys}(t + \Delta t) - \overrightarrow{p}_{sys}(t)}{\Delta t}$$

Swiss
Plasma
Center

- Determine the speed of an object with changing mass
- Choose reference frame and define system
- 2. Draw **momentum diagrams** at different times

- 3. Apply conservation of mass
- 4. Use generalized version of Newton's 2nd law


$$\overrightarrow{F}_{net}^{ext} = \frac{d\overrightarrow{p}_{sys}}{dt} = \lim_{\Delta t \to 0} \frac{\overrightarrow{p}_{sys}(t + \Delta t) - \overrightarrow{p}_{sys}(t)}{\Delta t}$$

5. Find and solve the resulting differential equation

- A simple graphical summary of ALL the masses and velocities in the system
- Similar to free body diagrams
- Draw them at important moments in time or at arbitrary moments

Today's agenda (Serway 6, 9 and MIT 8 -12)

1. Brief review of last week

2. Some examples

- Conservation of momentum
- Motion of Center of mass

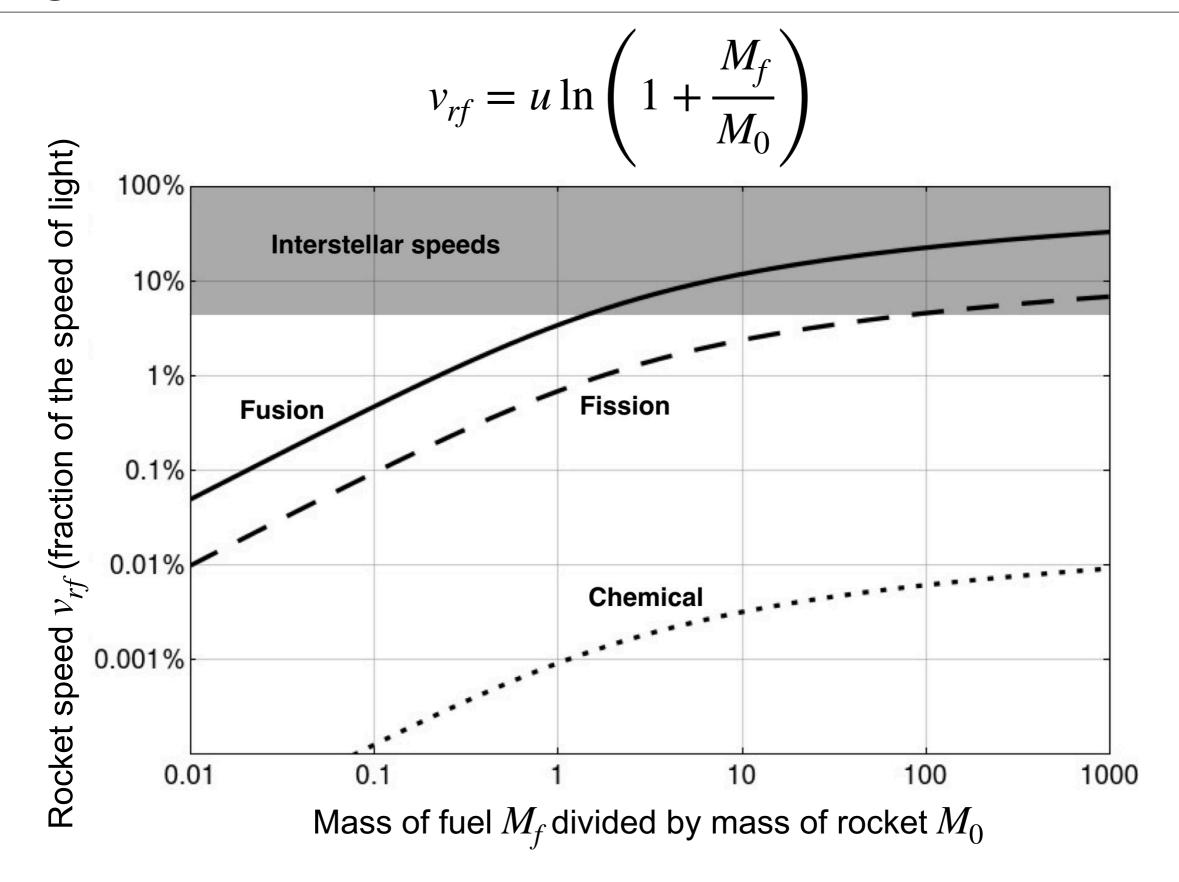
3. Systems with variable mass

Rocket science and interstellar space travel!

A rocket of dry mass M_0 starts from rest in our Solar System with a fuel mass M_f . It burns all the fuel, ejecting it backwards with velocity u relative to the rocket. This exhaust velocity u is independent of the velocity of the rocket. What is the final speed of the rocket? How long will it take to get to Proxima Centauri?

Derivation of rocket equation

Derivation of rocket equation


DEMO (172)

Rockets!

Significance of the rocket equation

times. Its acceleration is...

A rocket is moving in outer space without gravity. It is burning fuel so that its "thrust" is constant (i.e. $u\frac{dm}{dt}$ = const) at all

A. constant.

B. decreasing.

C. increasing.

Summary

- Tackling systems with changing mass
- 1. Choose reference frame and define system
- 2. Apply conservation of mass
- 3. Use generalized Newton's 2nd law: $\vec{F}_{net}^{ext} = \lim_{\Delta t \to 0} \frac{\vec{p}_{sys}(t + \Delta t) \vec{p}_{sys}(t)}{\Delta t}$
- 4. Find and solve the resulting differential equation
- Rocket equation: $v_{rf} = u \ln \left(1 + \frac{M_f}{M_0} \right)$

Mock exam tomorrow

