

General Physics: Mechanics

PHYS-101(en)

Lecture 6a: Drag, momentum, impulse, and center of mass

Dr. Marcelo Baquero marcelo.baquero@epfl.ch
October 14th, 2024

Announcement

- Next week is "Fall break"
 - There is <u>no</u> class Monday nor Tuesday.
 - There are <u>no</u> Exercise sessions on Wednesday.
 - Office hours will take place as normal.
 - Classes resume Monday, Oct. 28th.

Announcement

- We'll hold a mini mock exam on Tuesday October 29th
 - In-class (SG1) during normal lecture hours (10:<u>15</u>-11:<u>00</u>)
 - Does <u>not</u> matter at all for your final grade
 - You can bring a "cheat" sheet containing formulas or all of your notes, as you wish
 - Take to your TA at the exercise session on Wednesday October 30th, to be graded and returned on Wednesday November 6th
 - Exam solutions will be published

Today's agenda (Serway 6, 9 and MIT 8, 10)

- 1. Drag
- 2. Momentum
 - Conservation of momentum
 - Impulse
- 3. Center of mass

DEMO (738)

Air drag

Resistive forces, approximately

 Resistive forces oppose the direction of motion of an object

- Resistive forces oppose the direction of motion of an object
- A prime example is viscous drag with a fluid (e.g. air resistance)

$$\overrightarrow{F}_{drag} = -\beta v^n \hat{v}$$

where β is a constant that depends on the fluid and shape of the object and n characterizes the flow *regime*

- Resistive forces oppose the direction of motion of an object
- A prime example is viscous drag with a fluid (e.g. air resistance)

$$\overrightarrow{F}_{drag} = -\beta v^n \hat{v}$$

where β is a constant that depends on the fluid and shape of the object and n characterizes the flow regime

• Laminar: for smooth objects at low speeds the flow is steady and n=1

Airplane wing

A car driving

Resistive forces, approximately

- Resistive forces oppose the direction of motion of an object
- A prime example is viscous drag with a fluid (e.g. air resistance)

$$\overrightarrow{F}_{drag} = -\beta v^n \hat{v}$$

where β is a constant that depends on the fluid and shape of the object and n characterizes the flow regime

- Laminar: for smooth objects at low speeds the flow is steady and n=1
- Turbulent: for rough objects at high speeds the flow is chaotic and n=2



Airplane wing

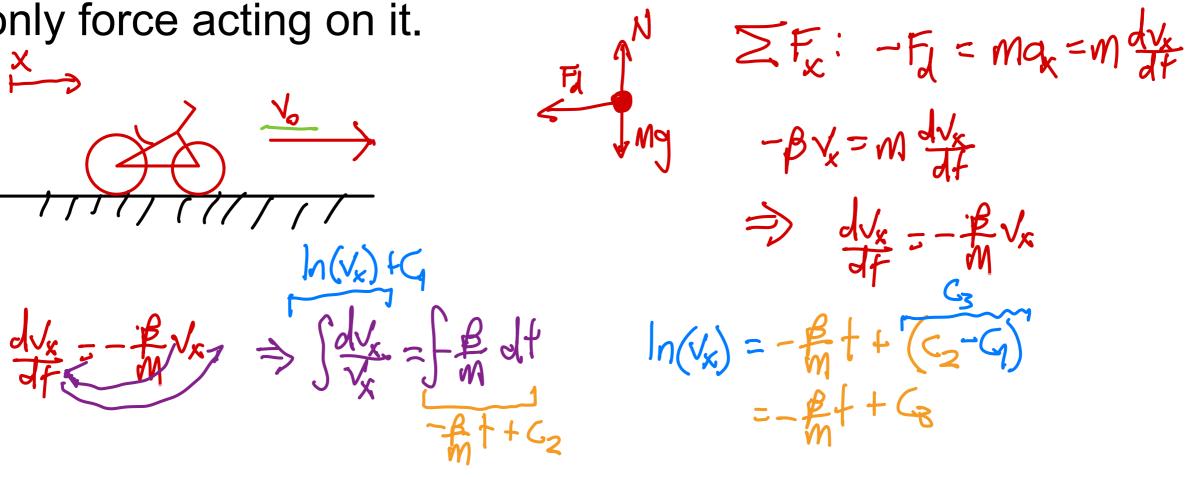
A car driving

Boat wake

Example: Laminar viscous drag

A cyclist is moving at a slow speed v_0 under laminar conditions (i.e. n=1) and has a drag coefficient β . Calculate the bike's speed as a function of time, assuming drag is the

only force acting on it.



Example: Turbulent viscous drag

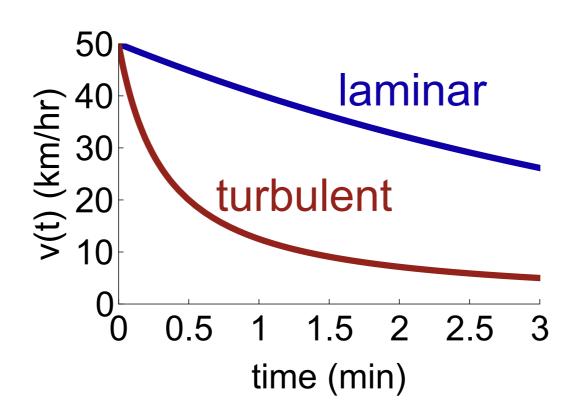
When the cyclist moves at a fast speed v_0 such that they reach the turbulent regime (i.e. n=2), a similar procedure yields the following speed as a function of time:

$$v(t) = \frac{v_0}{1 + \left(\frac{\beta v_0}{m}\right)t}$$

Example: Turbulent viscous drag

When the cyclist moves at a fast speed v_0 such that they reach the turbulent regime (i.e. n=2), a similar procedure yields the following speed as a function of time:

$$v(t) = \frac{v_0}{1 + \left(\frac{\beta v_0}{m}\right)t}$$



Today's agenda (Serway 6, 9 and MIT 8, 10)

- Drag
- 2. Momentum
 - Conservation of momentum
 - Impulse
- 3. Center of mass

DEMO (86 and 113)

Collisions between two spheres

and

the recoil of a cart

Definition of momentum

- Historically called the "quantity of motion"
- Momentum is a vector quantity:

$$\vec{p} = m\vec{v}$$

Definition of momentum

- Historically called the "quantity of motion"
- Momentum is a vector quantity:

$$\vec{p} = m\vec{v}$$

It has units of [kg·m/s] (or equivalently [N·s])

- Historically called the "quantity of motion"
- Momentum is a vector quantity:

$$\vec{p} = m\vec{v}$$

- It has units of [kg·m/s] (or equivalently [N·s])
- Newton's 2nd law:

$$\Sigma \overrightarrow{F} = m\overrightarrow{a} \Rightarrow \Sigma \overrightarrow{F} = \frac{d\overrightarrow{p}}{dt}$$

 In English, the time rate of change of an object's momentum is equal to the net force acting on it

Definition of momentum

- Historically called the "quantity of motion"
- Momentum is a vector quantity:

$$\vec{p} = m\vec{v}$$

- It has units of [kg·m/s] (or equivalently [N·s])
- Newton's 2nd law:

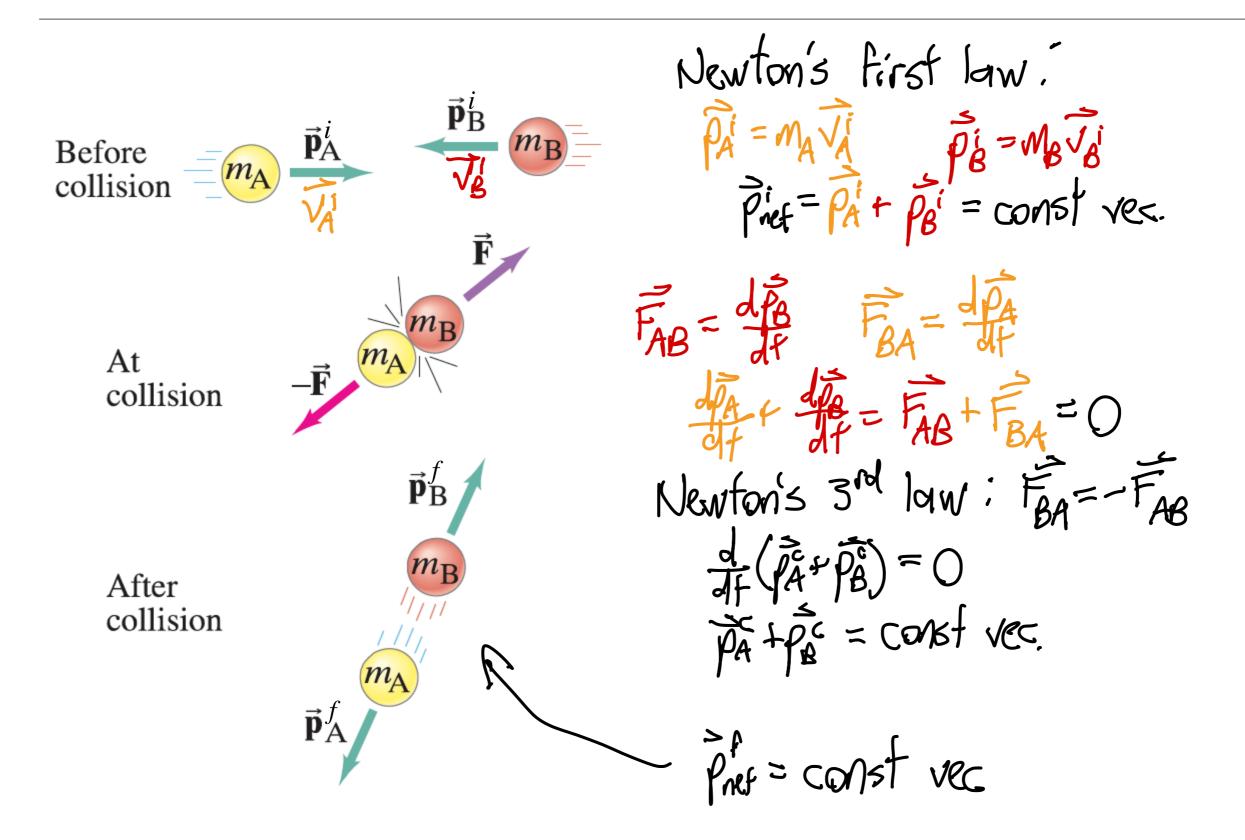
Most general form

$$\Sigma \overrightarrow{F} = m\overrightarrow{a} \implies \Sigma \overrightarrow{F} = \frac{d\overrightarrow{p}}{dt}$$

 In English, the time rate of change of an object's momentum is equal to the net force acting on it

EPFL

Momentum conservation from Newton's laws

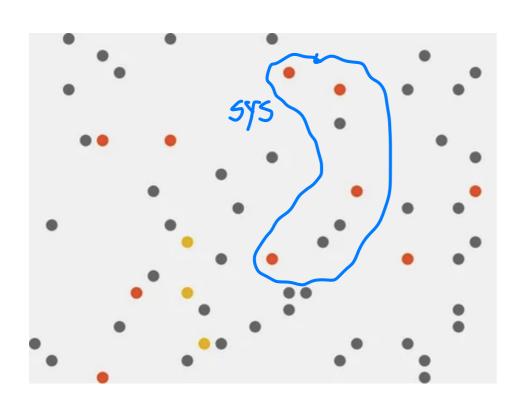


In a given inertial reference frame, the total momentum of an isolated system stays constant.

In a given inertial reference frame, the total momentum of an <u>isolated</u> <u>system</u> stays constant.

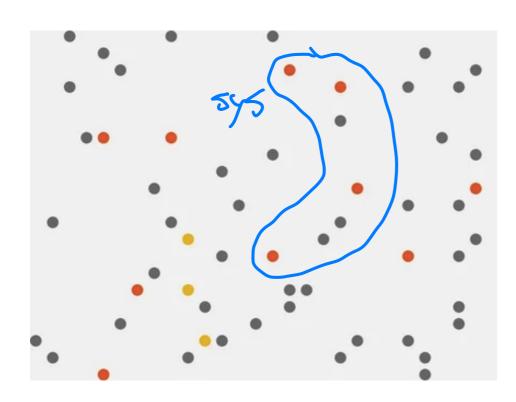
What is a system?

- For a collection of particles, it is any subset that you wish to consider
- You can think about it as the particles within the region delimited by a border drawn anyway you want



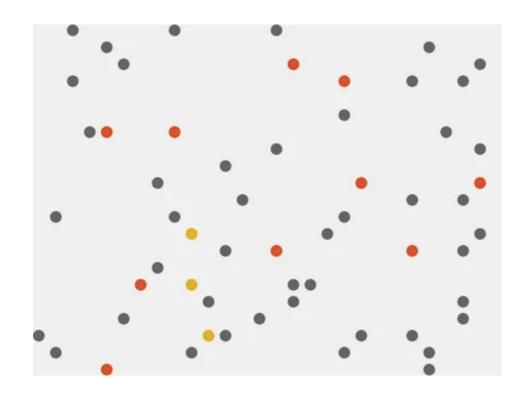
What is a system?

- For a collection of particles, it is any subset that you wish to consider
- You can think about it as the particles within the region delimited by a border drawn anyway you want
- If there is no net force from the outside and all the particles remain in the system, then the system is said to be isolated



What is a system?

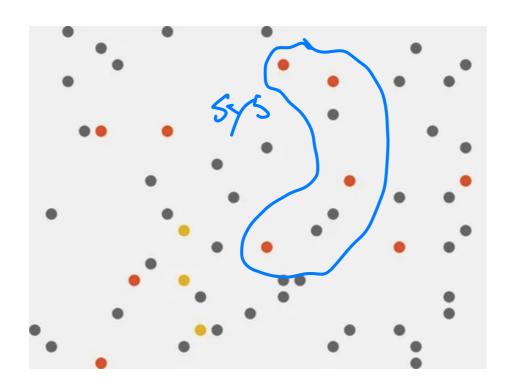
- For a collection of particles, it is any subset that you wish to consider
- You can think about it as the particles within the region delimited by a border drawn anyway you want
- If there is no net force from the outside and all the particles remain in the system, then the system is said to be isolated



In a given inertial reference frame, the <u>total</u> momentum of an isolated system stays constant.

- Momentum of a point mass i is $\vec{p}_i = m_i \vec{v}_i$
- ullet Total momentum of a system of N point masses is simply

$$\vec{p}_{sys} = \sum_{i=1}^{N} \vec{p}_i = \sum_{i=1}^{N} m_i \vec{v}_i$$



Conservation of momentum

In a given <u>inertial reference frame</u>, the total momentum of an <u>isolated system</u> stays constant.

The net force on the system is zero and matter is not exchanged

Non-inertial reference frames create fictitious forces that can change the momentum

Conservation of momentum

In a given <u>inertial reference frame</u>, the total momentum of an <u>isolated system</u> stays constant.

The net force on the system is zero and matter is not exchanged

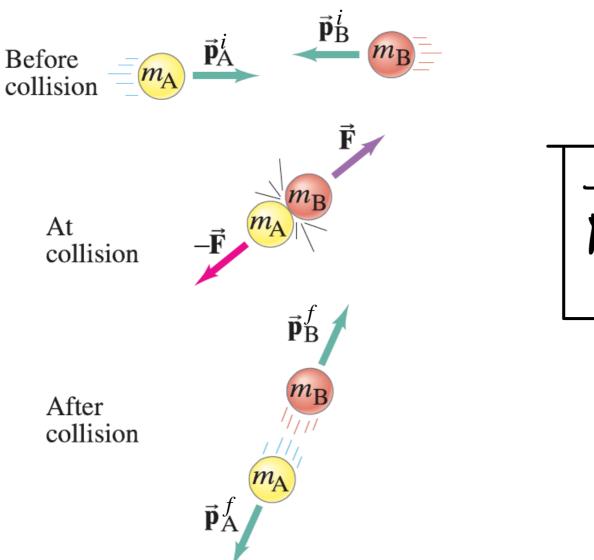
Non-inertial reference frames create fictitious forces that can change the momentum

Discussed next lecture

Conservation of momentum

In a given inertial reference frame, the total momentum of an isolated system stays constant.

In a given inertial reference frame, the total momentum of an isolated system stays constant.



$$\frac{1}{\rho_A} + \frac{1}{\rho_B} = \frac{1}{\rho_A} + \frac{1}{\rho_B}$$

Conceptual question

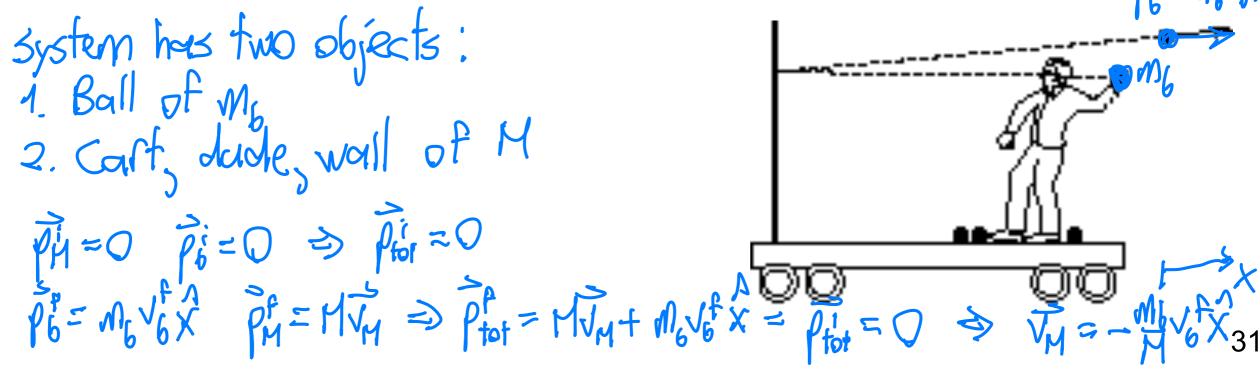
responseware.eu Session ID: epflphys101en Center

TH = - M/6X

Suppose you are on a cart, initially at rest. Neglect friction. You throw a ball at a partition that is rigidly mounted on the cart and the ball bounces straight back as shown in the figure. After the ball bounces, is the cart moving?

- A. Yes, it moves to the right.
- B) Yes, it moves to the left.
- C. No, it remains in place.

D. Not enough information is given to decide



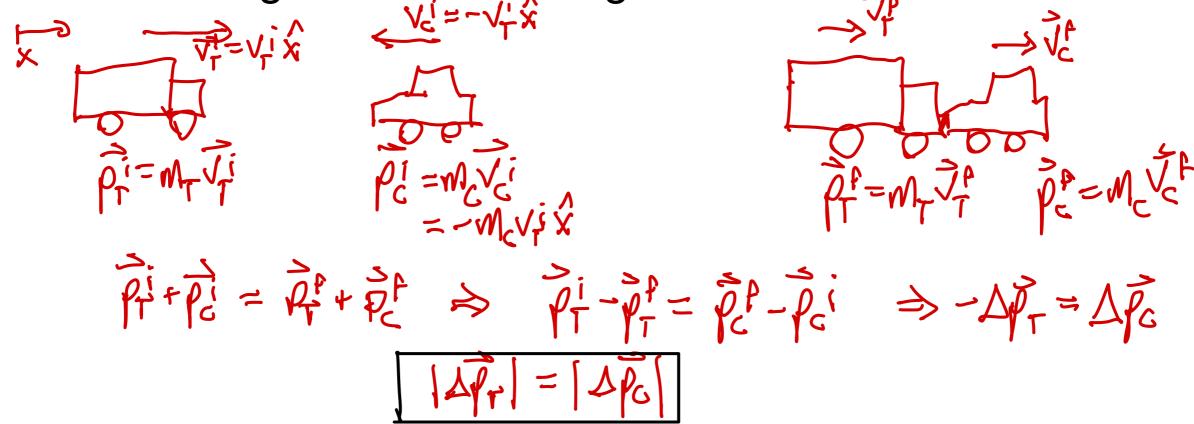
Conceptual question

responseware.eu
Session ID: epflphys101en
Swiss
Plasma
Center

A compact car and a large truck collide head on and stick together. Consider them to be an isolated system. Which undergoes the larger magnitude momentum change?

- A. The car.
- B. The truck.
- C They are the same.

D. Not enough information is given to decide



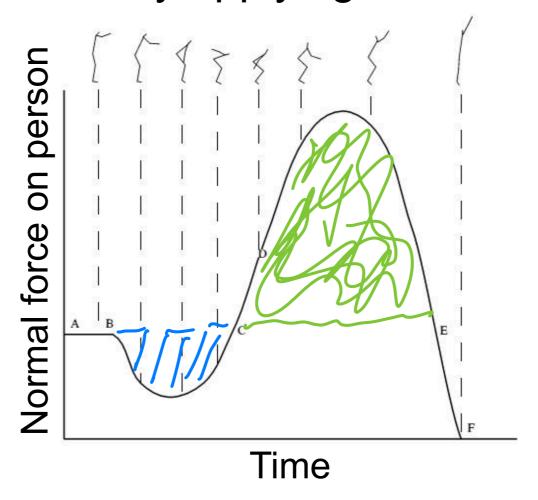
How do we move (i.e. change momentum)?

Swiss Plasma Center

 If momentum is conserved, how do we move? We push off of things, usually the ground

How do we move (i.e. change momentum)?

- Swiss Plasma Center
- If momentum is conserved, how do we move? We push off of things, usually the ground
- Consider a "system" to include only your body, then exert a net force on an external object
- We change momentum by applying force for a time interval



Impulse and momentum

Defined as the integral of a net force over a time period:

$$\vec{I} = \int_{t_i}^{t_f} \vec{F}_{net} dt$$

• Using Newton's 2nd law $\overrightarrow{F}_{net} = \frac{d\overrightarrow{p}}{dt}$

$$\vec{I} = \int_{t_i}^{t_f} \frac{d\vec{p}}{dt} dt \quad \Rightarrow \quad \vec{I} = \vec{p}(t_f) - \vec{p}(t_i) = \Delta \vec{p}$$

- It is simply a change of momentum in time
- It has the same units as momentum of [kg·m/s] (or equivalently [N·s])

Neglecting the details

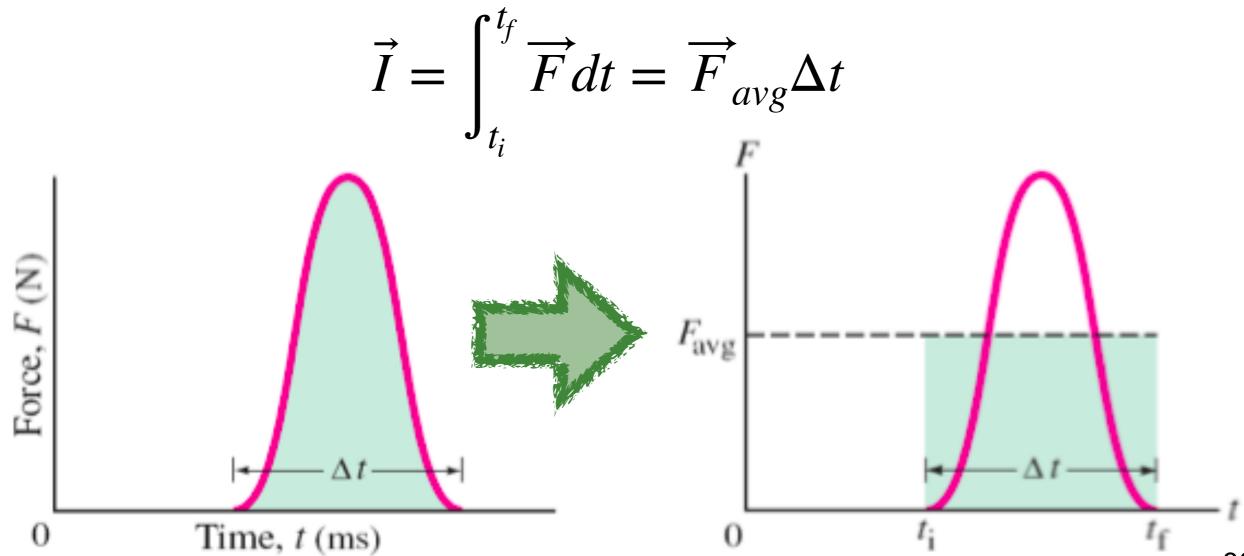
 Often we don't care about the details of the force (e.g. when it's very short)

- Often we don't care about the details of the force (e.g. when it's very short)
- Model the impulse as an average force applied over the same time interval

$$\vec{I} = \int_{t_i}^{t_f} \vec{F} dt = \vec{F}_{avg} \Delta t$$

Neglecting the details

- Often we don't care about the details of the force (e.g. when it's very short)
- Model the impulse as an average force applied over the same time interval



DEMO (84)

Duration of a collision

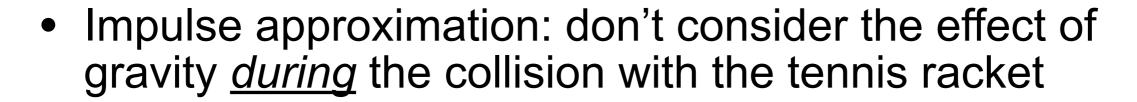
Impulse approximation

- During a very short collision, the force of the collision is usually much larger than all other forces
- Thus, all other forces can be ignored during the collision

Impulse approximation

- During a very short collision, the force of the collision is usually much larger than all other forces
- Thus, all other forces can be ignored during the collision
- Example: A tennis ball is coming at you at \vec{v}_1 . You hit it with a tennis racket and it departs leaving at \vec{v}_2 .

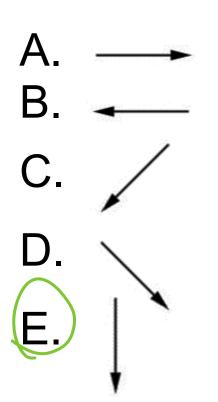
 - What is the impulse? ☐ ¬↓
 - What is the force and how long was it applied?

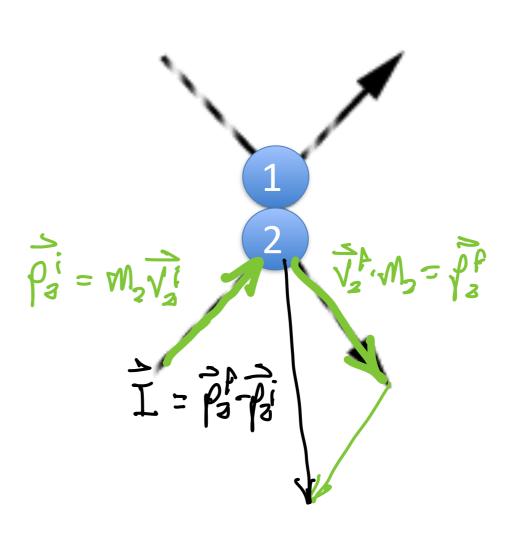


Conceptual question

responseware.eu
Session ID: epflphys101en
Swiss
Plasma
Center

The figure below depicts the paths of two colliding blue circles, 1 and 2. Which of the following arrows best represents the direction of the impulse applied to circle 2 by circle 1 during the collision? $\frac{1}{12} \frac{1}{12} = \frac{1}{12} \frac{1}{12}$

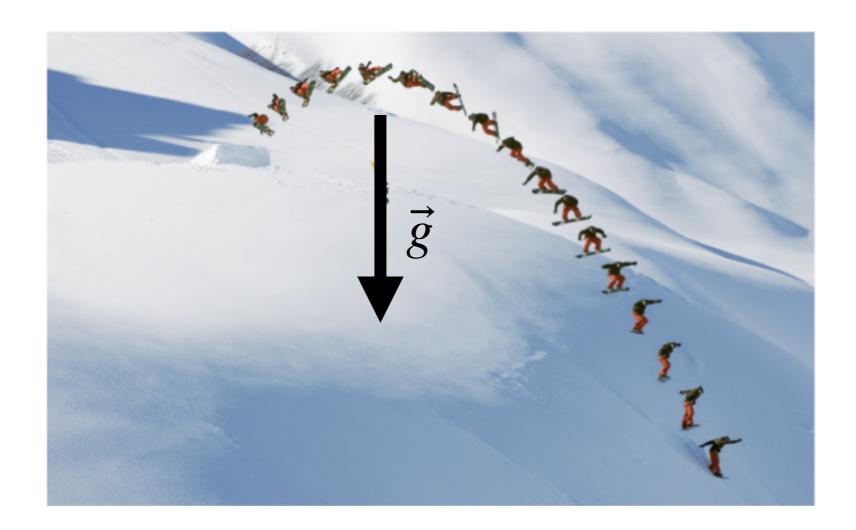




Today's agenda (Serway 6, 9 and MIT 8, 10)

- Drag
- 2. Momentum
 - Conservation of momentum
 - Impulse
- 3. Center of mass

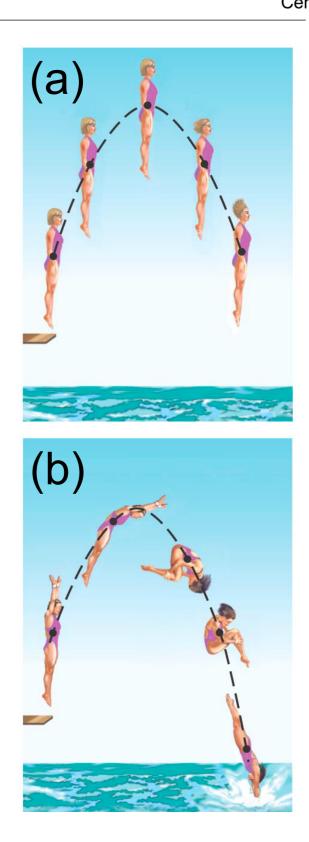
 We've used the point mass approximation a lot, but the appropriate point isn't always obvious



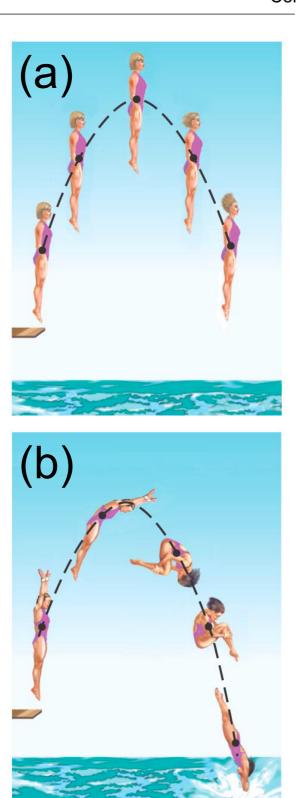
 If we want to summarize this guy's trajectory, which point should we take?

EPFL
Swiss
Plasma

- In (a), the diver's motion is pure translation
- In (b), the motion is translation plus rotation

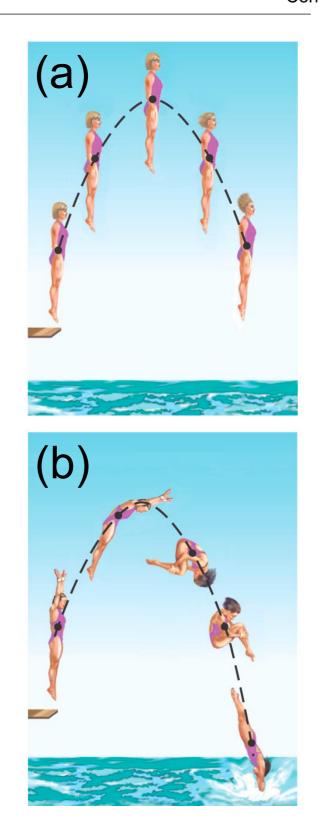


- In (a), the diver's motion is pure translation
- In (b), the motion is translation plus rotation
- One point, called the Center of Mass (CM), that moves the same in both (i.e. it's the point the diver rotates around)
- It's the one point that would move in the same path as a point mass subjected to the same net force



Center of mass

- In (a), the diver's motion is pure translation
- In (b), the motion is translation plus rotation
- One point, called the Center of Mass (CM), that moves the same in both (i.e. it's the point the diver rotates around)
- It's the one point that would move in the same path as a point mass subjected to the same net force
- The motion of an object can always be decomposed into translational motion of the center of mass, plus rotation, deformation, ...
- How do we find it, you ask…



It is the "average" position of the system, weighted by mass

$$\overrightarrow{R}_{CM} = \frac{\sum_{i=1}^{N} m_i \overrightarrow{r}_i}{\sum_{i=1}^{N} m_i}$$



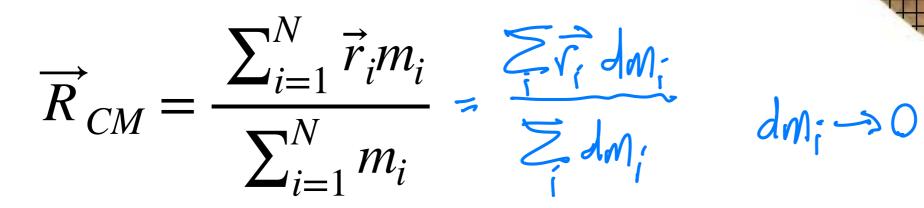
where $M = \sum_{i=1}^{N} m_i$ is the total mass

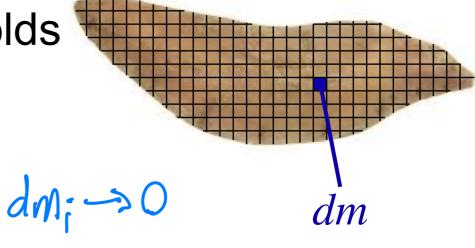
 For just two particles in 1D, the center of mass lies closer to the one with more mass

$$X_{CM} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$
$$= \frac{m_1}{M} x_1 + \frac{m_2}{M} x_2$$

Center of mass for continuous systems

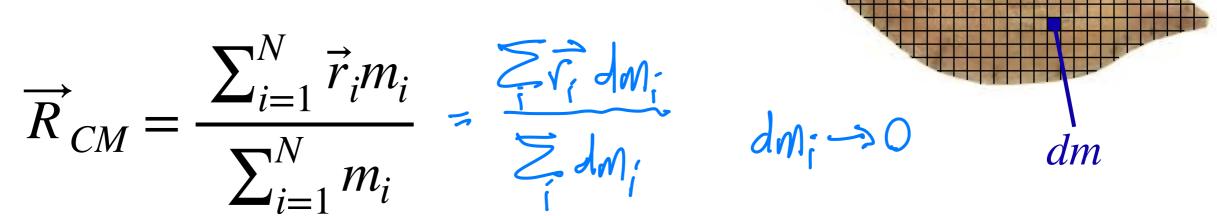
- What about for an extended object? Like this yam
- The previous formula actually still holds





Center of mass for continuous systems

- What about for an extended object? Like this yam
- The previous formula actually still holds



Imagine it is made up of differential elements, which each

have a tiny mass dm

mass
$$dm$$

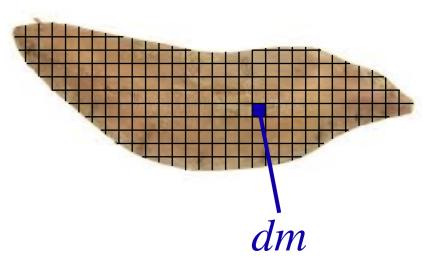
$$\overrightarrow{R}_{CM} = \frac{\int_{M} \overrightarrow{r} dm}{\int_{M} dm} = \frac{\int_{M} \overrightarrow{r} dm}{M}$$

$$30.7 \text{ Applications of the control of the control$$

Center of mass for continuous systems

- What about for an extended object? Like this yam
- The previous formula actually still holds

$$\overrightarrow{R}_{CM} = \frac{\sum_{i=1}^{N} \overrightarrow{r}_{i} m_{i}}{\sum_{i=1}^{N} m_{i}}$$



• Imagine it is made up of differential elements, which each have a tiny mass dm

$$\overrightarrow{R}_{CM} = \frac{\int_{M} \overrightarrow{r} dm}{\int_{M} dm} = \frac{\int_{M} \overrightarrow{r} dm}{M}$$

Use density to convert mass to spatial integral

DEMO (148)

Finding the center of mass:

Hanging

Given a system with constant masses, take the derivative of

$$\overrightarrow{R}_{CM} = \frac{\sum_{i=1}^{N} m_{i} \overrightarrow{r}_{i}}{M} \quad \text{or} \quad \overrightarrow{R}_{CM} = \frac{\int_{M} \overrightarrow{r} dm}{M}$$
to find
$$\overrightarrow{V}_{CM} = \frac{\sum_{i=1}^{N} m_{i} \overrightarrow{v}_{i}}{M} \quad \text{or} \quad \overrightarrow{V}_{CM} = \frac{\int_{M} \overrightarrow{v} dm}{M}$$

and again to find

$$\overrightarrow{A}_{CM} = \frac{\sum_{i=1}^{N} m_i \overrightarrow{a}_i}{M} \quad \text{or} \quad \overrightarrow{A}_{CM} = \frac{\int_{M} \overrightarrow{a} dm}{M}$$

Forces are applied at the center of mass

The center of mass can prove it's own usefulness

$$\overrightarrow{A}_{CM} = \frac{\sum_{i=1}^{N} m_{i} \overrightarrow{a}_{i}}{M} = \frac{\sum_{i \in sys} m_{i} \overrightarrow{a}_{i}}{M}$$

$$M\overrightarrow{A}_{M} = \underset{i \in sys}{\sum_{i \in sys} m_{i} \overrightarrow{a}_{i}}$$

$$M \xrightarrow{i \in sys} \underset{i \in sys}{\sum_{i \in sys} m_{i} \overrightarrow{a}_{i}}$$

$$M \xrightarrow{i \in sys} \underset{i \in sys}{\sum_{i \in sys} m_{i} \overrightarrow{a}_{i}}$$

$$M \xrightarrow{i \in sys} \underset{i \in sys}{\sum_{i \in sys} m_{i} \overrightarrow{a}_{i}}$$

$$M \xrightarrow{i \in sys} \underset{i \in sys}{\sum_{i \in sys} m_{i} \overrightarrow{a}_{i}}$$

$$M \xrightarrow{i \in sys} \underset{i \in sys}{\sum_{i \in sys} m_{i} \overrightarrow{a}_{i}}$$

$$M \xrightarrow{i \in sys} \underset{i \in sys}{\sum_{i \in sys} m_{i} \overrightarrow{a}_{i}}$$

$$M \xrightarrow{i \in sys} \underset{i \in sys}{\sum_{i \in sys} m_{i} \overrightarrow{a}_{i}}$$

$$= \underset{i \in sys}{\sum_{i \in sys} \underset{i$$

Forces are applied at the center of mass

$$\overrightarrow{MA}_{CM} = \overrightarrow{F}_{net}^{ext}$$

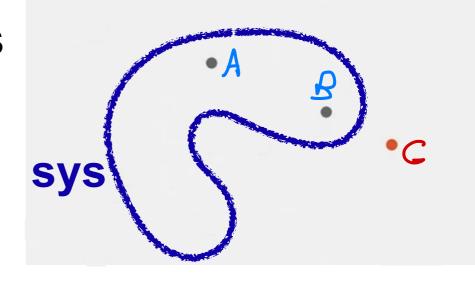
 Thus, we can pretend the entire system is located at the center of mass

Forces are applied at the center of mass

Swiss
Plasma
Center

Separate internal and external forces

$$\overrightarrow{MA}_{CM} = \sum_{i \in sys} \left(\sum_{j \in sys} \overrightarrow{F}_{ji} + \sum_{j \notin sys} \overrightarrow{F}_{ji} \right)$$
 sys



See you tomorrow!

