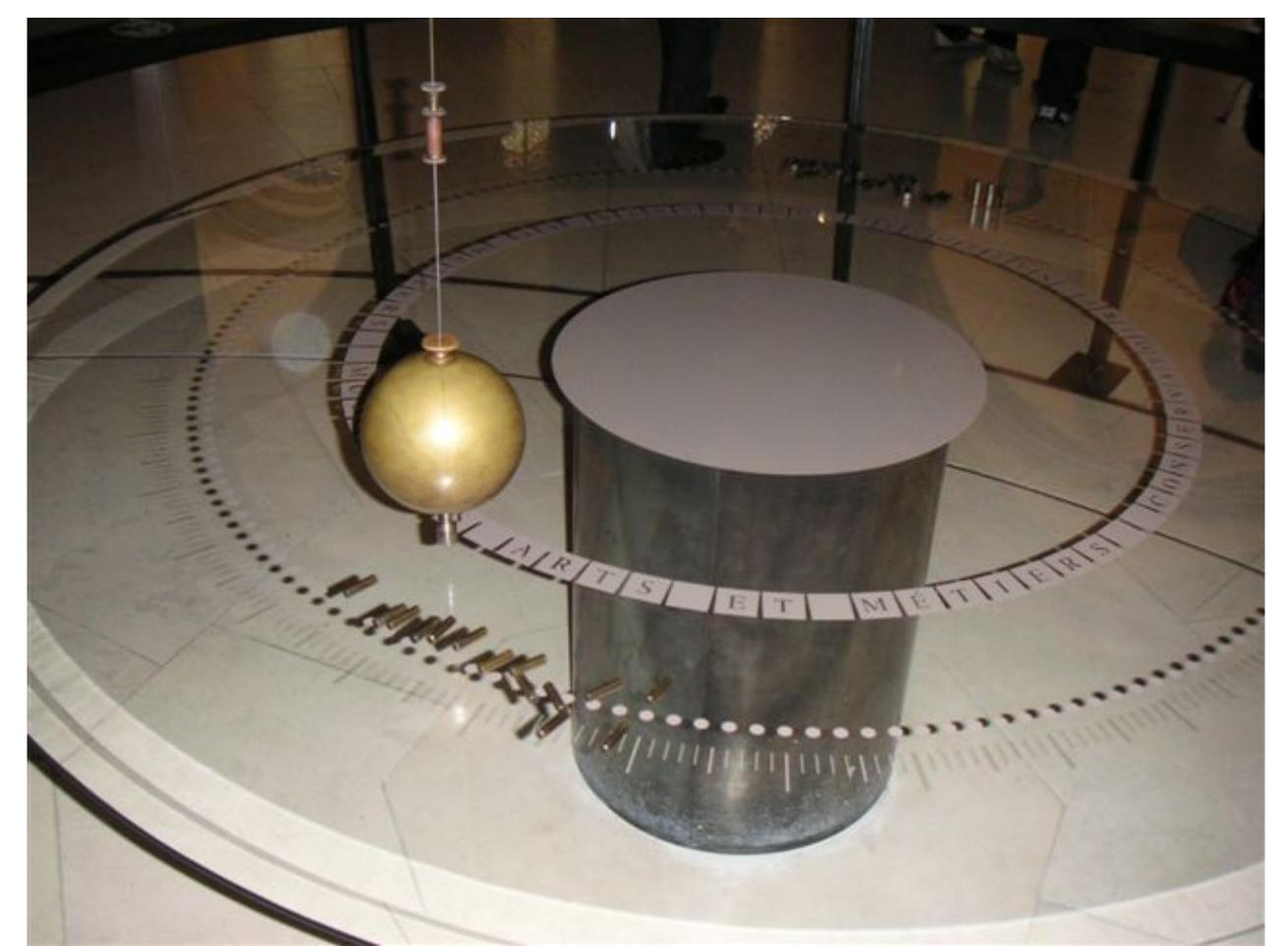


# General Physics: Mechanics

#### **PHYS-101(en)**

Lecture 5b: Non-inertial reference frames, constraints and continuous systems

Dr. Marcelo Baquero marcelo.baquero@epfl.ch
October 8th, 2024

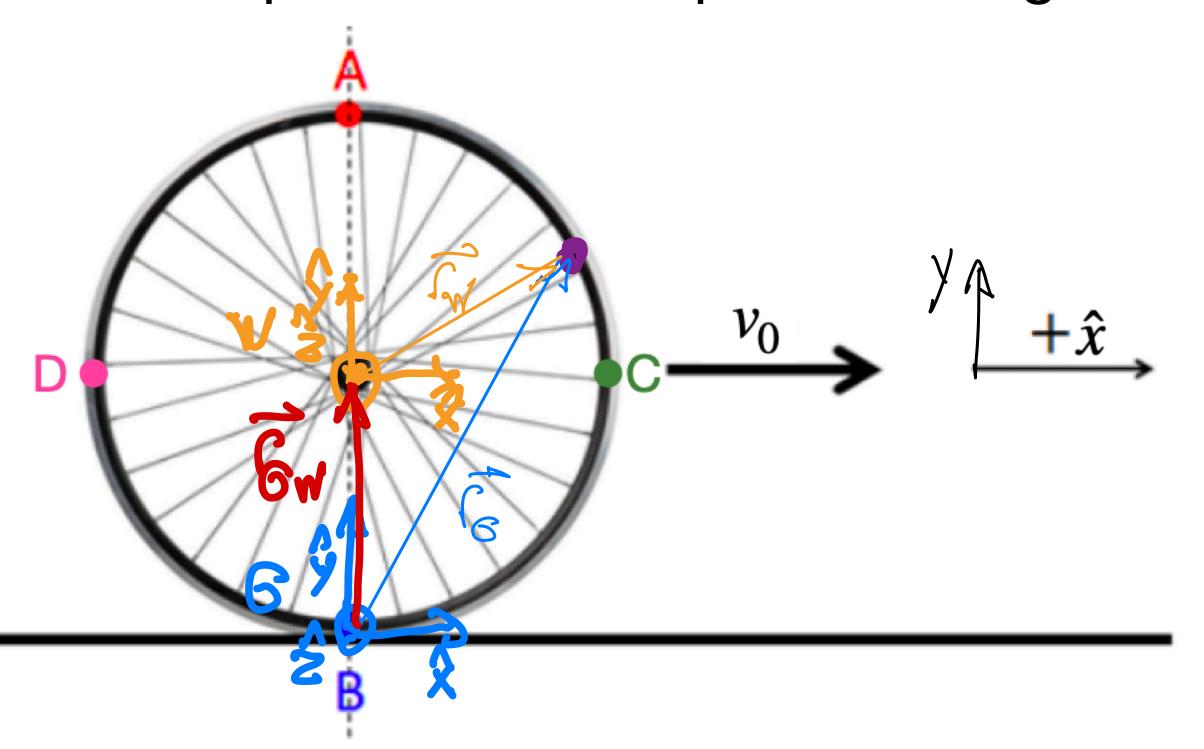




Plasma

# Example: Bicycle wheel

A bicycle wheel of radius R rolls without slipping along the ground. Its center moves with speed  $v_0$ . Neglect any resistance. What is the velocity of each of the four marked points on the tire shown in the figure below with respect to the center point? With respect to the ground?



$$\vec{C} = \vec{C}_{W} + \vec{C}_{W}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

$$\vec{C}_{W} = R \cdot \hat{y} + 4 \cdot \hat{x}$$

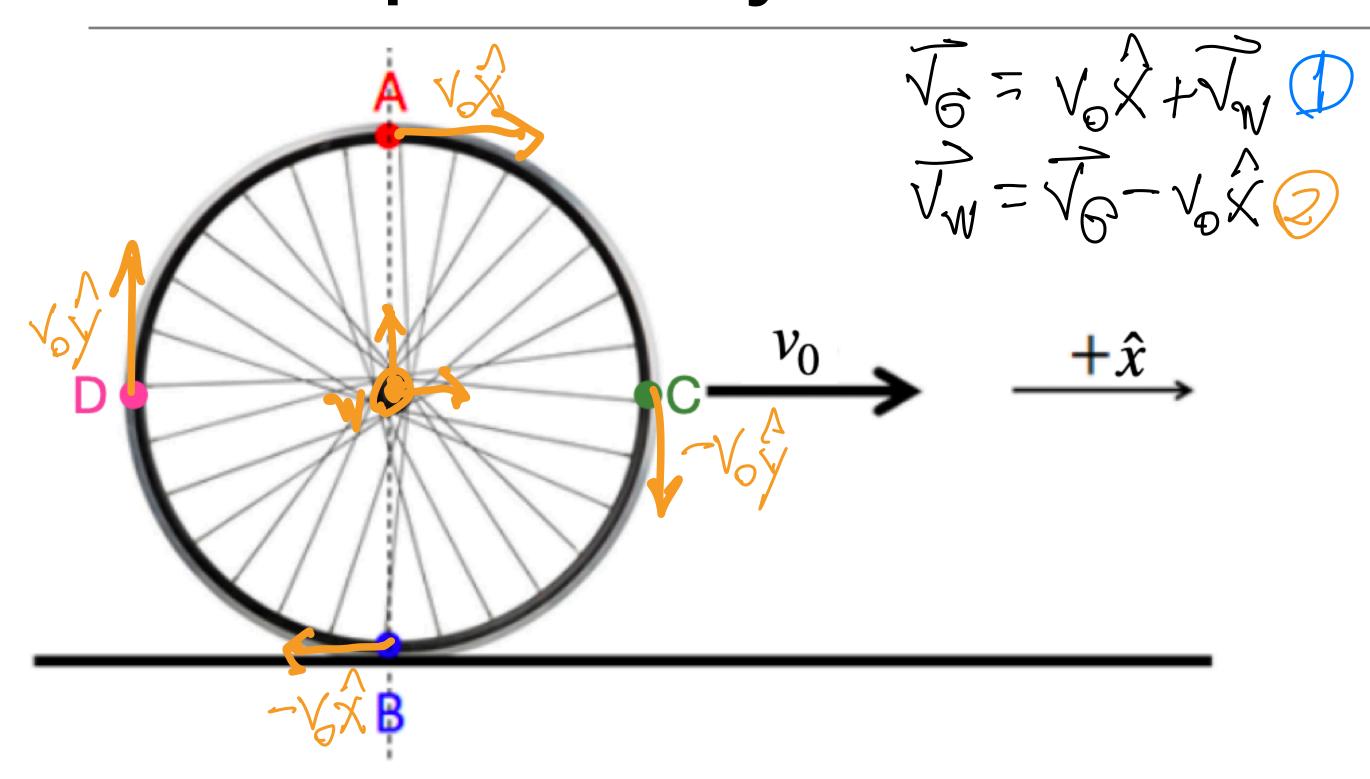
$$\vec{C}_{W} = R \cdot \hat{$$

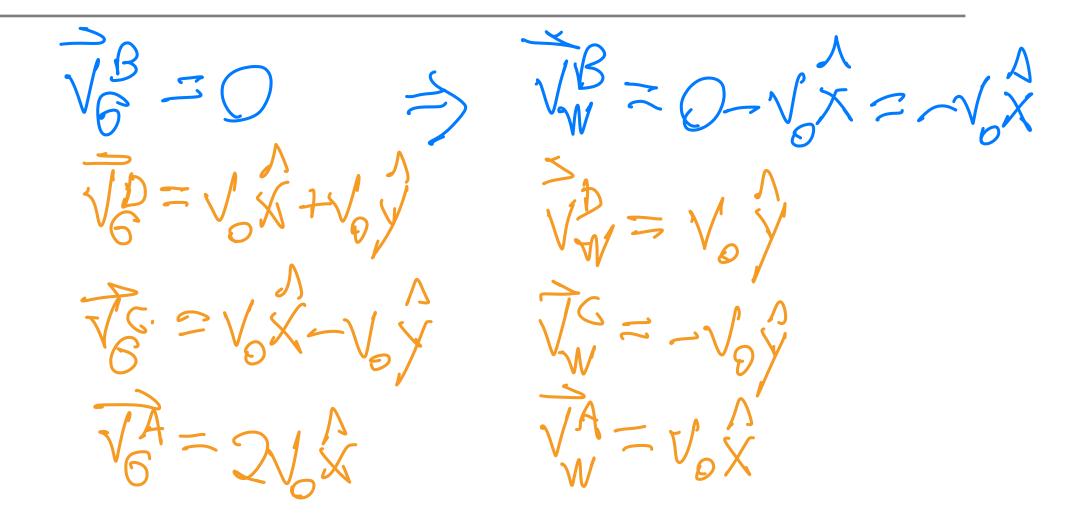


# Example: Bicycle wheel



Center









Consider two people on opposite sides of a rotating merry-goround. One of them throws a ball directly towards the other. Consider two reference frames, (i) the frame of a person riding the merry-go-round or (ii) a person standing beside it. In which frame of reference is the horizontal path of the ball straight when viewed from above?

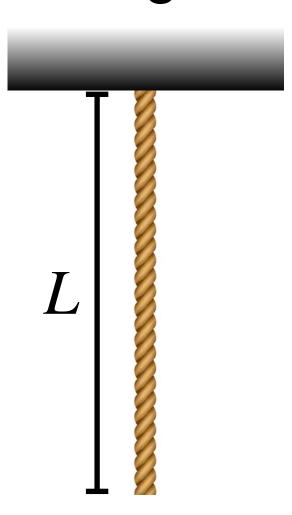
- A. (i) only
- B. (i) and (ii)
- C. (ii) only
- D. Neither; because it's thrown while in circular motion, the ball travels along a curved path







A uniform rope of mass M and length L is hanging from the ceiling. What is its tension (as a function of position)?





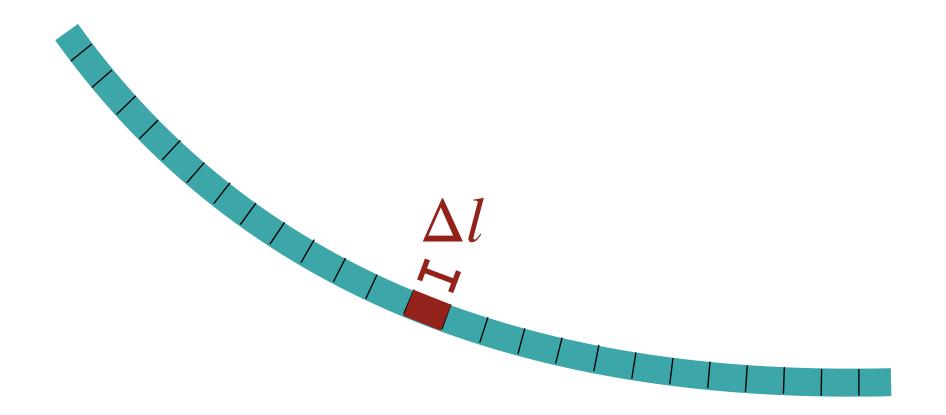
 Let's go beyond the point mass and consider an object that is extended in space



- Let's go beyond the point mass and consider an object that is extended in space
- Decompose the object in an enormous number of tiny bits, called differential elements



- Let's go beyond the point mass and consider an object that is extended in space
- Decompose the object in an enormous number of tiny bits, called differential elements

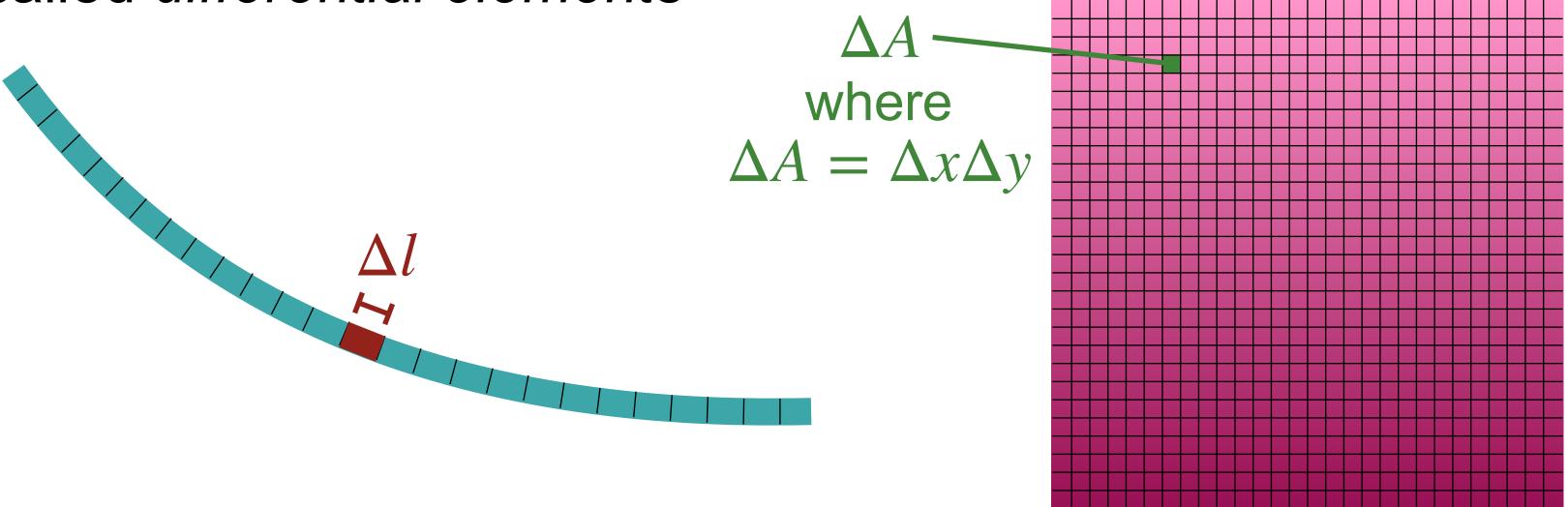




 Let's go beyond the point mass and consider an object that is extended in space

Decompose the object in an enormous number of tiny bits,

called differential elements

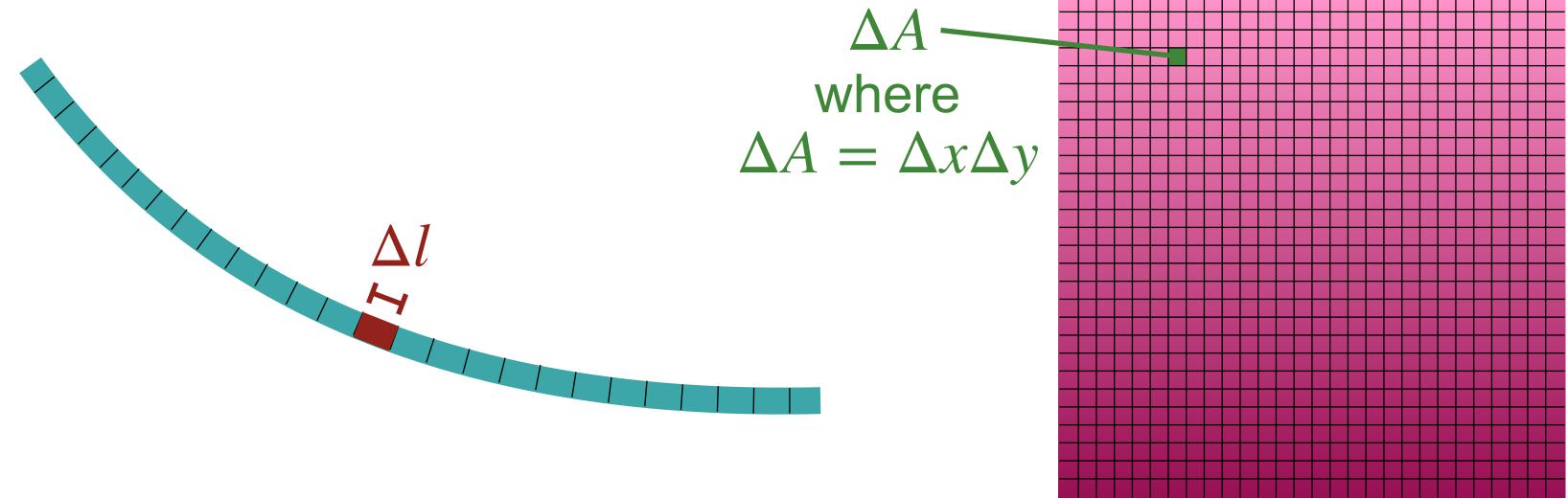




 Let's go beyond the point mass and consider an object that is extended in space

Decompose the object in an enormous number of tiny bits,

called differential elements



• And  $\Delta V$  for the volume element of a three-dimensional object

## Mass density



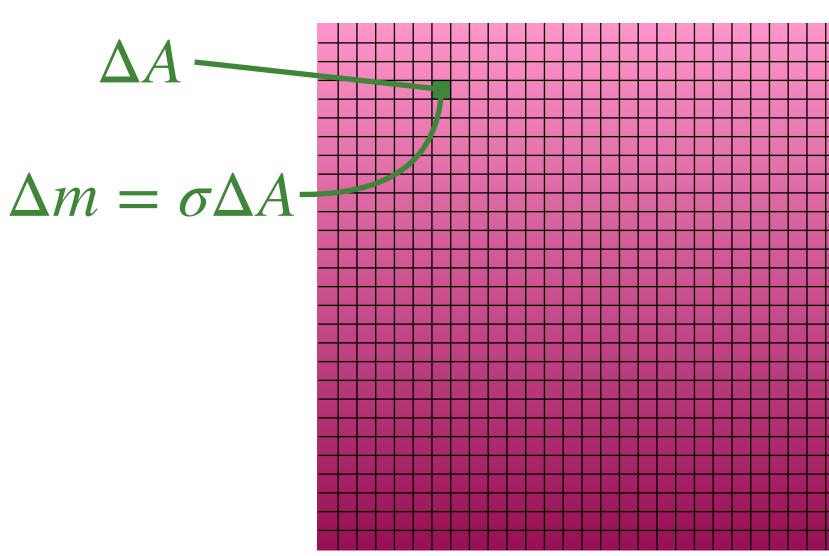
- Amount of mass in a given space
- Allows us to calculate the amount of mass in our various differential elements
- A rope has some amount of mass per unit length  $\lambda = \Delta m/\Delta l$  [kg/m]
- This could vary along the rope or, for a uniform rope, be  $\lambda = M/L$  everywhere

## Mass density



- Amount of mass in a given space
- Allows us to calculate the amount of mass in our various differential elements
- A rope has some amount of mass per unit length  $\lambda = \Delta m/\Delta l$  [kg/m]
- This could vary along the rope or, for a uniform rope, be  $\lambda = M/L$  everywhere
- In 2D:

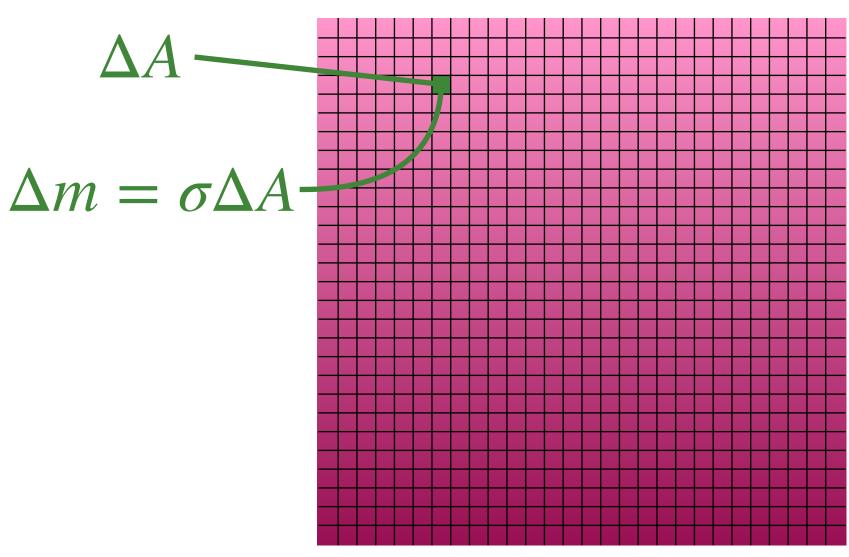
$$\sigma = \Delta m/\Delta A \, [\text{kg/m}^2]$$



## Mass density



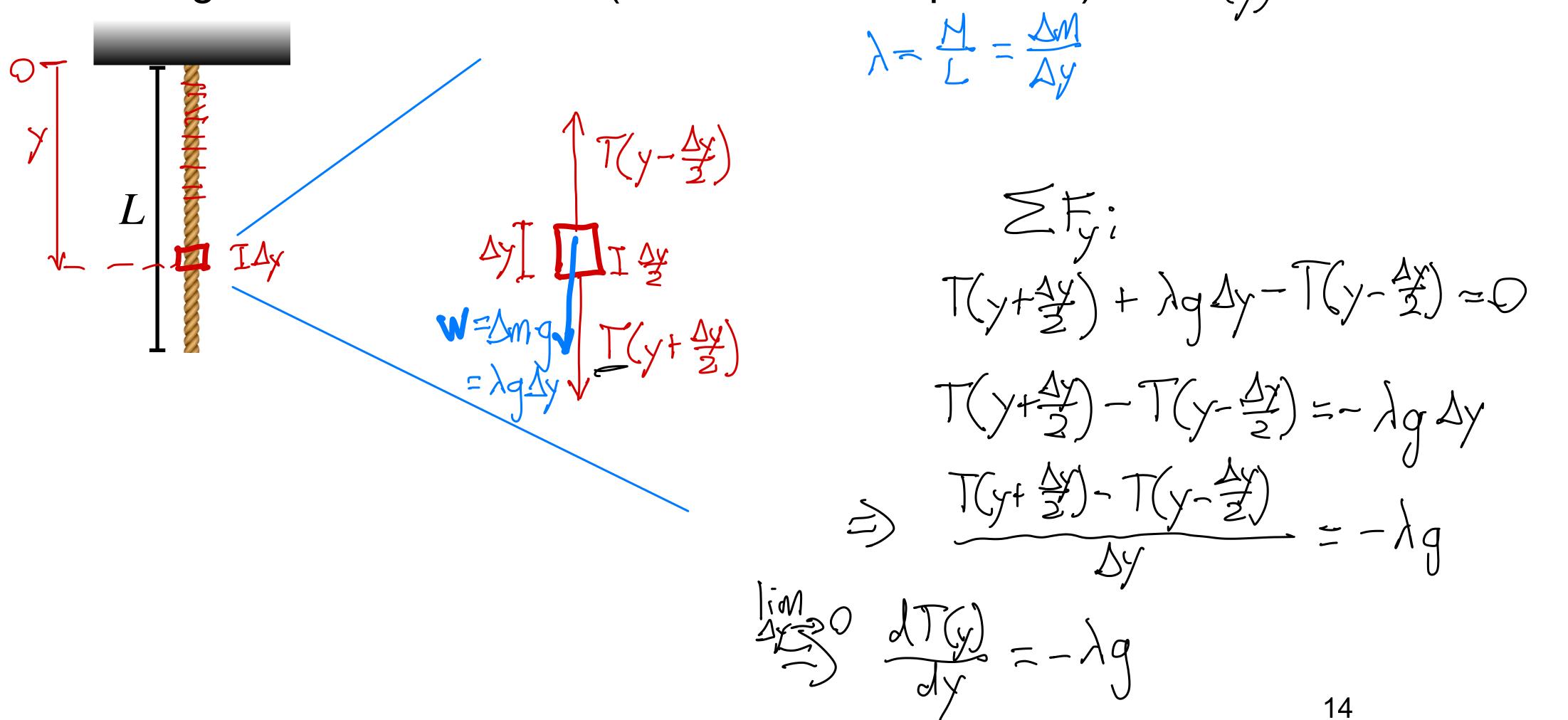
- Amount of mass in a given space
- Allows us to calculate the amount of mass in our various differential elements
- A rope has some amount of mass per unit length  $\lambda = \Delta m/\Delta l$  [kg/m]
- This could vary along the rope or, for a uniform rope, be  $\lambda = M/L$  everywhere
- In 2D:  $\sigma = \Delta m/\Delta A \ [\text{kg/m}^2]$
- In 3D:  $\rho_V = \Delta m/\Delta V \, [{\rm kg/m^3}] \label{eq:rhoV}$



# Example: Massive hanging rope



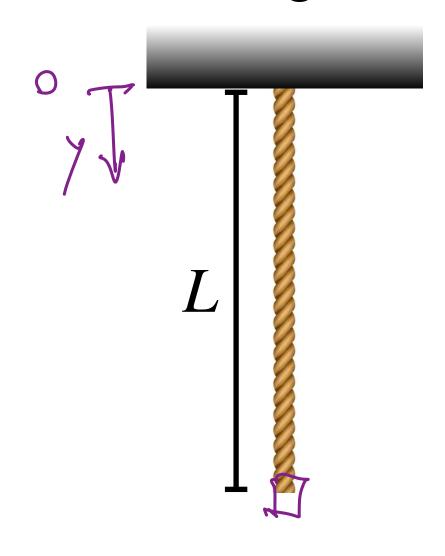
A uniform rope of mass M and length L is hanging from the ceiling. What is its tension (as a function of position)?  $\mathcal{T}(y)$ 







A uniform rope of mass M and length L is hanging from the ceiling. What is its tension (as a function of position)?



$$\frac{dT(y)}{dy} = -\lambda g \qquad T = \int dT = \int \lambda g \, dy = -\lambda g \, \int dy = -\lambda g \, y + C$$

$$T(y) = -\lambda g \, y + C \qquad \qquad \lambda = \frac{H}{2}$$

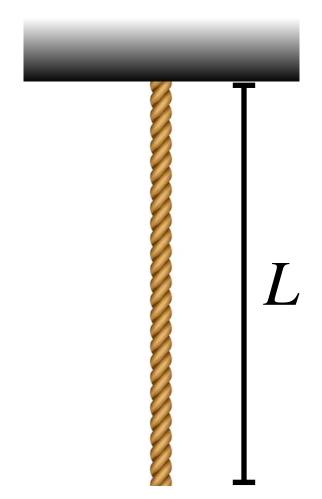
$$T(L) = 0 = -\lambda g \, L + C \implies C = \lambda g \, L = Mg$$

$$T(y) = -\lambda g \, y + Mg = Mg(1 - \frac{X}{2})$$

# Summary



1. Chop up the system into differential elements (e.g. of size  $\Delta y$  in 1D), each containing a mass  $\Delta m$  that can be calculated through the density



- 2. Analyze the forces acting on the elements (probably with a free body diagram)
- 3. Apply Newton's 2nd law and take the limit as the differential element shrinks in size (e.g.  $\Delta y \rightarrow 0$  in 1D)
- 4. Separate variables and integrate the differential equation
- 5. Apply the appropriate boundary conditions