

General Physics: Mechanics

PHYS-101(en)

Lecture 4a: Circular motion

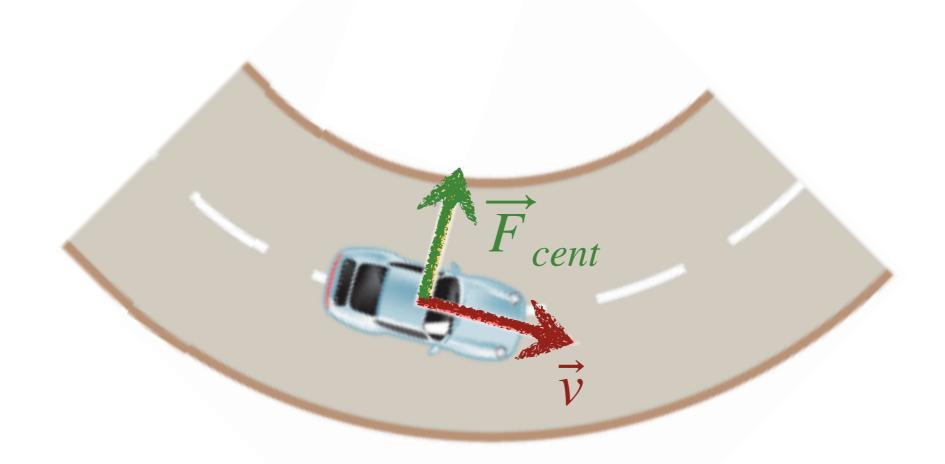
Dr. Marcelo Baquero marcelo.baquero@epfl.ch September 30th, 2024

Today's agenda (Serway 6, MIT 6 and 9)

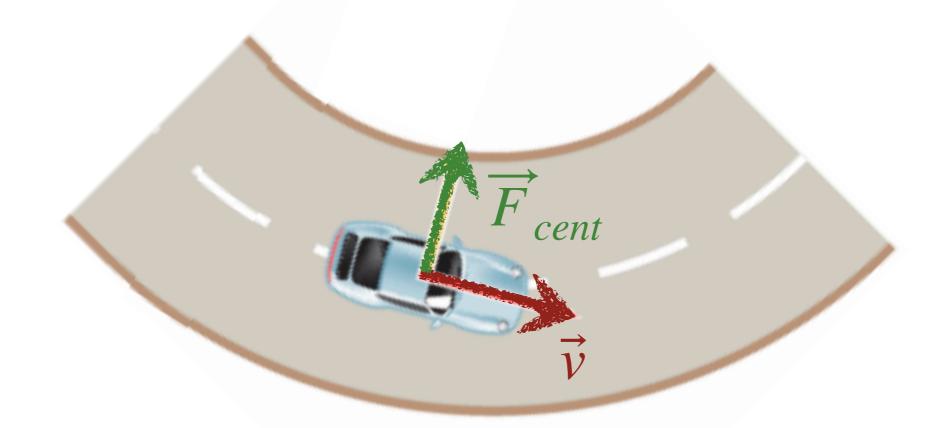
1. Circular motion

- Polar, cylindrical, and spherical coordinate systems
- Centripetal acceleration and centripetal force

 When a car goes around a curve, there must be a net force towards the center of the curve



- When a car goes around a curve, there must be a net force towards the center of the curve
- If the road is flat, this force is supplied by friction

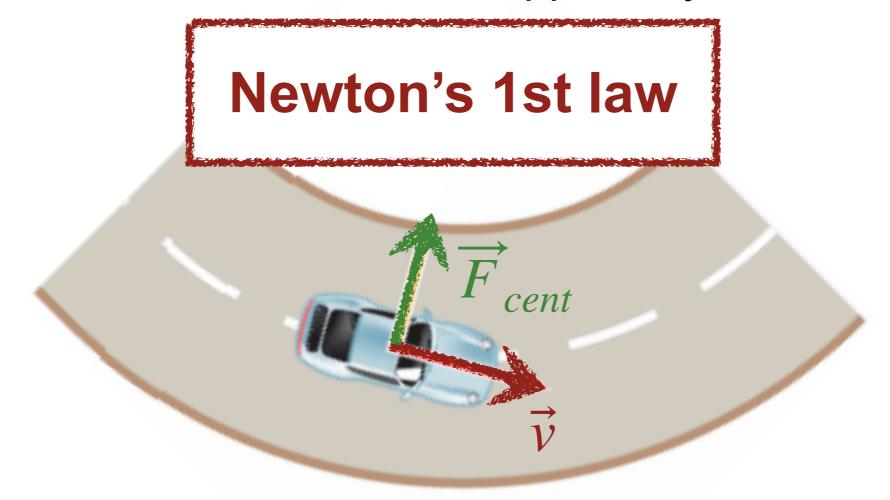


What if the frictional force is insufficient?

DEMO (681)

Rotating pen

- When a car goes around a curve, there must be a net force towards the center of the curve
- If the road is flat, this force is supplied by friction



What if the frictional force is insufficient?

If friction is insufficient, the car will tend to move in a

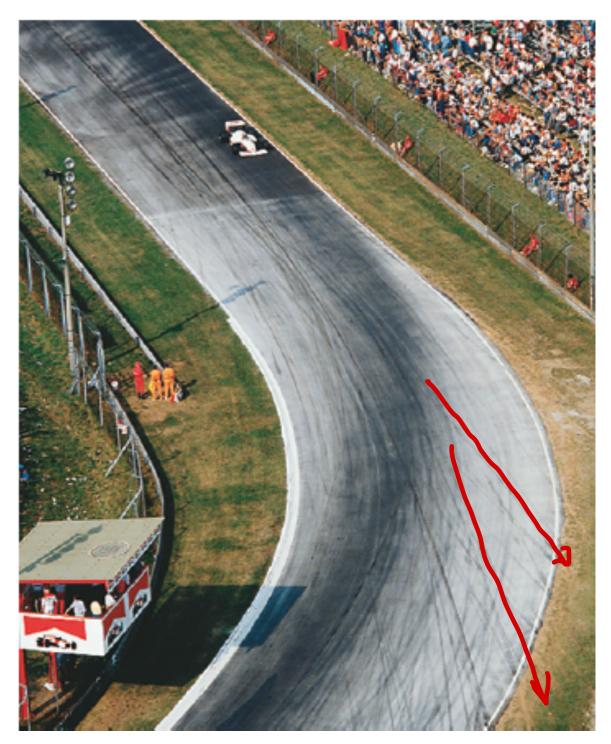
straight line (see skid marks)

Swiss Plasma Center

If friction is insufficient, the car will tend to move in a

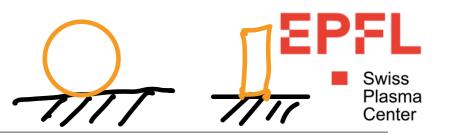
straight line (see skid marks)

 If tires roll without slipping, the friction is static



adhesion

Circular motion in auto racing



• If friction is insufficient, the car will tend to move in a

straight line (see skid marks)

- If tires roll without slipping, the friction is static
- If they slip, it is bad:
 - 1. Kinetic friction is smaller than static
 - 2. Static friction can point inwards (i.e. opposing the impending motion), while kinetic friction only opposes the direction of motion

Conceptual question

A particle moves with constant speed along the circular path shown on the right. Its velocity vector at two different times is also shown.

What is the direction of the acceleration when the particle is

at point x?

B. **→**

C.

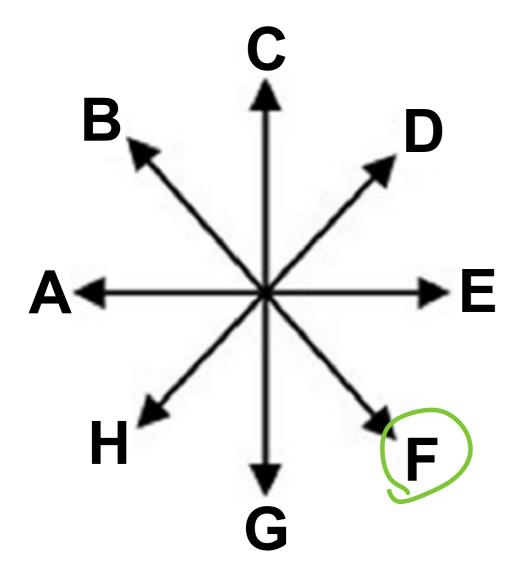
- E. (out of the page)
- F. (into of the page)

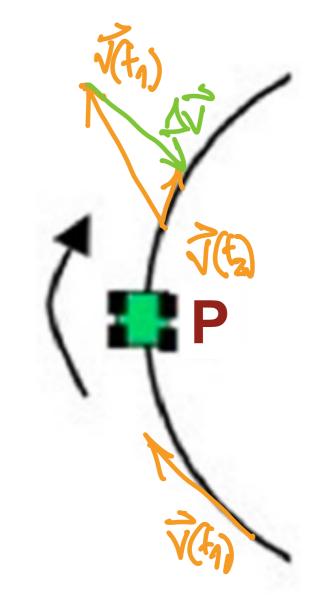
Conceptual question

A poorly drawn golf cart moves around a circular path on a level surface with *decreasing* speed.

Which arrow could indicate the direction of the car's

acceleration while passing the point P?

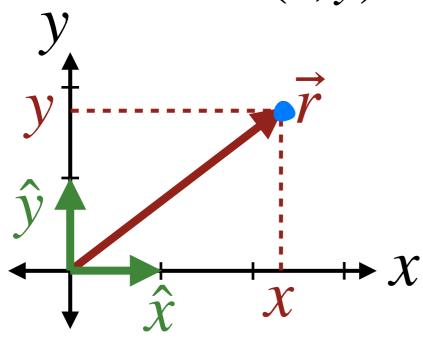




- Even when the origins are identical, there are *many* ways to specify the location of a point
- Some can be very useful and save you much algebra!

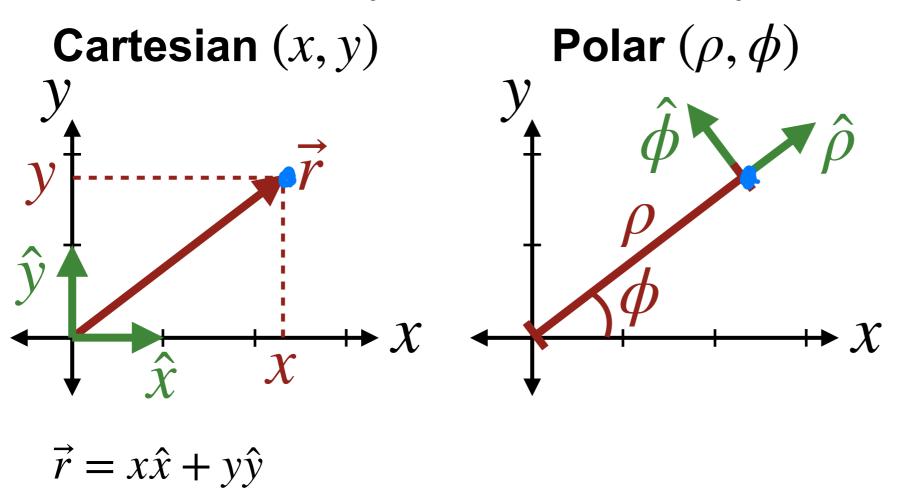
- Even when the origins are identical, there are many ways to specify the location of a point
- Some can be very useful and save you much algebra!

Cartesian (x, y)



$$\vec{r} = x\hat{x} + y\hat{y}$$

- Even when the origins are identical, there are many ways to specify the location of a point
- Some can be very useful and save you much algebra!



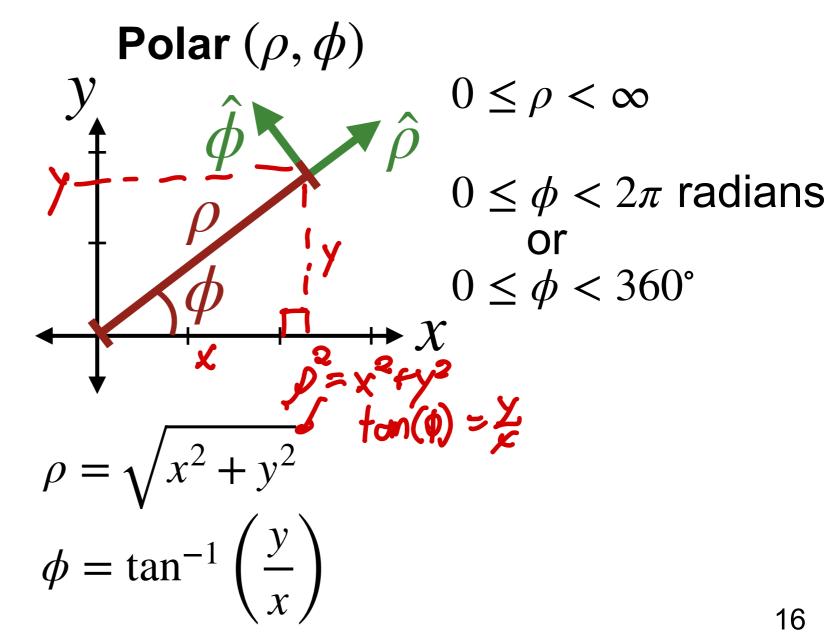
 $\vec{r} = x\hat{x} + y\hat{y}$

- Even when the origins are identical, there are many ways to specify the location of a point
- Some can be very useful and save you much algebra!

Cartesian (x, y) Polar (ρ, ϕ) $0 \le \rho < \infty$ $0 \le \phi < 2\pi$ radians or $0 \le \phi < 360^\circ$

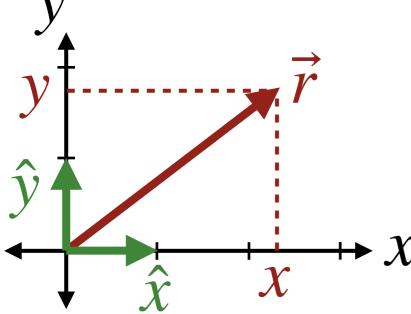
- Even when the origins are identical, there are many ways to specify the location of a point
- Some can be very useful and save you much algebra!

Cartesian (x, y) $\vec{r} = x\hat{x} + y\hat{y}$



- Even when the origins are identical, there are many ways to specify the location of a point
- Some can be very useful and save you much algebra!

Cartesian (x, y)

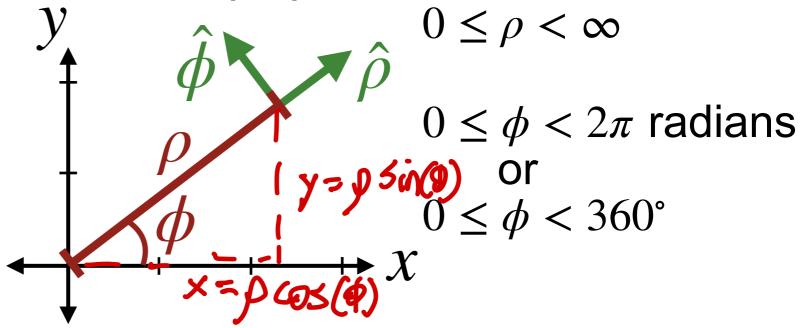


$$\vec{r} = x\hat{x} + y\hat{y}$$

$$x = \rho \cos \phi$$

$$y = \rho \sin \phi$$

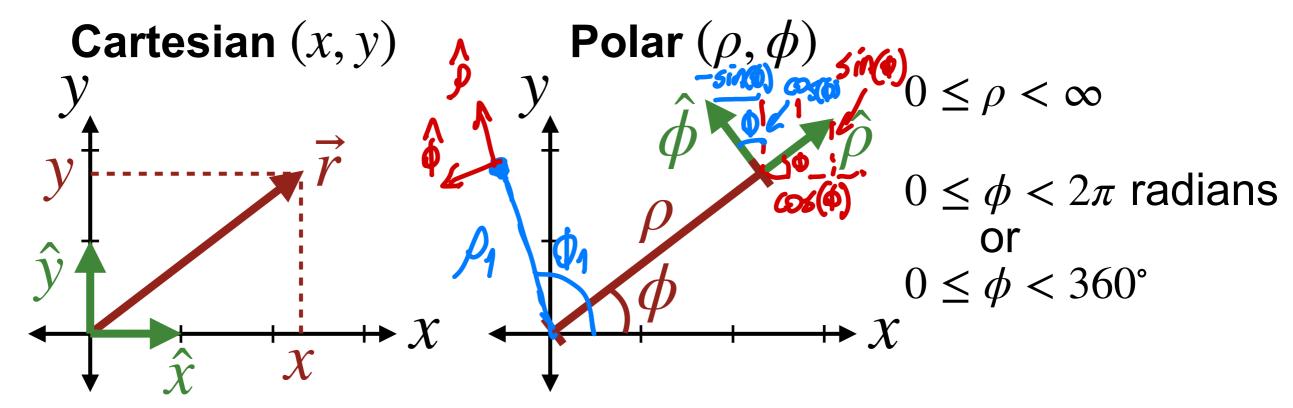
Polar
$$(\rho, \phi)$$



$$\rho = \sqrt{x^2 + y^2}$$

$$\phi = \tan^{-1} \left(\frac{y}{x}\right)$$

- Even when the origins are identical, there are many ways to specify the location of a point
- Some can be very useful and save you much algebra!



$$\vec{r} = x\hat{x} + y\hat{y}$$

$$x = \rho \cos \phi$$

$$y = \rho \sin \phi$$

$$\rho = \sqrt{x^2 + y^2}$$

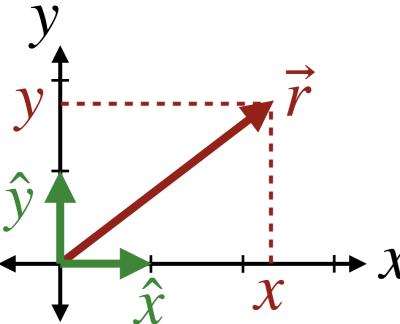
$$\phi = \tan^{-1} \left(\frac{y}{x}\right)$$

$$\hat{\rho} = \cos \phi \hat{x} + \sin \phi \hat{y}$$

$$\hat{\phi} = -\sin \phi \hat{x} + \cos \phi \hat{y}$$

- Even when the origins are identical, there are many ways to specify the location of a point
- Some can be very useful and save you much algebra!

Cartesian (x, y)

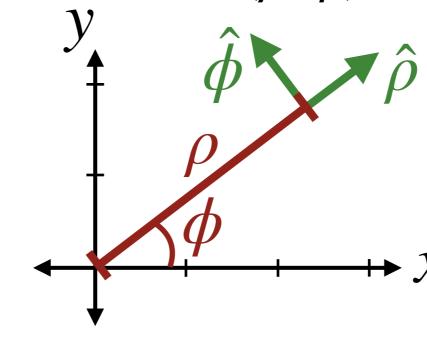


$$\vec{r} = x\hat{x} + y\hat{y}$$

$$x = \rho \cos \phi$$

$$y = \rho \sin \phi$$

Polar (ρ, ϕ)



$$\rho = \sqrt{x^2 + y^2}$$

$$\phi = \tan^{-1} \left(\frac{y}{x}\right)$$

$$0 \le \phi < 2\pi \text{ radians}$$

$$0 \le \phi < 360^{\circ}$$

$$\hat{\rho} = \cos \phi \hat{x} + \sin \phi \hat{y}$$

$$\hat{\phi} = -\sin \phi \hat{x} + \cos \phi \hat{y}$$

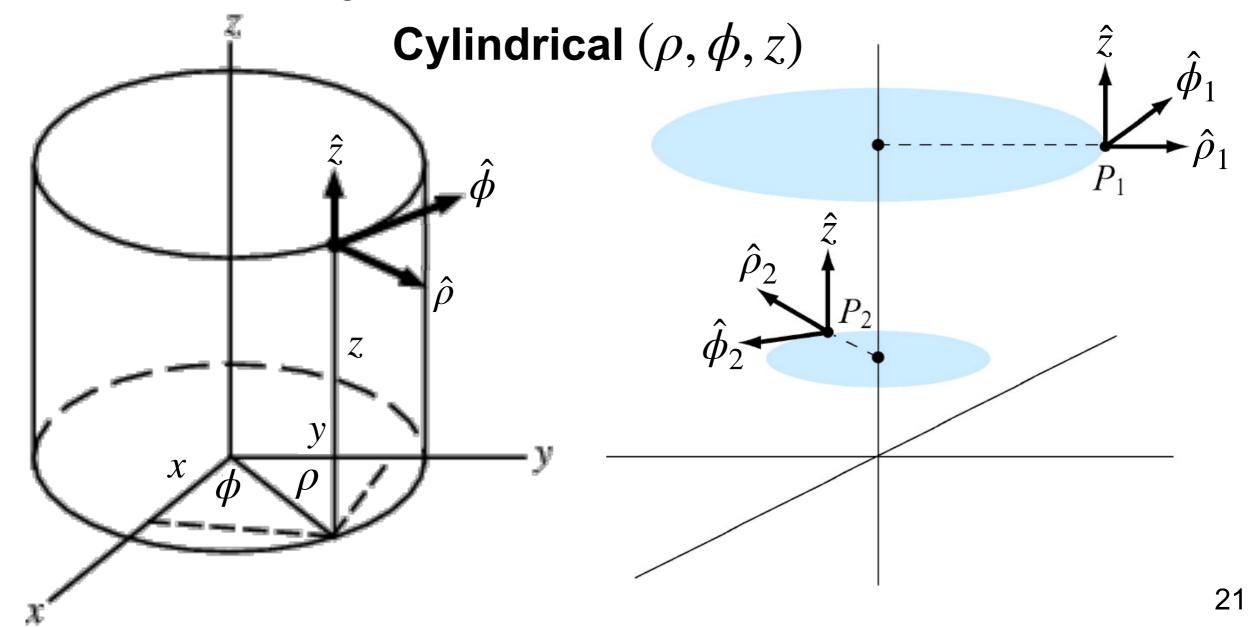
$$\vec{r} = \rho \hat{\rho}$$

Cylindrical coordinates

• Just like polar, but adding the Cartesian axial direction \hat{z}

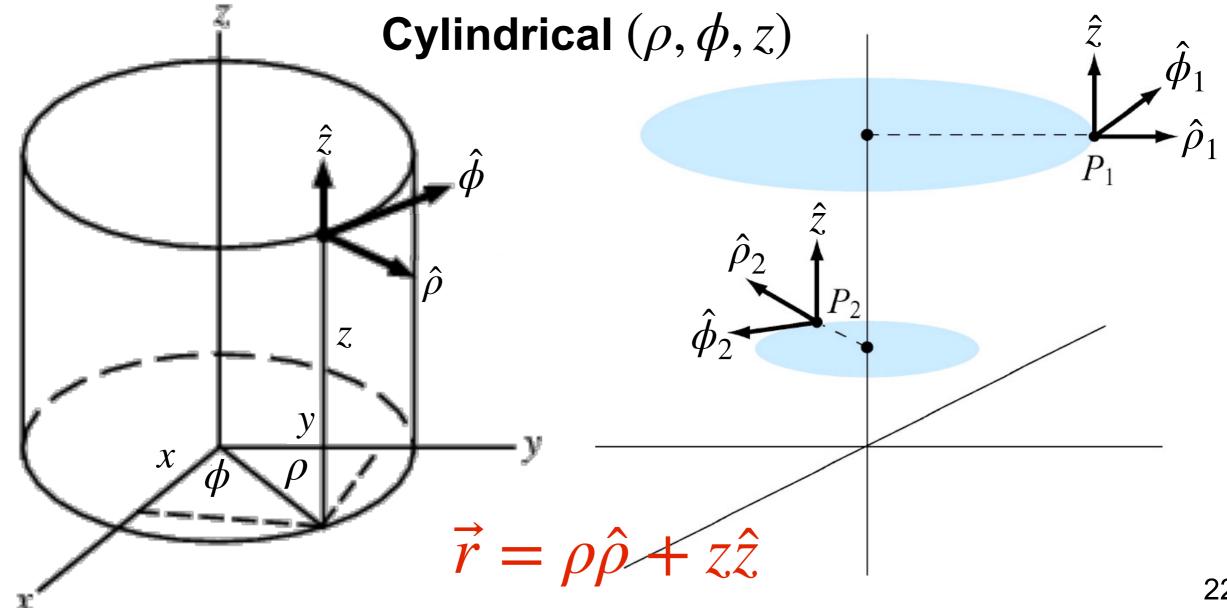
Cylindrical coordinates

- Just like polar, but adding the Cartesian axial direction \hat{z}
- At different locations, the radial $\hat{\rho}$ and azimuthal $\hat{\phi}$ directions change



Cylindrical coordinates

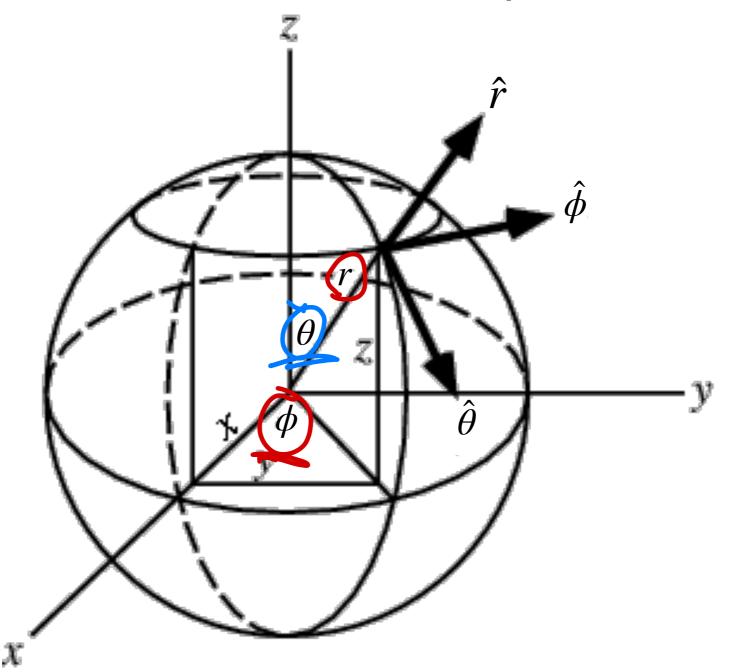
- Just like polar, but adding the Cartesian axial direction \hat{z}
- At different locations, the *radial* $\hat{
 ho}$ and *azimuthal* ϕ directions change



Spherical coordinates

One radial coordinate and two angles

Spherical (r, θ, ϕ)



Conversions between coordinates!

Spherical to

cylindrical

 $\phi = \phi$

 $z = r \cos \theta$

Transformation	Coordinate variables	Unit vectors	Vector components
Cartesian to cylindrical	$\rho = \sqrt{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ $z = z$	$\hat{\rho} = \cos \phi \hat{x} + \sin \phi \hat{y}$ $\hat{\phi} = -\sin \phi \hat{x} + \cos \phi \hat{y}$ $\hat{z} = \hat{z}$	$A_{\rho} = A_{x} \cos \phi + A_{y} \sin \phi$ $A_{\phi} = -A_{x} \sin \phi + A_{y} \cos \phi$ $A_{z} = A_{z}$
Cylindrical to Cartesian	$x = \rho \cos \phi$ $y = \rho \sin \phi$ $z = z$	$\hat{x} = \cos \phi \hat{\rho} - \sin \phi \hat{\phi}$ $\hat{y} = \sin \phi \hat{\rho} + \cos \phi \hat{\phi}$ $\hat{z} = \hat{z}$	$A_x = A_\rho \cos \phi - A_\phi \sin \phi$ $A_y = A_\rho \sin \phi + A_\phi \cos \phi$ $A_z = A_z$
Cartesian to spherical	$r = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}\left(\sqrt{x^2 + y^2}/z\right)$ $\phi = \tan^{-1}(y/x)$	$\hat{r} = \sin \theta \cos \phi \hat{x}$ $+ \sin \theta \sin \phi \hat{y} + \cos \theta \hat{z}$ $\hat{\theta} = \cos \theta \cos \phi \hat{x}$ $+ \cos \theta \sin \phi \hat{y} - \sin \theta \hat{z}$ $\hat{\phi} = -\sin \phi \hat{y} + \cos \phi \hat{z}$	$A_r = A_x \sin \theta \cos \phi$ $+A_y \sin \theta \sin \phi + A_z \cos \theta$ $A_\theta = A_x \cos \theta \cos \phi$ $+A_y \cos \theta \sin \phi - A_z \sin \theta$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$
Spherical to Cartesian	$x = r \sin \theta \cos \phi$ $y = r \sin \theta \sin \phi$ $z = r \cos \theta$	$\hat{x} = \sin \theta \cos \phi \hat{r} + \cos \theta \cos \phi \hat{\theta} - \sin \phi \hat{\phi} \hat{y} = \sin \theta \sin \phi \hat{r} + \cos \theta \sin \phi \hat{\theta} + \cos \phi \hat{\phi} \hat{z} = \cos \theta \hat{r} - \sin \theta \hat{\theta}$	$A_{x} = A_{r} \sin \theta \cos \phi$ $+A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \theta$ $A_{y} = A_{r} \sin \theta \sin \phi$ $+A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \theta$ $A_{z} = A_{r} \cos \theta - A_{\theta} \sin \theta$
Cylindrical to spherical	$r = \sqrt{\rho^2 + z^2}$ $\theta = \tan^{-1}(\rho/z)$ $\phi = \phi$	$\hat{r} = \sin \theta \hat{\rho} + \cos \theta \hat{z}$ $\hat{\theta} = \cos \theta \hat{\rho} - \sin \theta \hat{z}$ $\hat{\phi} = \hat{\phi}$	$A_r = A_\rho \sin \theta + A_z \cos \theta$ $A_\theta = A_\rho \cos \theta - A_z \sin \theta$ $A_\phi = A_\phi$
Spherical to	$\rho = r \sin \theta$	$\hat{\rho} = \sin \theta \hat{r} + \cos \theta \hat{\theta}$	$A_{\rho} = A_r \sin \theta + A_{\theta} \cos \theta$

 $\hat{\phi} = \hat{\phi}$

 $\hat{z} = \cos\theta \hat{r} - \sin\theta \hat{\theta}$

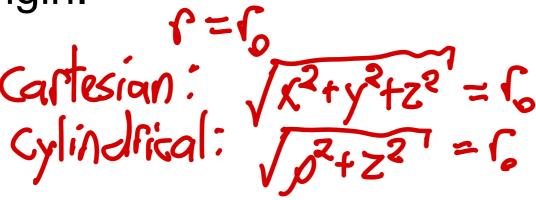
 $A_{\phi} = A_{\phi}$

 $A_z = A_r \cos \theta - A_\theta \sin \theta$

Write the following in Cartesian and cylindrical coordinates:

A. The equation of a sphere of radius r_0 centered at the

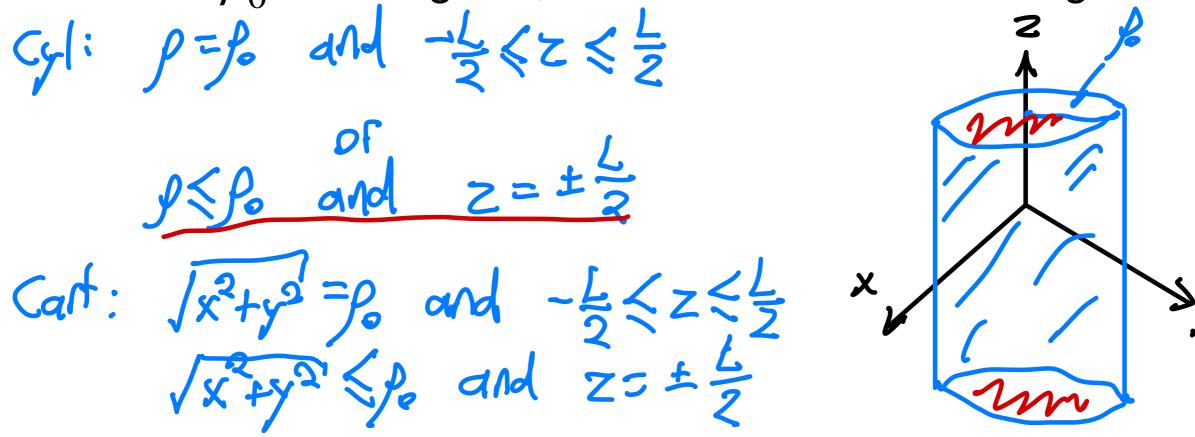
origin.



Example: Cylindrical coordinates

Write the following in Cartesian and cylindrical coordinates:

- A. The equation of a sphere of radius r_0 centered at the origin.
- B. The equation of a cylinder parallel to the z axis with a radius ρ_0 and length L, whose center is at the origin.



Motion in cylindrical coordinates

Derive the expressions for the velocity and acceleration of an object in cylindrical coordinates

$$\int_{0}^{2} = \cos(\phi) \hat{x} + \sin(\phi) \hat{y}$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} \right] + \frac{d}{d\phi} \left[\sin(\phi) \hat{y} \right] = \hat{x} \frac{d}{d\phi} \left[\cos(\phi) \right] + \hat{y} \frac{d}{d\phi} \left[\sin(\phi) \hat{y} \right]$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} \right] + \frac{d}{d\phi} \left[\sin(\phi) \hat{y} \right] = \hat{y} \frac{d}{d\phi} \left[\cos(\phi) \hat{y} \right] + \hat{y} \frac{d}{d\phi} \left[\sin(\phi) \hat{y} \right]$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} + \sin(\phi) \hat{y} \right] = \hat{x} \left(\cos(\phi) \hat{y} \right) + \hat{y} \left(-\sin(\phi) \hat{y} \right)$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} + \cos(\phi) \hat{y} \right] = \hat{x} \left(-\cos(\phi) \hat{y} \right) + \hat{y} \left(-\sin(\phi) \hat{y} \right)$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} + \sin(\phi) \hat{y} \right] = \hat{x} \left(-\cos(\phi) \hat{y} \right) + \hat{y} \left(-\sin(\phi) \hat{y} \right)$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} + \sin(\phi) \hat{y} \right] = \hat{x} \left(-\cos(\phi) \hat{y} \right) + \hat{y} \left(-\sin(\phi) \hat{y} \right)$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} + \sin(\phi) \hat{y} \right] = \hat{x} \left(-\cos(\phi) \hat{y} \right) + \hat{y} \left(-\sin(\phi) \hat{y} \right)$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} + \sin(\phi) \hat{y} \right] = \hat{x} \left(-\cos(\phi) \hat{y} \right) + \hat{y} \left(-\sin(\phi) \hat{y} \right)$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} + \sin(\phi) \hat{y} \right] = \hat{x} \left(-\cos(\phi) \hat{y} \right) + \hat{y} \left(-\sin(\phi) \hat{y} \right)$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} + \sin(\phi) \hat{y} \right] = \hat{x} \left(-\cos(\phi) \hat{y} \right) + \hat{y} \left(-\sin(\phi) \hat{y} \right)$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \left[\cos(\phi) \hat{x} + \sin(\phi) \hat{y} \right] = \hat{x} \left(-\cos(\phi) \hat{y} \right) + \hat{y} \left(-\sin(\phi) \hat{y} \right)$$

$$\frac{d}{d\phi} \hat{p} = \frac{d}{d\phi} \hat$$

Motion in cylindrical coordinates

Derive the expressions for the velocity and acceleration of

an object in cylindrical coordinates

$$\vec{y} = \hat{\rho} \hat{\rho} + \rho(\hat{\rho}) + \hat{z}\hat{z}$$

$$= \hat{\rho} \hat{\rho} + \rho \hat{\varphi} \hat{\varphi} + \hat{z}\hat{z}$$

Motion in cylindrical coordinates

Derive the expressions for the velocity and acceleration of

an object in cylindrical coordinates

an object in cylindrical coordinates
$$\vec{a} = \vec{a} \cdot \vec{r} = \vec{d} \cdot \left[\frac{\hat{p} \cdot \hat{p}}{\hat{p} \cdot \hat{p}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{z} \cdot \hat{z}}{\hat{z}} \right] = \vec{z} \cdot \vec{z} + \vec{z} \cdot \vec{z}$$

$$= \left[\frac{\hat{p} \cdot \hat{p}}{\hat{p} \cdot \hat{p}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{p}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{p}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q} \cdot \hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat{q}} + \frac{\hat{p} \cdot \hat{q}}{\hat{q}} \right] + \left[\frac{\hat{p} \cdot \hat{q}}{\hat$$

Motion in spherical coordinates

 Derive the expressions for the velocity and acceleration of an object in spherical coordinates

- Derive the expressions for the velocity and acceleration of an object in spherical coordinates
- Just kidding, it's quite horrible:

$$\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta} + r\dot{\phi}\sin\theta\hat{\phi}$$

$$\vec{a} = \left(\ddot{r} - r\left(\dot{\theta}\right)^2 - r\left(\dot{\phi}\right)^2 \sin^2\theta\right)\hat{r}$$

$$+ \left(r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\left(\dot{\phi}\right)^2 \sin\theta\cos\theta\right)\hat{\theta}$$

$$+ \left(r\ddot{\phi}\sin\theta + 2\dot{r}\dot{\phi}\sin\theta + 2r\dot{\phi}\dot{\theta}\cos\theta\right)\hat{\phi}$$

DEMO (52)

Flexible spinning rings

Quantifying speed in uniform circular motion

Swiss Plasma Center

 The period T is the time the object takes to complete one full revolution; units of [s]

Quantifying speed in uniform circular motion will be said the control of the cont

- The period T is the time the object takes to complete one full revolution; units of [s]
- The frequency f = 1/T is the number of revolutions the object completes per second; units of $[1/s] = H_z$

Quantifying speed in uniform circular motion

- Swiss Plasma Center
- The period T is the time the object takes to complete one full revolution; units of [s]
- The frequency f = 1/T is the number of revolutions the object completes per second; units of [1/s]
- The average angular frequency $\overline{\omega} = 2\pi/T = 2\pi f$ (i.e. the average angular speed) is the number of radians the object completes per second; units of [radians/s]

Quantifying speed in uniform circular motion Swiss Plasma

- The period T is the time the object takes to complete one full revolution; units of [s]
- The frequency f = 1/T is the number of revolutions the object completes per second; units of [1/s]
- The average angular frequency $\overline{\omega} = 2\pi/T = 2\pi f$ (i.e. the average angular speed) is the number of radians the object completes per second; units of [radians/s]
- Since the distance traveled per revolution is $2\pi\rho_0$, we can calculate the speed

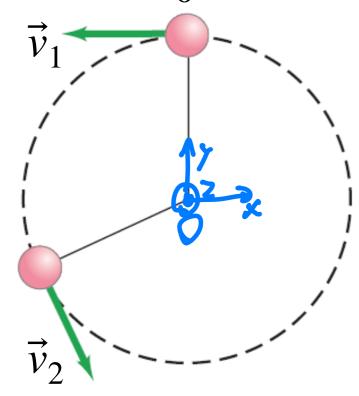
$$v = \frac{2\pi\rho_0}{T} = 2\pi\rho_0 f = \rho_0 \overline{\omega}$$

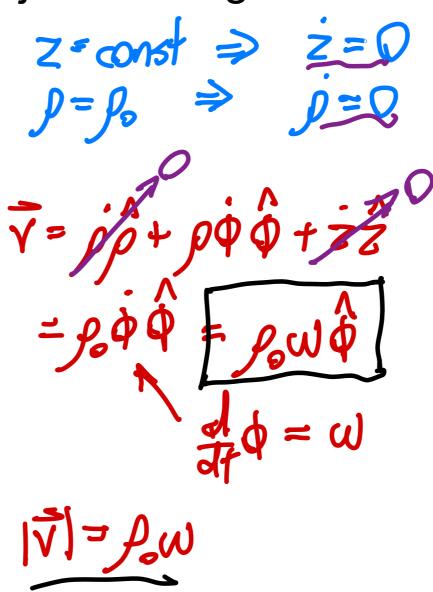
EPFL Swiss Plasma

Velocity in circular motion

• Find the velocity of an object moving in a circle with a

radius ρ_0 .





Quantifying velocity in circular motion

- The angular speed is $\omega = \dot{\phi} = \frac{d\phi}{dt}$
- Like velocity, the angular velocity is a vector $\overrightarrow{\omega}$, but defined given an axis of rotation
- To find the direction of $\overrightarrow{\omega}$ we need to introduce *cross* (vector) products

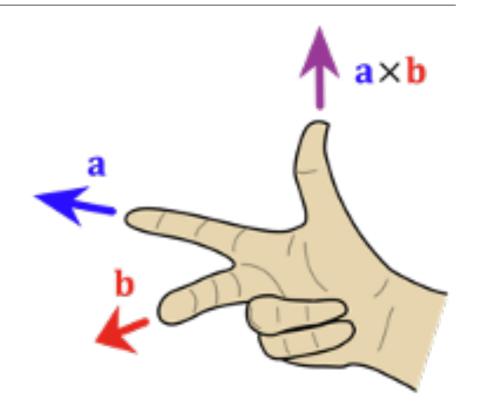
 Two vectors are multiplied in a cross product to produce another vector

$$\vec{a} \times \vec{b} = \vec{c}$$

 Two vectors are multiplied in a cross product to produce another vector

$$\vec{a} \times \vec{b} = \vec{c}$$

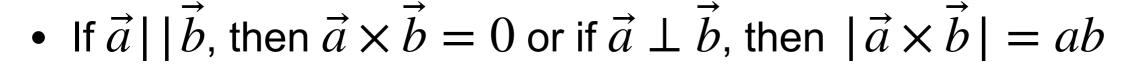
- Magnitude: $|\vec{c}| = c = ab \sin \theta$
- Direction: Use right hand rule



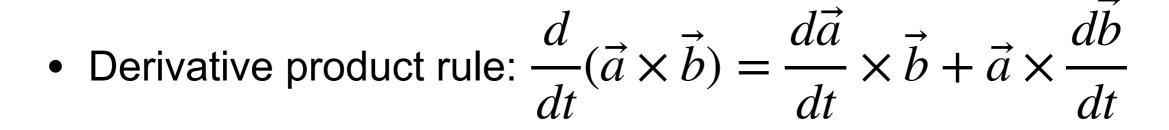
 Two vectors are multiplied in a cross product to produce another vector

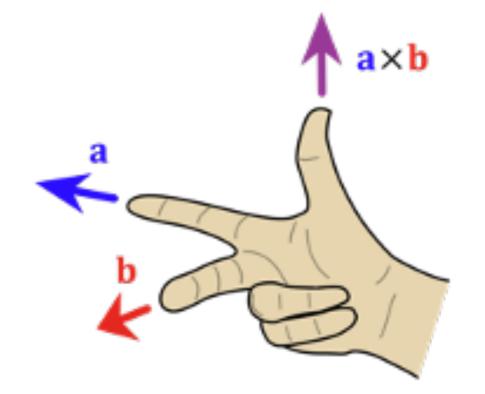
$$\vec{a} \times \vec{b} = \vec{c}$$

• Magnitude: $|\vec{c}| = c = ab \sin \theta$



- Not commutative: $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- Distributive: $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$





• How to compute $\vec{a} \times \vec{b}$ component-by-component

$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y)\hat{x} + (a_z b_x - a_x b_z)\hat{y} + (a_x b_y - a_y b_x)\hat{z}$$

where
$$\vec{a}=a_x\hat{x}+a_y\hat{y}+a_z\hat{z}$$

$$\vec{b}=b_x\hat{x}+b_y\hat{y}+b_z\hat{z}$$

$$\begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix} = \frac{\lambda}{\lambda} \begin{vmatrix} a_{y} a_{z} \\ b_{y} & b_{z} \end{vmatrix} - \frac{\lambda}{\lambda} \begin{vmatrix} a_{x} a_{z} \\ b_{x} & b_{z} \end{vmatrix} + \frac{\lambda}{\lambda} \begin{vmatrix} a_{x} a_{y} \\ b_{x} & b_{y} \end{vmatrix}$$

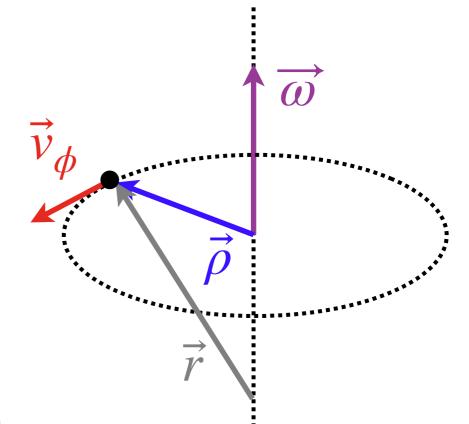
$$= \frac{\lambda}{\lambda} (a_{y}b_{z} - a_{z}b_{y}) - \frac{\lambda}{\lambda} (a_{x}b_{z} - a_{z}b_{y}) + \frac{\lambda}{\lambda} (a_{x}b_{y} - a_{y}b_{x})$$

• How to compute $\vec{a} \times \vec{b}$ component-by-component

$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y)\hat{x} + (a_z b_x - a_x b_z)\hat{y} + (a_x b_y - a_y b_x)\hat{z}$$

Quantifying velocity in circular motion

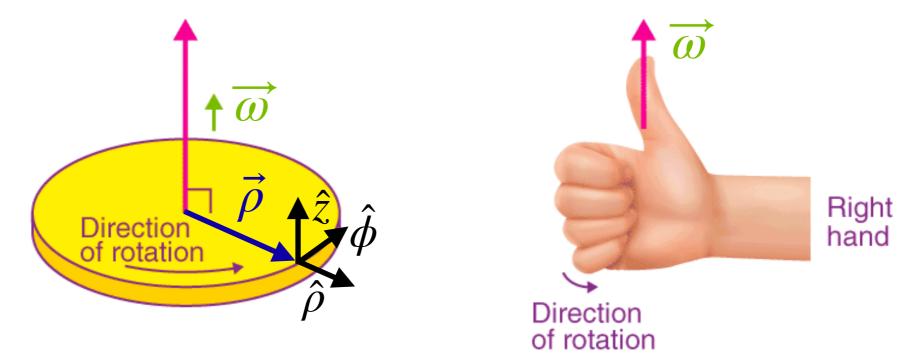
- The angular speed is $\omega = \dot{\phi} = \frac{d\phi}{dt}$
- Like velocity, the angular velocity is a vector $\overrightarrow{\omega}$, but defined given an axis of rotation



- To find the direction of $\overrightarrow{\omega}$ we need to introduce cross (vector) products
- Points along the axis of rotation according to the right-hand rule

$$\overrightarrow{\omega} = \frac{\overrightarrow{\rho} \times \overrightarrow{v}_{\phi}}{\rho^2} \qquad \text{so} \qquad \overrightarrow{v}_{\phi} = \overrightarrow{\omega} \times \overrightarrow{\rho}$$

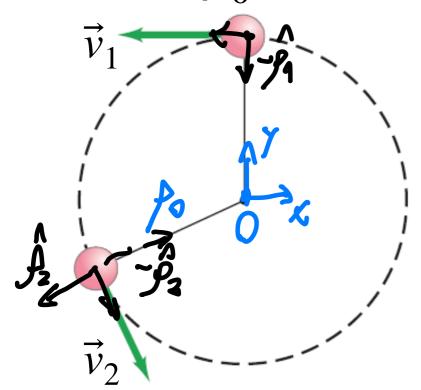
Quantifying velocity in circular motion



- Alternatively, there's a different right hand rule that shows the direction of $\overrightarrow{\omega}$
- Often (but not always!) $\overrightarrow{\omega}$ is in the $\pm \hat{z}$ direction, due to the way we often define our cylindrical coordinate systems
- We can also use this to reinterpret some past results: $d\hat{\rho}/dt = \omega\hat{\phi} = \overrightarrow{\omega} \times \hat{\rho}$ and $d\hat{\phi}/dt = -\omega\hat{\rho} = \overrightarrow{\omega} \times \hat{\phi}$

Find the acceleration of an object moving in a circle with a

radius ρ_0 .



$$\vec{a} = \vec{p} \left[-p \cdot (\vec{p})^2 \right] + \vec{p} \left[p \cdot \vec{p} \right]$$

$$= \vec{p} \left[-p \cdot (\vec{p})^2 \right] + \vec{p} \left[p \cdot \vec{p} \right]$$

$$= \vec{p} \left[-p \cdot (\vec{p})^2 \right] + \vec{p} \left[p \cdot \vec{p} \right]$$

$$\vec{a}_{cont} \qquad \vec{a}_{fan}$$

Quantifying acceleration in circular motion Swiss Plasma Center

• The magnitude of the angular acceleration is $\alpha = \ddot{\phi} = \frac{d^2\phi}{dt^2}$

EPFL

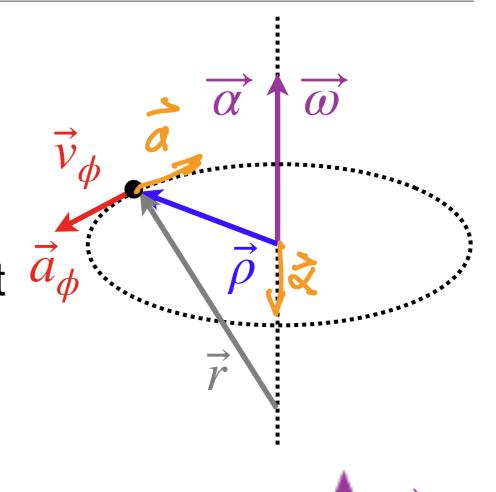
Quantifying acceleration in circular motion

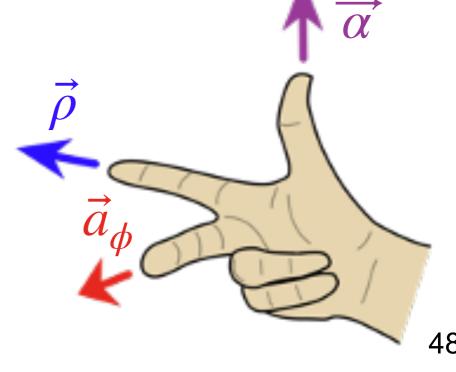
Swiss Plasma Center

• The magnitude of the angular acceleration is $\alpha = \ddot{\phi} = \frac{d^2\phi}{dt^2}$

ullet Defined analogously to $\overrightarrow{\omega}$ such that a

$$\vec{a}_{\phi} = \overrightarrow{\alpha} \times \vec{\rho}$$
 and $\overrightarrow{\alpha} = \frac{\vec{\rho} \times \vec{a}_{\phi}}{\rho^2}$





EPFL

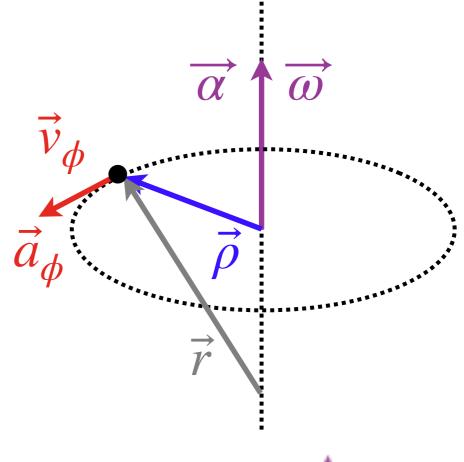
Quantifying acceleration in circular motion

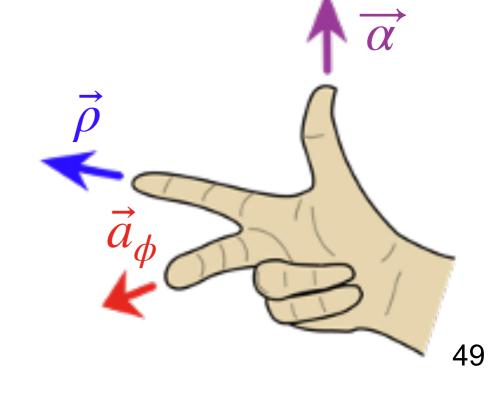
Swiss Plasma Center

• The magnitude of the angular acceleration is $\alpha = \ddot{\phi} = \frac{d^2\phi}{dt^2}$

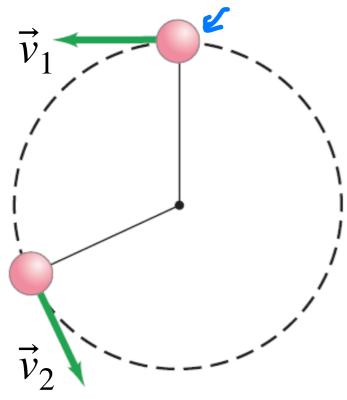
$$\vec{a}_{\phi} = \overrightarrow{\alpha} \times \vec{\rho}$$
 and $\overrightarrow{\alpha} = \frac{\vec{\rho} \times \vec{a}_{\phi}}{\rho^2}$

 If the direction of the rotation axis does not change, the angular acceleration vector points along it





• Find the force required to maintain an object moving in a circle with a radius ρ_0 .

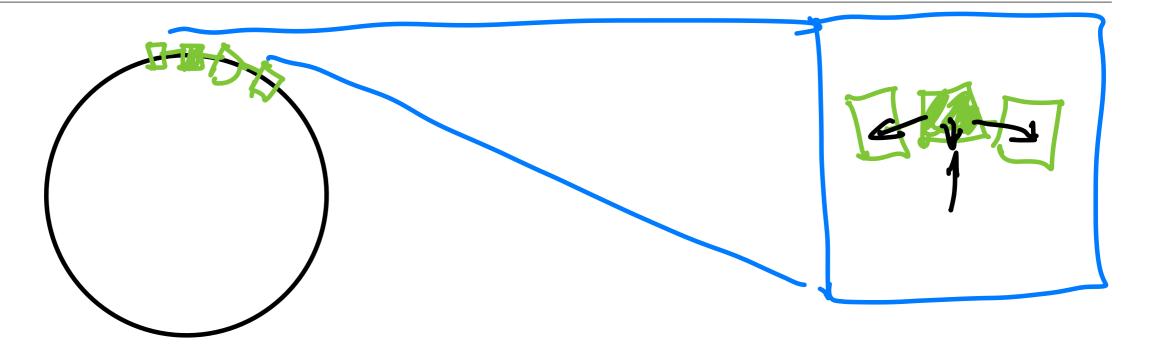


$$\ddot{\sigma}_{conf} = -\rho_o \omega^2 \dot{\rho}$$

$$\dot{\tau}_{conf} = m \ddot{a}_{conf}$$

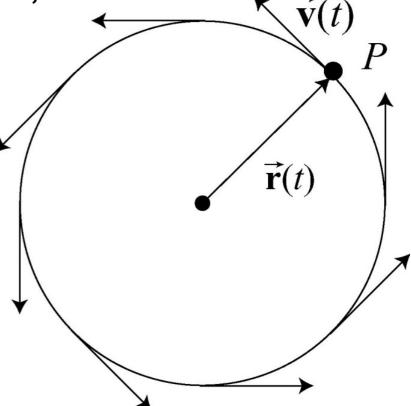
DEMO (32)





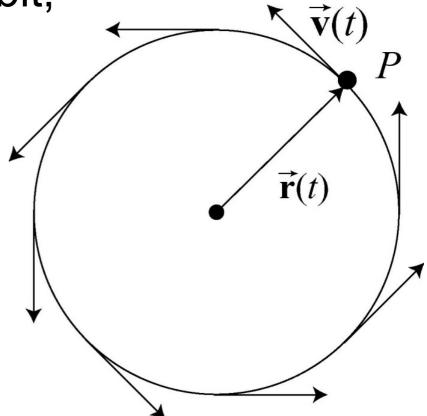
Spinning chain

 When an object moves in a circular orbit, the direction of the velocity changes (and the speed may change as well)



 When an object moves in a circular orbit, the direction of the velocity changes (and the speed may change as well)

 Instantaneous velocity is always tangent to the circle

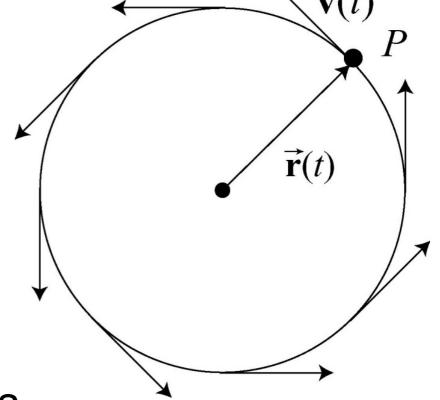


Circular motion summary

 When an object moves in a circular orbit, the direction of the velocity changes (and the speed may change as well)

Instantaneous velocity is always tangent to the circle

• The acceleration will always have a radial component (a_{ρ}) due to the change in direction of velocity, which is called the centripetal acceleration

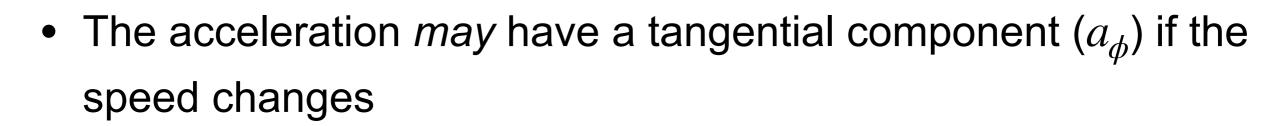


Circular motion summary

 When an object moves in a circular orbit, the direction of the velocity changes (and the speed may change as well)

 Instantaneous velocity is always tangent to the circle

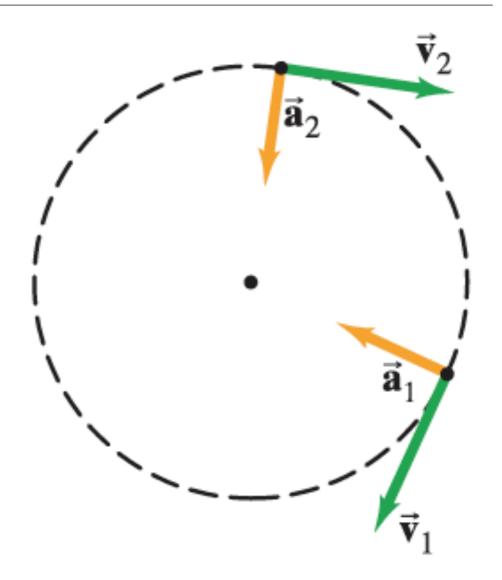
• The acceleration will always have a radial component (a_{ρ}) due to the change in direction of velocity, which is called the centripetal acceleration



• When $a_{\phi} = 0$, the speed of the object remains constant

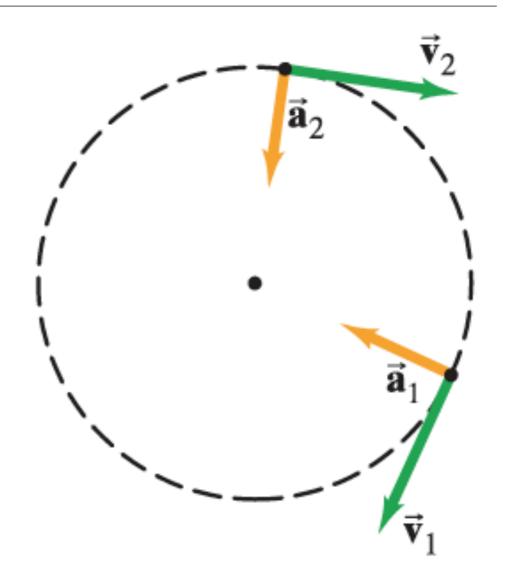
Uniform circular motion summary

- Motion in a circle of constant radius ρ_0 at constant angular velocity $\overrightarrow{\omega}$ (radians per second)
- Instantaneous velocity is still always tangent to the circle
- The acceleration will **only** have a radial component (a_{ρ}) due to the change in direction of velocity



Uniform circular motion summary

- Motion in a circle of constant radius ρ_0 at constant angular velocity $\overrightarrow{\omega}$ (radians per second)
- Instantaneous velocity is still always tangent to the circle
- The acceleration will **only** have a radial component (a_{ρ}) due to the change in direction of velocity



Centripetal acceleration always points to the center of the circle

$$\vec{a}_{cent} = -\rho_0 \omega^2 \hat{\rho}$$

• Must be a centripetal force $\overrightarrow{F}_{cent}=m\overrightarrow{a}_{cent}=-m\rho_0\omega^2\hat{\rho}$

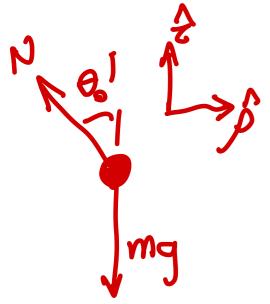
DEMO (457)

Ball on a rotating slide

Swiss
Plasma
Center

Ball on a rotating slide

• Find the equilibrium position θ_0 of the ball R



Along
$$\hat{z}$$
:
$$N\cos(\theta_0) - Mg = 0$$

$$N\cos(\theta_0) = Mg$$

Along
$$\rho$$

Along ρ

$$\Rightarrow \cos(\theta) = \frac{9}{R_0 u^2}$$

$$\Rightarrow \Rightarrow \theta = \cos^{1}(\frac{9}{4})$$

$$\begin{array}{ll}
(=) & = R \sin(\theta) \\
(=) & = R \sin(\theta) \\
(=) & = R \sin(\theta)
\end{array}$$

$$\begin{array}{ll}
(=) & = R \sin(\theta) \\
(=) & = R \sin(\theta)
\end{array}$$

$$\begin{array}{ll}
(=) & = R \sin(\theta) \\
(=) & = R \sin(\theta)
\end{array}$$