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DESPITE YEARS OF STUDYING

PHYSICS, T STILL FIND

GYROSCOPES A LITTLE FREAKY.
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 Next Monday (i.e. December 16th) we will start the lecture
with written course feedback

* Also next Monday | will give back the graded Mock exams
for those of you who turned them in

 Final exams of some previous years will be made
available in the Moodle for you to see and practice
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Today’'s agenda (Serway 11,13; MIT 22,23) = .

1. Kepler's laws of planetary motion
2. Gyroscopes
3. Harmonic motion

e Simple harmonic motion



Kepler's laws of planetary motion

e From 1610-1619 Johannes Kepler
wrote:



Kepler's laws of planetary motion

« From 1610-1619 Johannes Kepler / \
wrote: ..
1. The orbit of each planet is \

an ellipse, with the Sun at — L —
one focus.




Kepler's laws of planetary motion

e From 1610-1619 Johannes Kepler
wrote:

1. The orbit of each planet is
an ellipse, with the Sun at
one focus.

2. An imaginary line drawn
from each planet to the Sun
sweeps out equal areas In
equal times.
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Kepler’'s laws of planetary motion " S
. From 1610-1619 Johannes Kepler / \

WrOte: | Fogui‘l- I Focusz
1. The orbit of each planet is
an ellipse, with the Sun at ——;
one focus. K
2. An imaginary line drawn A Yar
from each planet to the Sun
sweeps out equal areas In
equal times.
: Planet (E:.erﬂf’?,é;) Avt%%‘?:‘a:r:ce (10-25T;Irr27km3)
3. The square of a planet’s T
orbital period is proportional vews | osis 1082 299
to the cube of its mean Earth | 1 1496 299
. Mars 1.88 227.9 2.99
distance from the Sun.
Saturn 29.5 1427 2.99
Uranus 84.0 2870 2.98 0
Neptune 165 4497 2.99




Kepler's laws of planetary motion o
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3. The square of a planet’s orbital ptanet | Period, T

Avg distance T2/p3

. . . (Earth year) to S(;ur:;‘r (10-25 yr2/km3)
period is proportional to the cube "
of its mean distance from the Sun. vens | o6 108.2 2.99
Earth 1 149.6 2.99
. . . Mars 1.88 227.9 2.99
e Approximate orbits as circular and e | 1es 778 298
u Se Saturn 29.5 1427 2.99
mpms Uranus 84.0 2870 2.98
— G ]//\' Neptune 165 4497 2.99
—

Fj: Fc;/h‘ > “G% Gw/)rqgf-’{,{é"ﬁﬂ?)

W _ 2_ (AN _ -2
CHF =W =(() =% ¥
2= o3
)

10



Kepler's laws of planetary motion o

2. An imaginary line drawn from
each planet to the Sun sweeps
out equal areas in equal times.
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Kepler’'s laws of planetary motion o

2. An imaginary line drawn from
each planet to the Sun sweeps
out equal areas in equal times. dt<

R —
o Gravity is a central force, so r || F'
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Kepler’'s laws of planetary motion o

2. An imaginary line drawn from
each planet to the Sun sweeps
out equal areas in equal times. dt<

R —
o Gravity is a central force, so r || F'

- - g — - -
e Thus, 7o =rX F3=0,s0 L¢=rXm,v is conserved
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Kepler’'s laws of planetary motion o

2. An imaginary line drawn from
each planet to the Sun sweeps
out equal areas in equal times. dt(

R —

o Gravity is a central force, so r || F'
- - g — - - .

e Thus, 7o =rX F3=0,s0 L¢=rXm,v is conserved

e How is this related to area”?

-V

r
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Kepler’'s laws of planetary motion o

2. An imaginary line drawn from
each planet to the Sun sweeps
out equal areas in equal times. dt<

R —
o Gravity is a central force, so r || F'

- - g — - -
e Thus, 7o =rX F3=0,s0 L¢=rXm,v is conserved

e How is this related to area”?

A'o—' ' OLQSM(@)
dA= A = iA = -a(‘owsm(q)

dha Lcd Lsinfs) = L] = LR ] = L |7 A < o [ M
‘M am |3 = constnt da

3 = condf = i‘é
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Kepler's laws of planetary motion

1.

The orbit of each planet is an
ellipse, with the Sun at one focus. - N
# { ';;__‘_---‘---—-_---—‘ Maior axi:

Need to know the universal
gravitational potential energy

Apply mechanical energy conservation:
E'VJ = K"‘\je = %Mf\lfz— C@Ff&' = CO/\S'{‘CV){.
Apply conservation of angular momentum:
L= TX{) 2 P%(Mr\/'o) = coﬂd

Considerable mathematical magic
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Today’s agenda (Serway 11,13; MIT 22,23)

1. Kepler's laws of planetary motion

2. Gyroscopes
3. Harmonic motion

e Simple harmonic motion
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DEMO (50, 48)

Bicycle wheel
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Analyzing fixed axis rotation - s.v;ﬁrgra
Sl ec? of bea. SFE=0 , ZH=0

ST Felt ik 1 % (ng2) = (2 P)x(R2)+ (%“( )
= 2F( )a%) Kvncj(/MZ) @ZF M‘j)( =0
> 2l Anq=0 K 2w

2 <
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DEMO (50): A gyroscope of -3
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Analyzing a gyroscope "
=t &

- f\’{% * -(;X('W"jg) = (£)%(-ma3
= —mdq (Px2)=- mlﬁ(—ﬁ)): MlgQ

L= Lo+ Lo Tody=mpw, g
Lp= Ty W=

gl:gg: %II:\I*L;/]\ = %(m/fwwjb{" %{Iqoud{% @3:%3 :

= wyjj{(wv/) + ijg(w(éb = wyj’[ oL;g%ﬁ* wwg%%] ! If[a%’,eé‘wﬁﬁ']

| S ¢ e L4t = TF = iy
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Analyzing a gyroscope

mps %‘%‘ﬁ* W gy € ¢ T, 2 = mlﬁ
Ab/]a/é\: wy;f %T-O = %“=O '—5->\A}V=(D/g)p

A‘oncj ZA ‘ 1{ du

-A-g“:-O = {%{f‘-‘@ 3)\1/(%01\51'0
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DEMO (501, 40) iy
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Gyroscopes
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Today’s agenda (Serway 11,13; MIT 22,23)

1. Kepler's laws of planetary motion

2. Gyroscopes
3. Harmonic motion

e Simple harmonic motion
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Harmonic motion o

e Special type of periodic motion caused by forces of the
form

F=-kAF g7
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e Special type of periodic motion caused by forces of the
form

F = —kAF

 This is has the same form as the spring force, which can
represent many systems

e e.g. atoms in crystals, pendulums, balls rolling in bowls
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“Simple™ harmonic oscillation in 1D "
%L-~~§
k
JUUU UL m
; —SX

* Consider a frictionless mass-spring system F=_-gAx =~ K()(,.;Q
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e Consider a frictionless mass-spring system

o
e The spring has equilibrium position x, =0 F=-KA(=- K(X"/)Q ==RY
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* Consider a frictionless mass-spring system
 The spring has equilibrium position x, = 0, so
F=—kx

e Newtons 2nd law, FF = ma , then yields

—kx = ma = m%?ﬂ q:é%zilr(%):%%

s dX - _K
> G
D 4% 41Ky=0
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* Consider a frictionless mass-spring system
 The spring has equilibrium position x, = 0, so
F=—kx

e Newtons 2nd law, FF = ma , then yields

—kx = ma
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“Simple” harmonic oscillation in 1D

e The solution of

d*x  k
F—x =0
dr’? m

is x(t) = Aycos(wyt) + By sin(wyt)
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“Simple™ harmonic oscillation in 1D "
e The solution of .
d? k
. F—x =0 m
dr’? m -

is x(t) = Aycos(wyt) + By sin(wyt)

e Using trigonometric identities, this is equivalent to
x(1) = A cos(wyt + @)

here {
K ANIVAN

e A is the amplitude of the oscillation ) e
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“Simple™ harmonic oscillation in 1D "
e The solution of .
d? k
. F—x =0 m
dr’? m -

is x(t) = Aycos(wyt) + By sin(wyt)

e Using trigonometric identities, this is equivalent to
x(1) = A cos(wyt + @)

where
e A is the amplitude of the oscillation 1
o ANVAR
e (@ is the initial phase ) ANV
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“Simple™ harmonic oscillation in 1D "
e The solution of .
d? k
. F—x =0 m
dr’? m -

is x(t) = Aycos(wyt) + By sin(wyt)

e Using trigonometric identities, this is equivalent to
x(1) = A cos(wyt + @)
where
e A is the amplitude of the oscillation

At
o wy =1\ kim =2x/T,where T, is the period of the
oscillation. @y, is called the angular frequency.

e  is the initial phase
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“Simple™ harmonic oscillation in 1D "
e The solution of .
d? k
. F—x =0 m
dr’? m -

is x(t) = Aycos(wyt) + By sin(wyt)

e Using trigonometric identities, this is equivalent to
x(t) =A cos(a)ot + @)
X(¥) = -ﬁ & f/\ cos (u,H+4)] = A ;ﬁ[ cos(u )] <A 5:/}(&/%*‘?)]
"A‘Uo sin(u,t+4) ﬂ(uéﬂﬂ =
X(#)= :rz -~Awo é; sin(wyt 4 V)] =—Awocoé(wp+ +4) ).
<~ AW cos (uH+d) = ~aX

A% K 2 2_
o"fz+ KX = u)xx*'“‘X (wo*,/n)x \Ma“v}% 36




Kinetic energy of oscillation " S

e Kinetic energy is still K = ﬁvz
K = dm[-Au s+ 1% Snal 251t )
= %MAQ),-‘—‘,-, sin{wo! +1) = JZ-KAZ;“,:,@W(’) 5113@) +Co5(e) = |
= L1~ o5 t+d)|
= %KAQ-— _JZ-KAQGQSQCNJ“QJ s«

— L A2~ L2
2;<A 7 KX
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Total energy of oscillation

* Potential energy is still

k
U=—x’
2
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Total energy of oscillation e

* Potential energy is still

k
U=—x?

2
ahowtical
o TotalenergyisE, = K+ U
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A mass is oscillating back and forth on a spring about point A
as shown. Point A is the equilibrium (unstretched) position of

the mass. At which position is the magnitude of its
acceleration the largest?

23 = = 2 — 42
A. Point A alf) ==X > Jalh) = ol 9| = w2 x|
B. Point B

@ Point C

i
i i i
A B C
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An object can execute harmonic motion (i.e. oscillate)
about...

A. any point.
B. any equilibrium point.
@ any stable equilibrium point.
D. any point, provided the forces exerted on the object obey
Hooke's law.
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 \What is the motion of a mass suspended
from a weightless, inextensible string?

Z Py ~elqsia(d) = wia, O‘T' Rt = ’QOM
o) ﬁc% |
YL

3 ~qsin) = £ s é%%%sm(@ -0

IF 9<<t, thea So@ RO (sia@)< oL +.) Qqhv

0 Fhat A5t O[ZCM_%@:O

J 42



DEMO (286)

Mass and frequency of a pendulum
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See you tomorrow!




