

General Physics: Mechanics

PHYS-101(en)
Lecture 13a:
Kepler's laws,
gyroscopes and
harmonic motion

xkcd.com/332

Dr. Marcelo Baquero marcelo.baquero@epfl.ch December 9th, 2024

Announcements

 Next Monday (i.e. December 16th) we will start the lecture with written course feedback

Announcements

- Next Monday (i.e. December 16th) we will start the lecture with written course feedback
- Also next Monday I will give back the graded Mock exams for those of you who turned them in

Announcements

- Next Monday (i.e. December 16th) we will start the lecture with written course feedback
- Also next Monday I will give back the graded Mock exams for those of you who turned them in
- Final exams of some previous years will be made available in the Moodle for you to see and practice

Today's agenda (Serway 11,13; MIT 22,23)

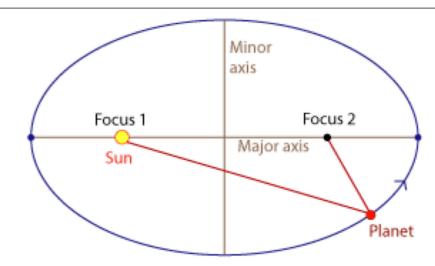
- 1. Kepler's laws of planetary motion
- 2. Gyroscopes
- 3. Harmonic motion
 - Simple harmonic motion

Kepler's laws of planetary motion

• From 1610-1619 Johannes Kepler wrote:

Kepler's laws of planetary motion

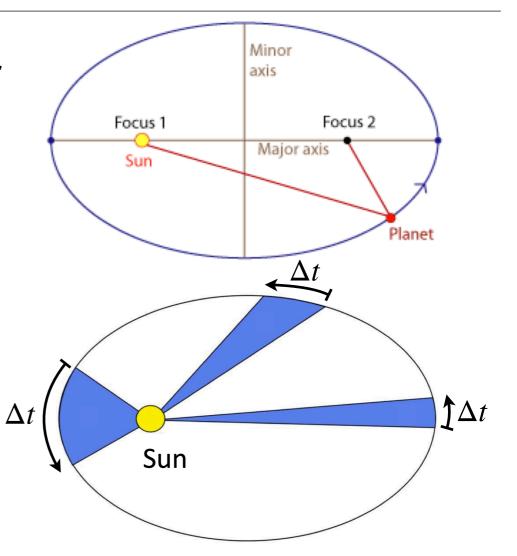
- From 1610-1619 Johannes Kepler wrote:
 - 1. The orbit of each planet is an ellipse, with the Sun at one focus.



EPFL Swiss Plasma

Kepler's laws of planetary motion

- From 1610-1619 Johannes Kepler wrote:
 - 1. The orbit of each planet is an ellipse, with the Sun at one focus.
 - 2. An imaginary line drawn from each planet to the Sun sweeps out equal areas in equal times.

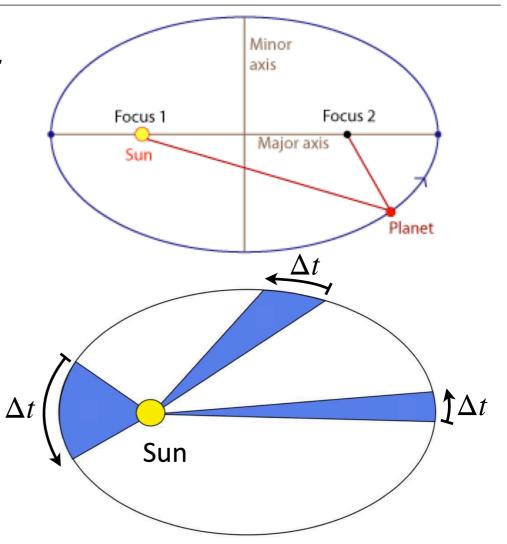


EPFL

Kepler's laws of planetary motion

Swiss Plasma Center

- From 1610-1619 Johannes Kepler wrote:
 - 1. The orbit of each planet is an ellipse, with the Sun at one focus.
 - 2. An imaginary line drawn from each planet to the Sun sweeps out equal areas in equal times.
 - 3. The square of a planet's orbital period is proportional to the cube of its mean distance from the Sun.



Planet	Period, T (Earth year)	Avg distance to Sun, r (10 ⁶ km)	T ² /r ³ (10 ⁻²⁵ yr ² /km ³⁾
Mercury	0.241	57.9	2.99
Venus	0.615	108.2	2.99
Earth	1	149.6	2.99
Mars	1.88	227.9	2.99
Jupiter	11.86	778.3	2.98
Saturn	29.5	1427	2.99
Uranus	84.0	2870	2.98
Neptune	165	4497	2.99

Kepler's laws of planetary motion

Swiss
Plasma

- 3. The square of a planet's orbital period is proportional to the cube of its mean distance from the Sun.
- Approximate orbits as circular and use

$$\overrightarrow{F}_G = -G \frac{m_p m_s}{r^2} \hat{r}$$

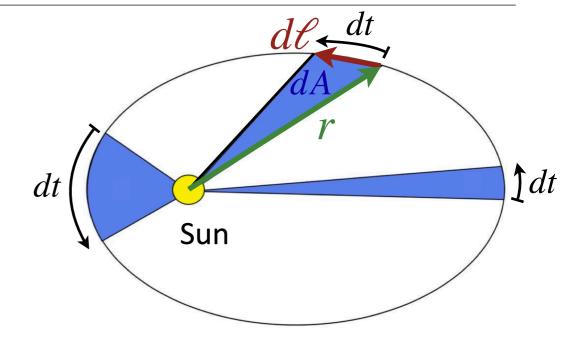
Planet	Period, T (Earth year)	Avg distance to Sun, r (10 ⁶ km)	T ² /r ³ (10 ⁻²⁵ yr ² /km ³⁾
Mercury	0.241	57.9	2.99
Venus	0.615	108.2	2.99
Earth	1	149.6	2.99
Mars	1.88	227.9	2.99
Jupiter	11.86	778.3	2.98
Saturn	29.5	1427	2.99
Uranus	84.0	2870	2.98
Neptune	165	4497	2.99

$$\vec{F}_{g} = \vec{F}_{cent} \Rightarrow -G \frac{m_{p}m_{s}}{r^{2}} = m_{p}a_{c} = m_{p}(-rw^{2})$$

$$G \frac{m_{p}m_{s}}{r^{2}} = m_{p}(w^{2}) = r\left(\frac{2\pi}{r^{2}}\right)^{2} = r\frac{4\pi^{2}}{r^{2}} \qquad w = \frac{2\pi}{r^{2}}$$

$$T^{2} = \frac{4\pi^{2}}{6m_{s}}r^{3}$$

2. An imaginary line drawn from each planet to the Sun sweeps out equal areas in equal times.

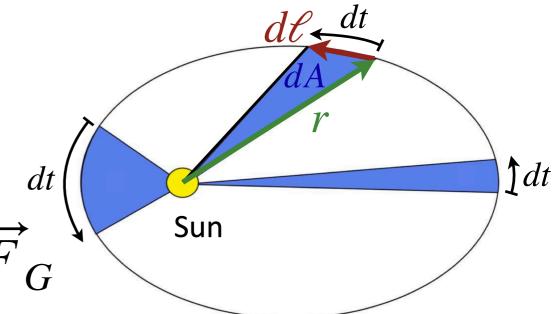


Kepler's laws of planetary motion

2. An imaginary line drawn from each planet to the Sun sweeps

out equal areas in equal times.

• Gravity is a central force, so $\vec{r} \mid \mid \overrightarrow{F}_G$



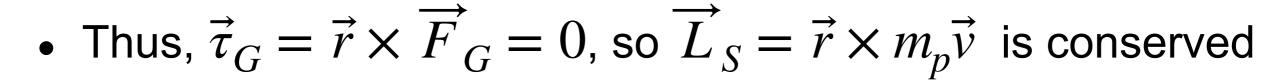
 $\int dt$

 $d\ell \leftarrow dt$

Sun

Kepler's laws of planetary motion

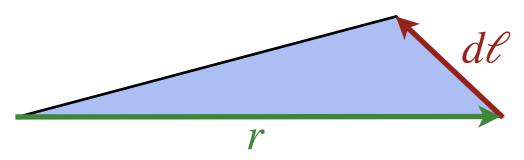
- 2. An imaginary line drawn from each planet to the Sun sweeps out equal areas in equal times.
- Gravity is a central force, so $\vec{r} \mid \mid \overrightarrow{F}_G$



 $d\ell \leftarrow dt$

Kepler's laws of planetary motion

- 2. An imaginary line drawn from each planet to the Sun sweeps out equal areas in equal times.
- $\int dt$ Sun • Gravity is a central force, so $\vec{r} \mid |\vec{F}_G|$
- Thus, $\vec{\tau}_G = \vec{r} \times \overrightarrow{F}_G = 0$, so $\overrightarrow{L}_S = \vec{r} \times m_p \vec{v}$ is conserved
- How is this related to area?



Kepler's laws of planetary motion

- 2. An imaginary line drawn from each planet to the Sun sweeps out equal areas in equal times.
 - al times.

 e, so $\vec{r} \mid \mid \vec{F}_G$ Sun

 $d\ell \leftarrow dt$

- Gravity is a central force, so $\vec{r} \mid \mid \overrightarrow{F}_G$
- Thus, $\vec{\tau}_G = \vec{r} \times \overrightarrow{F}_G = 0$, so $\overrightarrow{L}_S = \vec{r} \times m_p \vec{v}$ is conserved
- How is this related to area?

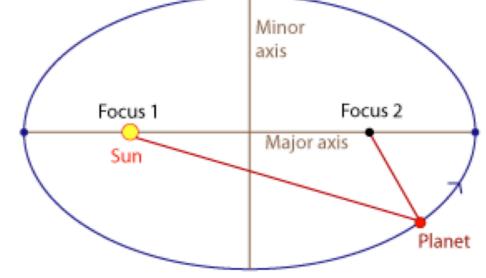
$$\frac{d\ell \sin \theta}{dt} \frac{d\ell}{dt} \frac{d\ell}{dt} = \frac{1}{2} |\vec{r} \times \vec{r}| = \frac{1}{2} r dt \sin(\theta)$$

$$\frac{dA}{dt} = \frac{1}{2} r dt \sin(\theta) = \frac{1}{2} |\vec{r} \times \vec{r}| = \frac{1}{2} |\vec{r} \times \vec{r}| df = \frac{1}{2} |\vec{r} \times \vec{$$

EPFL

Kepler's laws of planetary motion

- 1. The orbit of each planet is an ellipse, with the Sun at one focus.
- Need to know the universal gravitational potential energy



$$U_G = -G \frac{m_p m_s}{r}$$

Apply mechanical energy conservation:

$$E_m = K + U_6 = \frac{1}{2} m_p v^2 - 6 \frac{m_p m_s}{r} = constant$$

Apply conservation of angular momentum:

$$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times (m_p \vec{v}_p) = const$$

Considerable mathematical magic

Today's agenda (Serway 11,13; MIT 22,23)

- 1. Kepler's laws of planetary motion
- 2. Gyroscopes
- 3. Harmonic motion
 - Simple harmonic motion

DEMO (50, 48)

Bicycle wheel

Analyzing fixed axis rotation

Swiss
Plasma
Center

Static eq. of beam:
$$\Sigma \vec{F} = 0$$
 \wedge $Z\vec{V} = 0$

$$\Sigma \vec{F} = 0:$$

$$\vec{F}_1 + \vec{F}_2 - mg^2 = F_1 \vec{Z} + F_2 \vec{Z} - mg^2 = 0$$
Along \vec{Z} : $F_1 + F_2 = mg$ \Rightarrow $F_1 = mg - F_2$ \Rightarrow

$$\Sigma \vec{V} = 0: \quad 1 \text{ take point } 0 \text{ as the pivot}$$

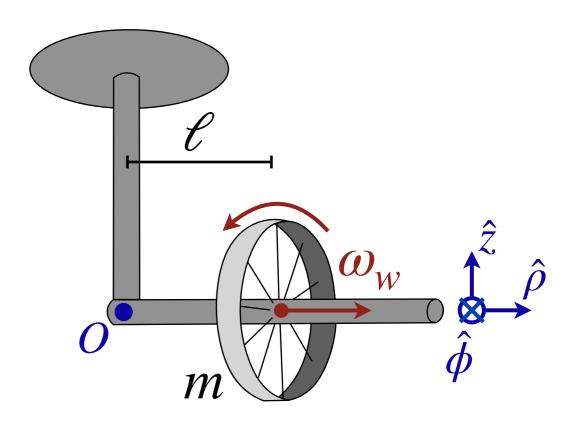
$$\Sigma \vec{V} = \vec{J} \times \vec{F}_1 + \vec{J}_2 \times \vec{F}_2 + \vec{J}_3 \times (-mg^2) = (2l\hat{\rho}) \times (F_2\vec{Z}) + (l\hat{\rho}) \times (-mg^2)$$

$$= 2lF_2(\hat{\rho} \times \hat{Z}) - lmg(\hat{\rho} \times \hat{Z}) = (2l\hat{\rho} - lmg)(-\hat{\phi}) = 0$$

$$\Rightarrow 2lF_2 - lmg = 0 \Rightarrow F_2 = \frac{1}{2}mg$$

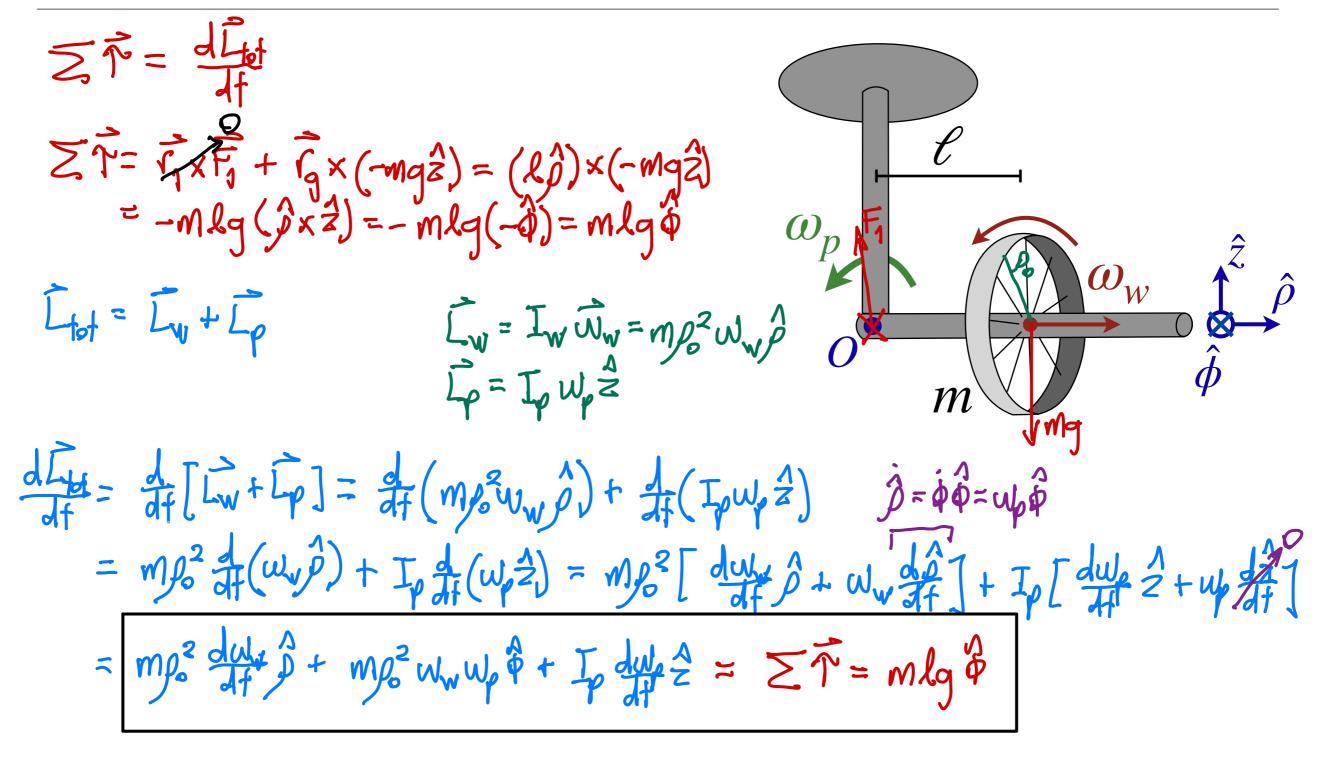
$$F_1 = mg - F_2 = \frac{1}{2}mg$$

DEMO (50): A gyroscope



Analyzing a gyroscope

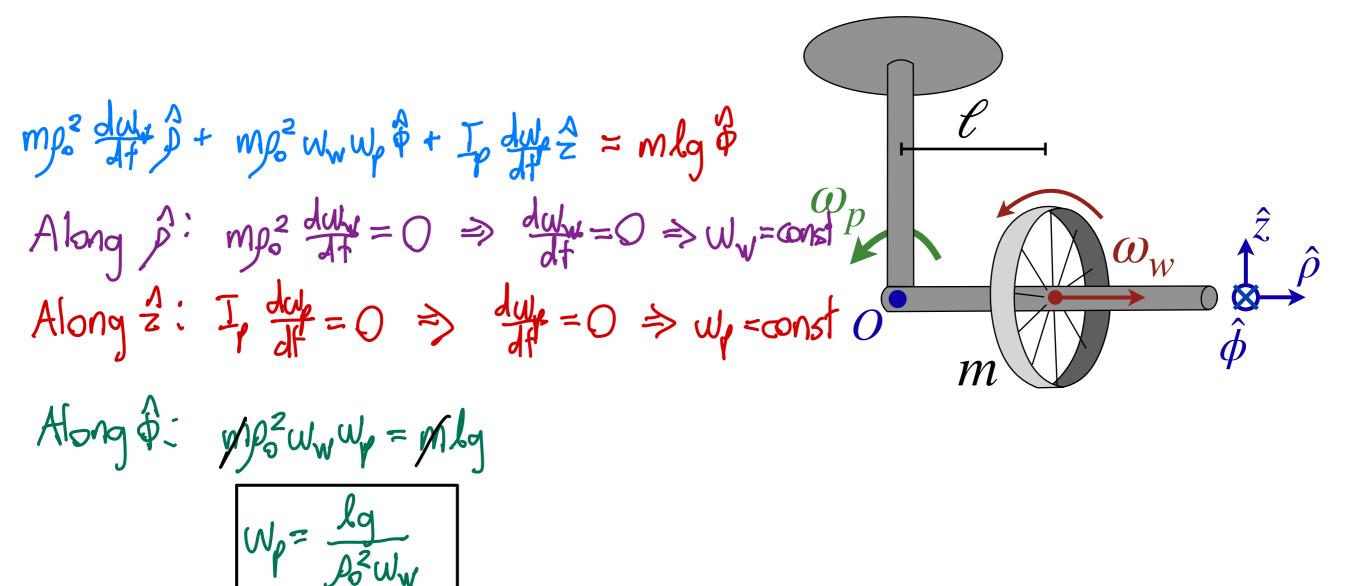
Swiss
Plasma
Center



EPFL

Analyzing a gyroscope

Swiss Plasma Center



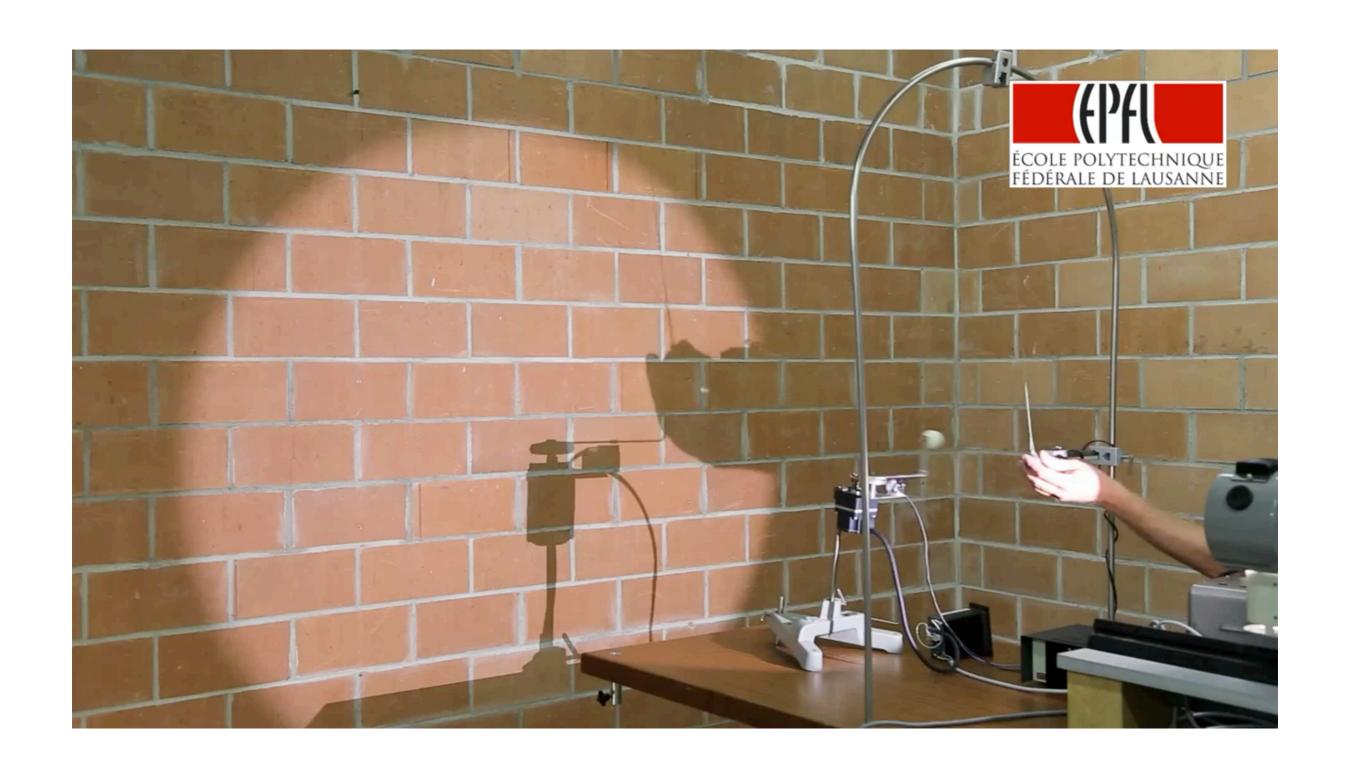
DEMO (501, 40)

Gyroscopes

Today's agenda (Serway 11,13; MIT 22,23)

- 1. Kepler's laws of planetary motion
- 2. Gyroscopes
- 3. Harmonic motion
 - Simple harmonic motion

DEMO (190): Harmonic motion is like 1D circular motion



Harmonic motion

Special type of periodic motion caused by forces of the form

$$\overrightarrow{F} = -k\Delta \overrightarrow{r} \qquad \Delta \overrightarrow{r} = \overrightarrow{r} - \overrightarrow{r}_{o}$$

Harmonic motion

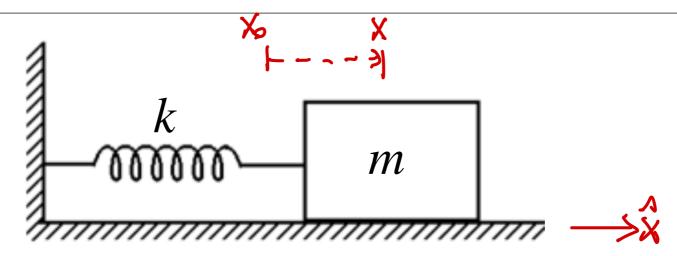
Special type of periodic motion caused by forces of the form

$$\overrightarrow{F} = -k\Delta \overrightarrow{r}$$

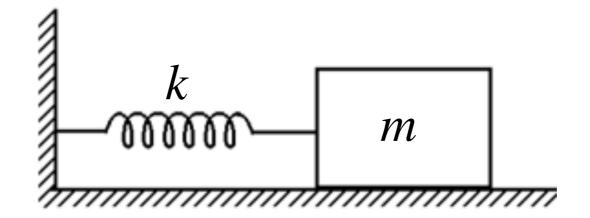
- This is has the same form as the spring force, which can represent many systems
 - e.g. atoms in crystals, pendulums, balls rolling in bowls

Center

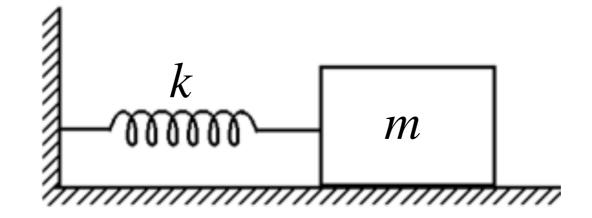
"Simple" harmonic oscillation in 1D



Consider a frictionless mass-spring system



- Consider a frictionless mass-spring system
- The spring has equilibrium position $x_0 = 0$ $F = -K\Delta x = -K(x-X) = -KX$



- Consider a frictionless mass-spring system
- The spring has equilibrium position $x_0 = 0$, so

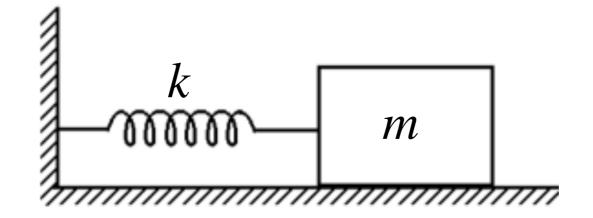
$$F = -kx$$

• Newtons 2nd law, F = ma , then yields

$$-kx = ma = m \frac{dx}{dt}$$

$$\Rightarrow \frac{dx}{dt^2} = -\frac{K}{m}x$$

$$\Rightarrow \frac{dx}{dt^2} + \frac{K}{m}x = 0$$



- Consider a frictionless mass-spring system
- The spring has equilibrium position $x_0 = 0$, so

$$F = -kx$$

• Newtons 2nd law, F = ma , then yields

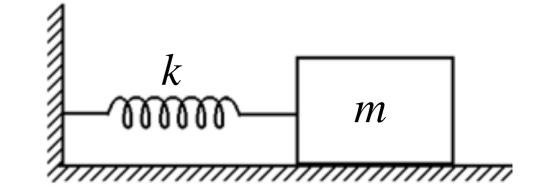
$$-kx = ma$$

which leads to the differential equation

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$

The solution of

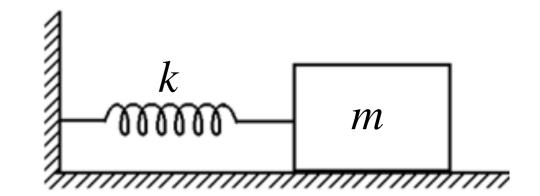
$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$



is
$$x(t) = A_0 \cos(\omega_0 t) + B_0 \sin(\omega_0 t)$$

The solution of

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$



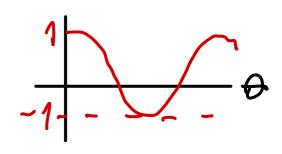
is
$$x(t) = A_0 \cos(\omega_0 t) + B_0 \sin(\omega_0 t)$$

Using trigonometric identities, this is equivalent to

$$x(t) = A\cos(\omega_0 t + \varphi)$$

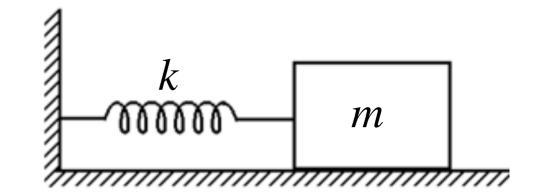
where

A is the amplitude of the oscillation



The solution of

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$



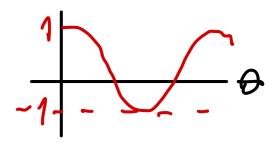
is
$$x(t) = A_0 \cos(\omega_0 t) + B_0 \sin(\omega_0 t)$$

Using trigonometric identities, this is equivalent to

$$x(t) = A\cos(\omega_0 t + \varphi)$$

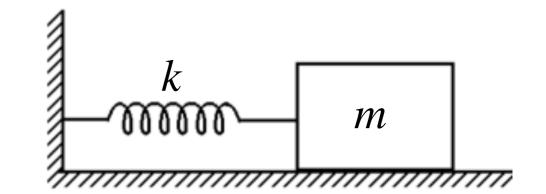
where

- A is the amplitude of the oscillation
- ϕ is the initial phase



The solution of

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$



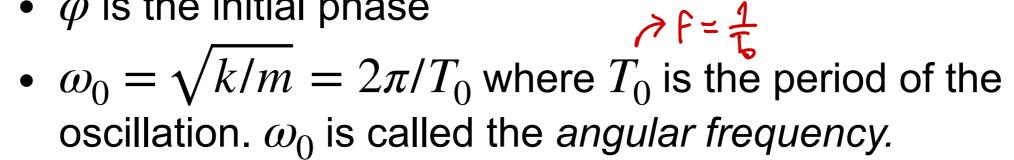
is
$$x(t) = A_0 \cos(\omega_0 t) + B_0 \sin(\omega_0 t)$$

Using trigonometric identities, this is equivalent to

$$x(t) = A\cos(\omega_0 t + \varphi)$$

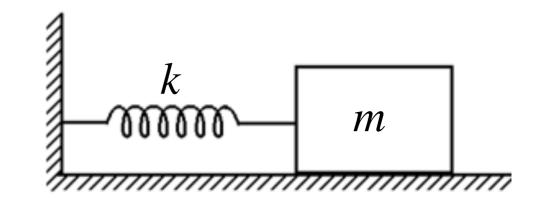
where

- A is the amplitude of the oscillation
- φ is the initial phase



The solution of

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0$$



is
$$x(t) = A_0 \cos(\omega_0 t) + B_0 \sin(\omega_0 t)$$

• Using trigonometric identities, this is equivalent to
$$x(t) = A\cos(\omega_0 t + \varphi)$$

$$\sqrt{t} = \dot{x}(t) = \frac{dx}{dt} = \frac{1}{dt} \left[A\cos(\omega_0 t + \varphi)\right] = A\left[-\sin(\omega_0 t + \varphi)\right$$

$$\frac{d^{2}x}{dt^{2}} + \frac{K}{m}x = -w^{2}x + \frac{K}{m}x = (-w^{2} + \frac{K}{m})x = 0$$

Center

Kinetic energy of oscillation

• Kinetic energy is still $K = \frac{m}{2}v^2$

$$K = \frac{1}{2}m[-A\omega_{0}\sin(\omega_{0}t+4)]^{2} = \frac{1}{2}mA^{2}\omega_{0}^{2}\sin^{2}(\omega t+4)$$

$$= \frac{1}{2}mA^{2}K\sin^{2}(\omega_{0}t+4) = \frac{1}{2}KA^{2}\sin^{2}(\omega t+4)$$

$$= \frac{1}{2}KA^{2}[1-\cos^{2}(\omega_{0}t+4)]$$

$$= \frac{1}{2}KA^{2} - \frac{1}{2}KA^{2}\cos^{2}(\omega_{0}t+4)$$

$$= \frac{1}{2}KA^{2} - \frac{1}{2}KX^{2}$$

$$sin^{2}(\theta) + cos^{2}(\theta) = 1$$

Total energy of oscillation

Potential energy is still

$$U = \frac{k}{2} x^2$$

Total energy of oscillation

Center

Potential energy is still

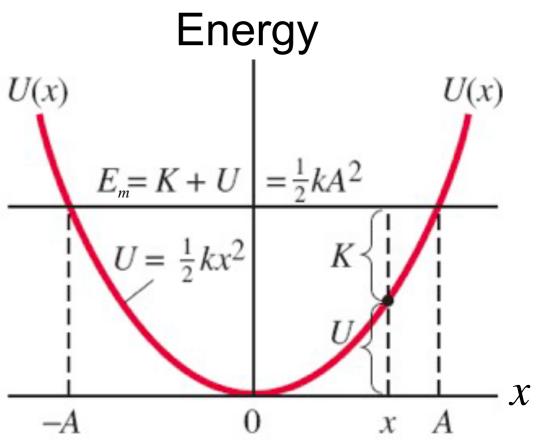
$$U = \frac{k}{2} x^2$$

$$E_{m} = K + U =$$

$$= \frac{1}{2} K A^{2} - \frac{1}{2} K X^{2} + \frac{1}{2} K X^{3}$$

$$= \frac{1}{2} K A^{2}$$



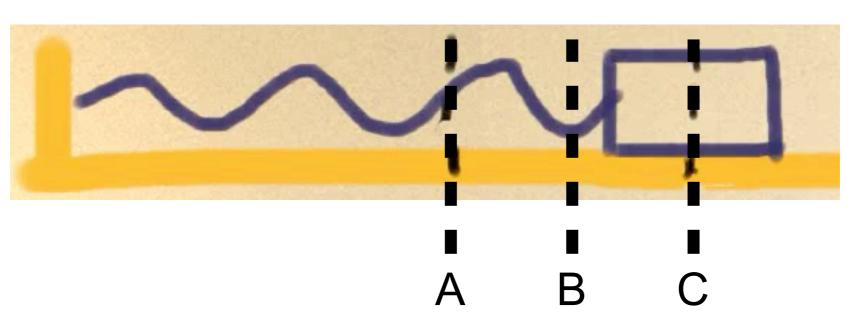


Conceptual question

responseware.eu Session ID: epflphys101en Center

A mass is oscillating back and forth on a spring about point A as shown. Point A is the equilibrium (unstretched) position of the mass. At which position is the magnitude of its acceleration the largest?

$$a(f) = -w_0^2 x \Rightarrow |a(f)| = |-w_0^2 x(f)| = w_0^2 |x(f)|$$



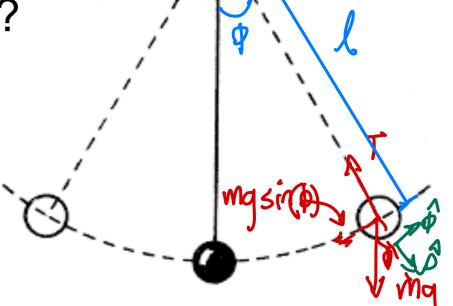
Conceptual question

An object can execute harmonic motion (i.e. oscillate) about...

- A. any point.
- B. any equilibrium point.
- C. any stable equilibrium point.
- D. any point, provided the forces exerted on the object obey Hooke's law.

Aside: Oscillation of a simple pendulum

 What is the motion of a mass suspended from a weightless, inextensible string?



$$\Rightarrow -gsin(\phi) = l d\phi \Rightarrow d\phi + dsin(\phi) = 0$$

If
$$\phi <<1$$
, then $\sin(\phi) \approx \phi$ $(\sin(\phi) = \phi - \frac{1}{6} \phi^3 + ...)$

$$\left(\sin(\phi) = \phi - \frac{1}{6} \phi^3 + \dots\right)$$

$$V_0^2 = \frac{9}{7} \Rightarrow \frac{27}{16} = \sqrt{\frac{9}{4}}$$

 $\Rightarrow T_0 = 271/\frac{7}{9}$

DEMO (286)

Mass and frequency of a pendulum

See you tomorrow!

