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Announcements
• Next Monday (i.e. December 16th) we will start the lecture 

with written course feedback

2



Announcements
• Next Monday (i.e. December 16th) we will start the lecture 

with written course feedback 

• Also next Monday I will give back the graded Mock exams 
for those of you who turned them in

3



Announcements
• Next Monday (i.e. December 16th) we will start the lecture 

with written course feedback 

• Also next Monday I will give back the graded Mock exams 
for those of you who turned them in 

• Final exams of some previous years will be made 
available in the Moodle for you to see and practice
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Today’s agenda (Serway 11,13; MIT 22,23)
1. Kepler's laws of planetary motion 

2. Gyroscopes 

3. Harmonic motion 

• Simple harmonic motion
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• From 1610-1619 Johannes Kepler 
wrote:

Kepler’s laws of planetary motion
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• From 1610-1619 Johannes Kepler 
wrote: 

1. The orbit of each planet is 
an ellipse, with the Sun at 
one focus.

Kepler’s laws of planetary motion
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• From 1610-1619 Johannes Kepler 
wrote: 

1. The orbit of each planet is 
an ellipse, with the Sun at 
one focus. 

2. An imaginary line drawn 
from each planet to the Sun 
sweeps out equal areas in 
equal times.
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• From 1610-1619 Johannes Kepler 
wrote: 

1. The orbit of each planet is 
an ellipse, with the Sun at 
one focus. 

2. An imaginary line drawn 
from each planet to the Sun 
sweeps out equal areas in 
equal times. 

3. The square of a planet’s 
orbital period is proportional 
to the cube of its mean 
distance from the Sun.

Kepler’s laws of planetary motion

Δt

Δt Δt

Planet Period, T 
(Earth year)

Avg distance 
to Sun, r  
(106 km)

T2/r3 
(10-25 yr2/km3)

Mercury 0.241 57.9 2.99

Venus 0.615 108.2 2.99

Earth 1 149.6 2.99

Mars 1.88 227.9 2.99

Jupiter 11.86 778.3 2.98

Saturn 29.5 1427 2.99

Uranus 84.0 2870 2.98

Neptune 165 4497 2.99

Pluto 248 5900 2.99
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3. The square of a planet’s orbital 
period is proportional to the cube 
of its mean distance from the Sun. 

• Approximate orbits as circular and 
use 

⃗F G = − G
mpms

r2 ̂r

Kepler’s laws of planetary motion
Planet Period, T 

(Earth year)
Avg distance 

to Sun, r  
(106 km)

T2/r3 
(10-25 yr2/km3)

Mercury 0.241 57.9 2.99

Venus 0.615 108.2 2.99

Earth 1 149.6 2.99

Mars 1.88 227.9 2.99

Jupiter 11.86 778.3 2.98

Saturn 29.5 1427 2.99

Uranus 84.0 2870 2.98

Neptune 165 4497 2.99

Pluto 248 5900 2.99

↑

Y F = Fint -Om =M =Mp(w&
m= w=

T
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2. An imaginary line drawn from 
each planet to the Sun sweeps 
out equal areas in equal times.

Kepler’s laws of planetary motion
dt

dt dt

dℓ

r
dA
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2. An imaginary line drawn from 
each planet to the Sun sweeps 
out equal areas in equal times.

Kepler’s laws of planetary motion
dt

dt dt

• Gravity is a central force, so ⃗r | | ⃗F G

dℓ

r
dA
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2. An imaginary line drawn from 
each planet to the Sun sweeps 
out equal areas in equal times.

Kepler’s laws of planetary motion
dt

dt dt

• Gravity is a central force, so  

• Thus, , so   is conserved

⃗r | | ⃗F G

⃗τG = ⃗r × ⃗F G = 0 ⃗L S = ⃗r × mp ⃗v

dℓ

r
dA
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2. An imaginary line drawn from 
each planet to the Sun sweeps 
out equal areas in equal times.

Kepler’s laws of planetary motion
dt

dt dt

• Gravity is a central force, so  

• Thus, , so   is conserved 

• How is this related to area?

⃗r | | ⃗F G

⃗τG = ⃗r × ⃗F G = 0 ⃗L S = ⃗r × mp ⃗v

dℓ

r
dA



dℓ

r
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2. An imaginary line drawn from 
each planet to the Sun sweeps 
out equal areas in equal times.

Kepler’s laws of planetary motion
dt

dt dt

• Gravity is a central force, so  

• Thus, , so   is conserved 

• How is this related to area?

⃗r | | ⃗F G

⃗τG = ⃗r × ⃗F G = 0 ⃗L S = ⃗r × mp ⃗v

dℓ

r
dA

θdℓ sin θ Ap = rdAsin()
dt=A

+
= EAp = Erdbsin()

=Y

dAzing) =Ext== =xm+

=Es) = constant Aconst
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1. The orbit of each planet is an 
ellipse, with the Sun at one focus. 

• Need to know the universal 
gravitational potential energy

Kepler’s laws of planetary motion

 

• Apply mechanical energy conservation: 

• Apply conservation of angular momentum: 

• Considerable mathematical magic

UG = − G
mpms

r

Em = Keus = Emp- sm = constant

[=x=x(mpp) = const



Today’s agenda (Serway 11,13; MIT 22,23)
1. Kepler's laws of planetary motion 

2. Gyroscopes 

3. Harmonic motion 

• Simple harmonic motion
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DEMO (50, 48)

Bicycle wheel

18
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Analyzing fixed axis rotation

m

ℓ ℓ

ωw
̂z

̂ρ
̂ϕO

static eq .
of beam : F=0 1 Zi= 0

=0 :

E + E-mgz = F + F2-mg2 =0
Along : F + F = mg = F = mg

-E ↑
X

Zo : I take point O as the pivot Img
+ Ex+x (mgz) = (215) x(F-2) + (10)x(mgz)

= 21Fa(x2)-lmg(x) = (1 - (mg)(b) = 0
=

=> 20Fmg =o Eng
F = mg-Fz=mg
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DEMO (50): A gyroscope

m

ωw

ℓ

̂z
̂ρ

̂ϕO



ωp
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m

ωw

Analyzing a gyroscope

ℓ

̂z
̂ρ

̂ϕO

=
+ Tgx (-mgz) = (1)x(mgz)

=
-mlg(x) = - mlg(-b)=mig

[to = In+ To : Inw =mw
p

[p = IpWp
umg

&Ti + [p)=(mw)+pup=up
=m(w) + [p() =mpT w
=m +mWIm



ωp
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m

ωw

Analyzing a gyroscope

ℓ

̂z
̂ρ

̂ϕO

↑

m +m =m

Alongs : me==W=cn

Along : Ip =0 =0 up =const

AlongWup-mlg

Wp=
w



DEMO (501, 40)

Gyroscopes
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Today’s agenda (Serway 11,13; MIT 22,23)
1. Kepler's laws of planetary motion 

2. Gyroscopes 

3. Harmonic motion 

• Simple harmonic motion
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DEMO (190): Harmonic motion is like 1D circular motion
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• Special type of periodic motion caused by forces of the 
form 

 ⃗F = − k Δ ⃗r

Harmonic motion

Ar=-To



27

• Special type of periodic motion caused by forces of the 
form 

 

• This is has the same form as the spring force, which can 
represent many systems 

• e.g. atoms in crystals, pendulums, balls rolling in bowls 

⃗F = − k Δ ⃗r

Harmonic motion



• Consider a frictionless mass-spring system

28

“Simple” harmonic oscillation in 1D

m
k

Yo X
r - - - f)

s

F = - kAX = - k(x-X)



• Consider a frictionless mass-spring system 

• The spring has equilibrium position  
                
x0 = 0
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“Simple” harmonic oscillation in 1D

m
k

F = - kAX = - k(x-x = -kX



• Consider a frictionless mass-spring system 

• The spring has equilibrium position , so  

    

• Newtons 2nd law,   ,  then yields 

   
                

x0 = 0

F = − kx

F = ma

−kx = ma

30

“Simple” harmonic oscillation in 1D

m
k

=ma==
=>
= = D



• Consider a frictionless mass-spring system 

• The spring has equilibrium position , so  

    

• Newtons 2nd law,   ,  then yields 

   

    which leads to the differential equation 

                                                               _

x0 = 0

F = − kx

F = ma

−kx = ma

d2x
dt2 + k

m
x = 0
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“Simple” harmonic oscillation in 1D

m
k



• The solution of 

                                _ 

    is   

d2x
dt2 + k

m
x = 0

x(t) = A0 cos(ω0t) + B0 sin(ω0t)
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“Simple” harmonic oscillation in 1D

m
k



• The solution of 

                                _ 

    is    

• Using trigonometric identities, this is equivalent to  
 

    where  
•  is the amplitude of the oscillation

d2x
dt2 + k

m
x = 0

x(t) = A0 cos(ω0t) + B0 sin(ω0t)

x(t) = A cos(ω0t + φ)

A
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“Simple” harmonic oscillation in 1D

m
k

1

V&
- 1-----



• The solution of 

                                _ 

    is    

• Using trigonometric identities, this is equivalent to  
 

    where  
•  is the amplitude of the oscillation 

•  is the initial phase

d2x
dt2 + k

m
x = 0

x(t) = A0 cos(ω0t) + B0 sin(ω0t)

x(t) = A cos(ω0t + φ)

A
φ
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“Simple” harmonic oscillation in 1D

m
k

1
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- 1-----



• The solution of 

                                _ 

    is    

• Using trigonometric identities, this is equivalent to  
 

    where  
•  is the amplitude of the oscillation 

•  is the initial phase 

•  where  is the period of the 
oscillation.  is called the angular frequency.

d2x
dt2 + k

m
x = 0

x(t) = A0 cos(ω0t) + B0 sin(ω0t)

x(t) = A cos(ω0t + φ)

A
φ
ω0 = k/m = 2π/T0 T0

ω0
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“Simple” harmonic oscillation in 1D

m
k

-f=



• The solution of 

                                _ 

    is    

• Using trigonometric identities, this is equivalent to  
 

   

d2x
dt2 + k

m
x = 0

x(t) = A0 cos(ω0t) + B0 sin(ω0t)

x(t) = A cos(ω0t + φ)
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“Simple” harmonic oscillation in 1D

m
k

VH=X(t)== [Acos(wot+1)] = A[cos(wot +1)] =Al-Sin(wot+ u)]w
=

-Aw sin (w+ + 9) (w++ 1)=Wo
a() = x(t)= =-AwTsin(wot + +)] = -AwCos(wo+ +4) Wo

=
-AWCOS(wt+ Y) = -wX

+ X =wX+X= X =0 w=



• Kinetic energy is still  K = m
2 v2
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Kinetic energy of oscillation

= Emt-Ausin (not +1)]2= [mAwsin(ut+1)
-

= Emsin(wot +1) = EKA(wt+y) sin() +cose) = 1
= EKAT1-cos(Not+Y)]
= EKA-EKAOS(Wot
= EKA

?

-EKX
?



• Potential energy is still  

                   U = k
2 x2

38

Total energy of oscillation



• Potential energy is still  

                    

• Total energy is 

U = k
2 x2

Em = K + U

39

Total energy of oscillation

Time

E
ne

rg
y

Em

0

Energy

x

m

mechanical -

Em=+U =
=-+3
= EKA3



Conceptual question
A mass is oscillating back and forth on a spring about point A 
as shown. Point A is the equilibrium (unstretched) position of 
the mass. At which position is the magnitude of its 
acceleration the largest? 

A. Point A 
B. Point B 
C. Point C

40

responseware.eu 
Session ID: epflphys101en

A B C

a(t) =-w=X = (a(t)) = 1-wj-x(t)) = w(X(t))

I



Conceptual question
An object can execute harmonic motion (i.e. oscillate) 
about… 

A. any point. 
B. any equilibrium point. 
C. any stable equilibrium point. 
D. any point, provided the forces exerted on the object obey 

Hooke’s law.
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• What is the motion of a mass suspended 
from a weightless, inextensible string?
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Aside: Oscillation of a simple pendulum

↑

P

P b

&F : -Mgsin(b) = md+ at=k =1
=)
=19 mysine

=> - gsin(p) =l+ sin(p) =0

If pe 1
,
then since) d (sin(a) = -Ep ... ) A

In that case
, = =>

- Torzat



DEMO (286)

Mass and frequency of a pendulum
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See you tomorrow!


