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Announcements
• We’ll hold another mock exam tomorrow 

• You can bring a “cheat” sheet containing formulas or all 
of your notes, as you wish 

• Turn in at the end if you want exam to be graded 
(optional). Graded exams will be returned on Monday 
December 16th 

• Solutions will be published on the Moodle 

• Does not matter at all for your final grade
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Today’s agenda (Serway 11,13, MIT 19)
1. Conclusion of rotation of rigid objects about a fixed axis 

• Work and power for rotation 

• Work-kinetic energy theorem for rotation 

• Angular momentum and its conservation 

2. Kepler’s laws of planetary motion
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Summary of rotation and translation
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Rotational motion 
(about a fixed axis)

Translational motion 
(in one dimension)

Angular position Position

Angular speed Speed

Angular acceleration Acceleration

Moment of inertia Mass

Net torque Net force

Rotational kinetic 
energy

Translational kinetic 
energy

Work Work

Power Power

Angular momentum Momentum

Net torque Net force

ϕ x
ω = dϕ/dt v = dx/dt
α = dω/dt a = dv/dt

Στext = Iα ΣFext = ma

? W = ∫
xb

xa

Fdx

Krot = Iω2/2 Ktrans = mv2/2

P = Fv
p = mv

ΣFext = dp/dt

I = ∫ ρ2dm m

?
?
?



You are using a wrench and trying to loosen a rusty nut. 
Which of the arrangements shown is most effective in 
loosening the nut?

A B

C D

Conceptual question
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Two wheels with fixed hubs, each having a mass of 1 kg, 
start from rest, and forces are applied as shown. Assume the 
hubs and spokes are massless, so that the moment of inertia 
is . In order to impart identical angular 
accelerations, how large must  be? 

A. 0.25 N 
B. 0.5 N 
C. 1.0 N 
D. 2.0 N 
E. 4.0 N

I = mR2

F2

Conceptual question
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F1 = 1 N

F2 = ?

R1 = 0.5 m R2 = 1 m

m1 = 1 kg

m2 = 1 kg
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Fi

Δℓi

θ

Δϕi

ρ

O

P

Work and power for rotation 
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• A force  is applied at a point , which pivots a 
small distance  about point 

⃗F i P
Δℓi O
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Work and power for rotation 
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• A force  is applied at a point , which pivots a 
small distance  about point  

• As in week 8, the work done by a variable force is 

       

              

⃗F i P
Δℓi O

ΔWi = ⃗F i ⋅ Δ ⃗ℓ i
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Work and power for rotation 
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• A force  is applied at a point , which pivots a 
small distance  about point  

• As in week 8, the work done by a variable force is 

       

              

⃗F i P
Δℓi O

ΔWi = ⃗F i ⋅ Δ ⃗ℓ i

= Fi sin θ (ρΔϕi)
= (Fi sin θ) Δℓi

= τi Δϕi
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Δℓi

θ

Δϕi

ρ

O
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Work and power for rotation 
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• A force  is applied at a point , which pivots a 
small distance  about point  

• As in week 8, the work done by a variable force is 

       

              

⃗F i P
Δℓi O

ΔWi = ⃗F i ⋅ Δ ⃗ℓ i

= Fi sin θ (ρΔϕi)
• Total work is the sum over differential                                    

changes in angle 

       W = lim
Δϕi→0 ∑

i

τi Δϕi = ∫
ϕb

ϕa

τdϕ

= (Fi sin θ) Δℓi

= τi Δϕi

= ∫
ϕb

ϕa

τ dϕ
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Work and power for rotation 
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• A force  is applied at a point , which pivots a 
small distance  about point  

• As in week 8, the work done by a variable force is 

       

              

⃗F i P
Δℓi O

ΔWi = ⃗F i ⋅ Δ ⃗ℓ i

= Fi sin θ (ρΔϕi)
• Total work is the sum over differential                                    

changes in angle 

        

• Thus, the power is 

W = lim
Δϕi→0 ∑

i

τi Δϕi = ∫
ϕb

ϕa

τdϕ

P =
dW
dt

= (Fi sin θ) Δℓi

= τi Δϕi

= ∫
ϕb

ϕa

τ dϕ

= τ ω



Work-kinetic energy theorem for rotation 
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• Reminder: This tells us how the kinetic energy of an object 
changes due to the work performed on it



DEMO (15)

Action-reaction disk 
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• As you may suspect, angular momentum  is the rotational 
analogue of linear momentum  (lecture 6)

⃗L
⃗p = m ⃗v

Angular momentum
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• As you may suspect, angular momentum  is the rotational 
analogue of linear momentum  (lecture 6) 

• It is the moment of momentum, defined as 

 

    where  is the position vector from a pivot point to the object

⃗L
⃗p = m ⃗v

⃗L = ⃗r × ⃗p
⃗r

Angular momentum

⃗L = ⃗r × ⃗p

⃗r ⃗p

m
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• As you may suspect, angular momentum  is the rotational 
analogue of linear momentum  (lecture 6) 

• It is the moment of momentum, defined as 

 

    where  is the position vector from a pivot point to the object

⃗L
⃗p = m ⃗v

⃗L = ⃗r × ⃗p
⃗r

Angular momentum

⃗L = ⃗r × ⃗p

⃗r ⃗p

m

• It has units of [kg m2/s] 

• Like linear momentum, it is a vector quantity 
and will be conserved under certain 
conditions

⋅
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• As you may suspect, angular momentum  is the rotational 
analogue of linear momentum  (lecture 6) 

• It is the moment of momentum, defined as 

 

    where  is the position vector from a pivot point to the object

⃗L
⃗p = m ⃗v

⃗L = ⃗r × ⃗p
⃗r

Angular momentum

⃗L = ⃗r × ⃗p

⃗r ⃗p

m

• It has units of [kg m2/s] 

• Like linear momentum, it is a vector quantity 
and will be conserved under certain 
conditions 

• Unlike linear momentum, it depends on 
where the pivot is chosen

⋅



Conceptual question
A particle is moving in the -  plane with a constant velocity 
and constant height  (as shown below). The magnitude of 
the angular momentum  about the origin… 

A. is zero because this is not circular motion.  
B. decreases, then increases. 
C. increases, then decreases. 
D. is constant.

x y
y0

LO
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y0

Oz x

y
m

v
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Conceptual question
The diagram shows six possible combinations of position 
and velocity for a particle of mass  and speed  moving in 
the -  plane. How many distinct values of the angular 
momentum vector  relative to the origin does this 
represent? 
A. 1 
B. 2 
C. 3 
D. 4 
E. 5 
F. 6

m v
x y

⃗L O
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m
v

Oz x
y
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A point of mass  (lets say a planet) is executing uniform 
circular motion with  around point  (lets say a star).

m
⃗ω S

Example: Point particle angular momentum

A. What is its angular momentum  
about ?

⃗L S
S

ϕ x

z

ρ1S

v1 m
y
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Example: Point particle angular momentum

B. What is its angular momentum  
about a lower point ?

⃗L A
A

A point of mass  (lets say a planet) is executing uniform 
circular motion with  around point  (lets say a star).

m
⃗ω S

x

z

ρ1S

v1 m
y

A

h r1
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Example: Point particle angular momentum

C. If we add a second identical planet 
on the opposite side of the star, 
what is  of the system?⃗L sys

A point of mass  (lets say a planet) is executing uniform 
circular motion with  around point  (lets say a star).

m
⃗ω S

x

z

S

v1 m
y

A

ρ2

r2

v2m

ρ1

r1
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Example: Point particle angular momentum

C. If we add a second identical planet 
on the opposite side of the star, 
what is  of the system?⃗L sys

A point of mass  (lets say a planet) is executing uniform 
circular motion with  around point  (lets say a star).

m
⃗ω S

x

z

S

v1 m
y

A

v2m
ρ2

r2

ρ1

r1

• When ,  is independent of the pivot location⃗psys = 0 ⃗L sys



• Imagine the object is composed of many differential elements, 
labeled 1, 2, 3, …, with positions  

                          ‘

i = ⃗ri

⃗L = ∑
i

⃗L i = ∑
i

⃗R i × Δmi ⃗vi

24

Angular momentum of rotating rigid bodies

ri
Δmi

ω

vi



• Imagine the object is composed of many differential elements, 
labeled 1, 2, 3, …, with positions  

                          ‘

i = ⃗ri

⃗L = ∑
i

⃗L i = ∑
i

⃗R i × Δmi ⃗vi
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Angular momentum of rotating rigid bodies

ri
Δmi

ω

vi

= ∑
i

⃗ri × Δmi ⃗vi



• Imagine the object is composed of many differential elements, 
labeled 1, 2, 3, …, with positions  

                          ‘ 

• For pure rotation of a symmetric object, the                     resulting 
 component of  cancels

i = ⃗ri

⃗L = ∑
i

⃗L i = ∑
i

⃗R i × Δmi ⃗vi

̂ρ ⃗L
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Angular momentum of rotating rigid bodies

ρi

ri
Δmi

= ∑
i

⃗ri × Δmi ⃗vi ω

vi



• Imagine the object is composed of many differential elements, 
labeled 1, 2, 3, …, with positions  

                          ‘ 

• For pure rotation of a symmetric object, the                     resulting 
 component of  cancels 

• Since , we see that 

i = ⃗ri

⃗L = ∑
i

⃗L i = ∑
i

⃗R i × Δmi ⃗vi

̂ρ ⃗L

vi = ρiω ⃗L = ∑
i

ρ2
i Δmi ω ̂z
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Angular momentum of rotating rigid bodies

ρi

ri
Δmi

= ∑
i

⃗ri × Δmi ⃗vi ω

vi



• Imagine the object is composed of many differential elements, 
labeled 1, 2, 3, …, with positions  

                          ‘ 

• For pure rotation of a symmetric object, the                     resulting 
 component of  cancels 

• Since , we see that  

• In the limit of , 

i = ⃗ri

⃗L = ∑
i

⃗L i = ∑
i

⃗R i × Δmi ⃗vi

̂ρ ⃗L

vi = ρiω ⃗L = ∑
i

ρ2
i Δmi ω ̂z

Δmi → 0 ⃗L = ∫M
ρ2dm ⃗ω

28

Angular momentum of rotating rigid bodies

ρi

ri
Δmi

= ∑
i

⃗ri × Δmi ⃗vi ω

vi

⇒ ⃗L = I ⃗ω
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• If angular momentum  is analogous to momentum and 
torque  is analogous to force, what is their relationship?

⃗L
⃗τ

Angular momentum and torque
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 ⃗τnet =
d ⃗L
dt

Conservation of angular momentum
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If the net torque on a system is zero                                 
(and matter is not exchanged),                                            

the total angular momentum does not change with time. 

⃗τnet =
d ⃗L
dt

Conservation of angular momentum



32

 

If the net torque on a system is zero                                 
(and matter is not exchanged),                                            

the total angular momentum does not change with time. 

• In other words, if  then the angular momentum is 
conserved: 

⃗τnet =
d ⃗L
dt

⃗τnet = 0

⃗L i = ⃗L f

Conservation of angular momentum



DEMO (17)

Swivel stool
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Conceptual question
A figure skater stands on one spot on the ice (assumed 
frictionless) and spins around with her arms extended. When 
she pulls her arms in, she reduces her moment of inertia and 
her angular speed increases. Compared to her initial 
rotational kinetic energy, her rotational kinetic energy 
after she has pulled her arms in must be… 

A. the same. 
B. larger. 
C. smaller.

34

ωi

Ii

ωf

If
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Summary of rotation and translation
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Rotational motion 
(about a fixed axis)

Translational motion 
(in one dimension)

Angular position Position

Angular speed Speed

Angular acceleration Acceleration

Moment of inertia Mass

Net torque Net force

Rotational kinetic 
energy

Translational kinetic 
energy

Work Work

Power Power

Angular momentum Momentum

Net torque Net torque

ϕ x
ω = dϕ/dt v = dx/dt
α = dω/dt a = dv/dt

Στext = Iα ΣFext = ma

W = ∫
ϕb

ϕa

τdϕ W = ∫
xb

xa

Fdx

Krot = Iω2/2 Ktrans = mv2/2

P = FvP = τω
L = Iω p = mv

Στext = dL/dt ΣFext = dp/dt

I = ∫ ρ2dm m
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• From 1610-1619 Johannes Kepler 
wrote:

Kepler’s laws of planetary motion
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• From 1610-1619 Johannes Kepler 
wrote: 

1. The orbit of each planet is 
an ellipse, with the Sun at 
one focus.

Kepler’s laws of planetary motion
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• From 1610-1619 Johannes Kepler 
wrote: 

1. The orbit of each planet is 
an ellipse, with the Sun at 
one focus. 

2. An imaginary line drawn 
from each planet to the Sun 
sweeps out equal areas in 
equal times.

Kepler’s laws of planetary motion

Δt

Δt Δt
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• From 1610-1619 Johannes Kepler 
wrote: 

1. The orbit of each planet is 
an ellipse, with the Sun at 
one focus. 

2. An imaginary line drawn 
from each planet to the Sun 
sweeps out equal areas in 
equal times. 

3. The square of a planet’s 
orbital period is proportional 
to the cube of its mean 
distance from the Sun.

Kepler’s laws of planetary motion

Δt

Δt Δt

Planet Period, T 
(Earth year)

Avg distance 
to Sun, r  
(106 km)

T2/r3 
(10-25 yr2/km3)

Mercury 0.241 57.9 2.99

Venus 0.615 108.2 2.99

Earth 1 149.6 2.99

Mars 1.88 227.9 2.99

Jupiter 11.86 778.3 2.98

Saturn 29.5 1427 2.99

Uranus 84.0 2870 2.98

Neptune 165 4497 2.99

Pluto 248 5900 2.99



40

3. The square of a planet’s orbital 
period is proportional to the cube 
of its mean distance from the Sun. 

• Approximate orbits as circular and 
use 

⃗F G = − G
mpms

r2
̂r

Kepler’s laws of planetary motion
Planet Period, T 

(Earth year)
Avg distance 

to Sun, r  
(106 km)

T2/r3 
(10-25 yr2/km3)

Mercury 0.241 57.9 2.99

Venus 0.615 108.2 2.99

Earth 1 149.6 2.99

Mars 1.88 227.9 2.99

Jupiter 11.86 778.3 2.98

Saturn 29.5 1427 2.99

Uranus 84.0 2870 2.98

Neptune 165 4497 2.99

Pluto 248 5900 2.99
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2. An imaginary line drawn from 
each planet to the Sun sweeps 
out equal areas in equal times.

Kepler’s laws of planetary motion
dt

dt dt

dℓ

r
dA
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2. An imaginary line drawn from 
each planet to the Sun sweeps 
out equal areas in equal times.

Kepler’s laws of planetary motion
dt

dt dt

• Gravity is a central force, so ⃗r | | ⃗F G

dℓ

r
dA
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2. An imaginary line drawn from 
each planet to the Sun sweeps 
out equal areas in equal times.

Kepler’s laws of planetary motion
dt

dt dt

• Gravity is a central force, so  

• Thus, , so   is conserved

⃗r | | ⃗F G

⃗τG = ⃗r × ⃗F G = 0 ⃗L S = ⃗r × mp ⃗v

dℓ

r
dA



dℓ

r
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2. An imaginary line drawn from 
each planet to the Sun sweeps 
out equal areas in equal times.

Kepler’s laws of planetary motion
dt

dt dt

• Gravity is a central force, so  

• Thus, , so   is conserved 

• How is this related to area?

⃗r | | ⃗F G

⃗τG = ⃗r × ⃗F G = 0 ⃗L S = ⃗r × mp ⃗v

dℓ

r
dA



dℓ

r
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2. An imaginary line drawn from 
each planet to the Sun sweeps 
out equal areas in equal times.

Kepler’s laws of planetary motion
dt

dt dt

• Gravity is a central force, so  

• Thus, , so   is conserved 

• How is this related to area?

⃗r | | ⃗F G

⃗τG = ⃗r × ⃗F G = 0 ⃗L S = ⃗r × mp ⃗v

dℓ

r
dA

θdℓ sin θ
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Kepler’s second law
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1. The orbit of each planet is an 
ellipse, with the Sun at one focus. 

• Need to know the universal 
gravitational potential energy

Kepler’s laws of planetary motion

 

• Apply mechanical energy conservation: 

• Apply conservation of angular momentum: 

• Considerable mathematical magic

UG = − G
mpms

r



Bon courage!
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Mock exam tomorrow



Conceptual question
A 1 kg rock is suspended by a massless string from one end 
of a 1 m uniform measuring stick with mass . If the 
configuration below is in static equilibrium, what is ? 

A. 0.25 kg 
B. 0.5 kg 
C. 1.0 kg 
D. 2.0 kg 
E. 4.0 kg

m
m
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1 kg

1 m0.25 m
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