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Announcement
• We’ll hold another mini mock exam on Tuesday 

December 3rd 

• In-class (SG1) during normal lecture hours 
(10:15-11:00) 

• You can bring a “cheat” sheet containing formulas or all 
of your notes, as you wish 

• Hand exam to me at the end if you want to have it 
graded (optional) 

• Does not matter at all for your final grade 

• Exam solutions will be published
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Today’s agenda (Serway 10,12; MIT 16-18)
1. Review of circular motion 

2. Rotation of rigid objects about a fixed axis 

• Rotational kinetic energy 

• Moment of inertia 

• Torque 

3. Static equilibrium
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Week 4: Cylindrical coordinates

• Position vector: 
⃗r(t) = ρ(t) ̂ρ + z(t) ̂z
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Week 4: Cylindrical coordinates

• Position vector: 
 

• Linear velocity: 
 

• Linear acceleration: 

⃗r(t) = ρ(t) ̂ρ + z(t) ̂z

⃗v(t) = ·ρ ̂ρ + ρ ·ϕ ̂ϕ + ·z ̂z

⃗a(t) = (··ρ − ρ ·ϕ2) ̂ρ + (2 ·ρ ·ϕ + ρ ··ϕ) ̂ϕ + ··z ̂z
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Week 4: Circular motion

• In circular motion       
where  is constant 

ρ(t) = ρ0
ρ0

ρϕ

̂ρ

̂z

z

x
y

̂ϕ
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Week 4: Circular motion

• In circular motion       
where  is constant  

• Also  where  is a 
constant (which we typically 
choose to be 0 with an 
appropriate reference frame)

ρ(t) = ρ0
ρ0

z(t) = z0 z0

ρϕ

̂ρ

̂z

z

x
y

̂ϕ
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Week 4: Circular motion

• In circular motion       
where  is constant  

• Also  where  is a 
constant (which we typically 
choose to be 0 with an 
appropriate reference frame) 

• Position vector: 
 

• Linear velocity: 
 

• Linear acceleration: 

ρ(t) = ρ0
ρ0

z(t) = z0 z0

⃗r(t) = ρ(t) ̂ρ + z(t) ̂z

⃗v(t) = ·ρ ̂ρ + ρ ·ϕ ̂ϕ + ·z ̂z

⃗a(t) = (··ρ − ρ ·ϕ2) ̂ρ + (2 ·ρ ·ϕ + ρ ··ϕ) ̂ϕ + ··z ̂z

ρϕ

̂ρ

̂z

z

x
y

̂ϕ
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Week 4: Circular motion

• Angular speed:  

• Angular acceleration:  

ω(t) =
dϕ
dt

= ·ϕ

α(t) = ·ω = ··ϕ
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Week 4: Circular motion

• Angular speed:  

• Angular acceleration:  

• Position:  

• Velocity:  

• Acceleration: 
 

ω(t) =
dϕ
dt

= ·ϕ

α(t) = ·ω = ··ϕ

⃗r(t) = ρ0 ̂ρ(t)

⃗v(t) = ρ0ω(t) ̂ϕ(t)

⃗a(t) = − ρ0[ω(t)]2 ̂ρ + ρ0α(t) ̂ϕ
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Week 4: Circular motion

• Angular speed:  

• Angular acceleration:  

• Position:  

• Velocity:  

• Acceleration: 
 

• Angular displacement:  

• Distance traveled (arc length): 

ω(t) =
dϕ
dt

= ·ϕ

α(t) = ·ω = ··ϕ

⃗r(t) = ρ0 ̂ρ(t)

⃗v(t) = ρ0ω(t) ̂ϕ(t)

⃗a(t) = − ρ0[ω(t)]2 ̂ρ + ρ0α(t) ̂ϕ

Δϕ ̂ϕ

ℓ = ρ0Δϕ
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• Due to Newton’s 1st law, an object in circular motion must 
be experiencing a net radial force (called the centripetal 
force)

Week 4: Circular motion
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• Due to Newton’s 1st law, an object in circular motion must 
be experiencing a net radial force (called the centripetal 
force)

• Using , we know that ⃗a = aρ ̂ρ + aϕ
̂ϕ = − ρ0ω2 ̂ρ + ρ0α ̂ϕ

⃗F net = m ⃗a = − mρ0ω2 ̂ρ + mρ0α ̂ϕ

Week 4: Circular motion

• Determining the identity of this force 
requires further investigation 

• For the case of a ball on a string, 
this force is provided by tension in 
the string (possibly in combination 
with gravity)
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• Two vectors are multiplied in a cross 
product to produce another vector 

 

• Magnitude:  

• Direction: Use right hand rule

⃗a × b⃗ = ⃗c

| ⃗c | = c = ab sin θ

• If , then  or if , then  

• Not commutative:  

• Distributive:  

• Derivative product rule: 

⃗a | | b⃗ ⃗a × b⃗ = 0 ⃗a ⊥ b⃗ | ⃗a × b⃗ | = ab

⃗a × b⃗ = − b⃗ × ⃗a

⃗a × (b⃗ + ⃗c) = ⃗a × b⃗ + ⃗a × ⃗c

d
dt

( ⃗a × b⃗) =
d ⃗a
dt

× b⃗ + ⃗a ×
db⃗
dt

Week 4: Cross (or vector) product



A piece of sushi rests on a circular turntable, rotating about a 
vertical axis at a constant angular speed  as illustrated in 
the diagram below. 

The sushi rotates with the turntable and fortunately does not 
slip. What are the directions of the velocity, acceleration and 
net force vectors acting on the sushi at the moment shown in 
the diagram? 

A.                  D. 

B.                  E. 

C.  

ω

Conceptual question
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ω

View of turntable 
from above
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Bob

Puck

Conceptual question
A puck of mass  is moving in a circle at constant speed on 
a frictionless table. The puck is connected by a massless 
string to a suspended bob, also of mass , which is at rest 
below the table. What is the magnitude of the centripetal 
acceleration of the moving puck? Ignore friction. 

A. Greater than  
B. Equal to  
C. Less than  
D. 0 
E. Not enough information to decide.  

m

m

g
g

g
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Angular velocity vector in circular motion 
• Angular velocity vector points along 

the axis of rotation according to the 
right-hand rule 

   and   ⃗v = ⃗ω × ⃗ρ ⃗ω =
⃗ρ × ⃗v
ρ2
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⃗ω

⃗ρ

⃗r

⃗v

⃗ω

⃗v

⃗ρ

⃗α

⃗aϕ



Angular velocity vector in circular motion 
• Angular velocity vector points along 

the axis of rotation according to the 
right-hand rule 

   and    

• The angular acceleration vector is 

   and    

• If the direction of the rotation axis 
does not change, the angular 
acceleration vector points along it

⃗v = ⃗ω × ⃗ρ ⃗ω =
⃗ρ × ⃗v
ρ2

⃗aϕ = ⃗α × ⃗ρ ⃗α =
⃗ρ × ⃗aϕ

ρ2
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⃗ω

⃗ρ

⃗r

⃗v

⃗ω

⃗v

⃗ρ

⃗α

⃗aϕ



Rigid body

19

• In a rigid body all points move 
together without deformation, i.e. 
the distance between any two 
points is fixed in time



Rigid body
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• In a rigid body all points move 
together without deformation, i.e. 
the distance between any two 
points is fixed in time 

• Imagine an object is composed 
of a huge number of tiny 
differential elements, labeled 
1, 2, 3, … with positions  

• A body is rigid if, for all pairs of 
differential elements  and , the 
distance  is 
constant in time

i =
⃗ri

j k
Rjk = | ⃗rk − ⃗rj |

x

y

z

⃗rj ⃗rk

⃗R jk



Pure translation of rigid bodies
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• We already know how to handle pure translation of a rigid 
body 

• Represent the entire object as a point at the object’s 
Center of Mass (CM), as discussed in lecture 6 

• Then apply all net external forces to the CM and 
calculate its motion



Pure translation of rigid bodies
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• We already know how to handle pure translation of a rigid 
body 

• Represent the entire object as a point at the object’s 
Center of Mass (CM), as discussed in lecture 6 

• Then apply all net external forces to the CM and 
calculate its motion 

• What about if the object is also rotating? 

• Can decompose motion into pure translation of CM 
(treated as above) and pure rotation around CM (will 
study now)



23

• In pure rotational motion, all points in the object move in circles 
around an axis of rotation through the CM

ρ0 x

ω
CM

Pure rotation of a rigid body
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• In pure rotational motion, all points in the object move in circles 
around an axis of rotation through the CM 

• All points on a straight line drawn through the axis move through 
the same angle in the same time

x

Δϕ

CMρ0 x

ω
CM

Pure rotation of a rigid body
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• In pure rotational motion, all points in the object move in circles 
around an axis of rotation through the CM 

• All points on a straight line drawn through the axis move through 
the same angle in the same time 

• Therefore, every point has the same value of  (and )ω =
Δϕ
Δt

α

x

Δϕ

CMρ0 x

ω
CM

Pure rotation of a rigid body
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• In pure rotational motion, all points in the object move in circles 
around an axis of rotation through the CM 

• All points on a straight line drawn through the axis move through 
the same angle in the same time 

• Therefore, every point has the same value of  (and ) 

• The distance they move is the arc length 

ω =
Δϕ
Δt

α

ℓ(ρ) = ρΔϕ

x

Δϕ

CMρ0 x

ω
CM

Pure rotation of a rigid body



ρ0 x

ω
CM x

Δϕ

CM
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• If an object rolling on a surface does not slip, then the 
distance traveled along the ground must be equal to the 
distance traveled by the rim of the wheel 

ΔxCM = l(R0) = R0Δϕ ⇒
ΔxCM

Δt
= R0

Δϕ
Δt

⇒ vCM = R0ω

Rolling without slipping

vCM



ρ0 x

ω
CM x

Δϕ

CM
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• If an object rolling on a surface does not slip, then the 
distance traveled along the ground must be equal to the 
distance traveled by the rim of the wheel 

ΔxCM = l(R0) = R0Δϕ ⇒
ΔxCM

Δt
= R0

Δϕ
Δt

⇒ vCM = R0ω

Rolling without slipping

vCM

a b

a

ΔxCM

ℓ(ρ0)



ρ0 x

ω
CM x

Δϕ

CM
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• If an object rolling on a surface does not slip, then the 
distance traveled along the ground must be equal to the 
distance traveled by the rim of the wheel 

ΔxCM = l(R0) = R0Δϕ ⇒
ΔxCM

Δt
= R0

Δϕ
Δt

⇒ vCM = R0ω

Rolling without slipping

vCM

ΔxCM = ℓ(ρ0) = ρ0Δϕ

a b

a

ΔxCM

ℓ(ρ0)



ρ0 x

ω
CM x

Δϕ

CM
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• If an object rolling on a surface does not slip, then the 
distance traveled along the ground must be equal to the 
distance traveled by the rim of the wheel 

ΔxCM = l(R0) = R0Δϕ ⇒
ΔxCM

Δt
= R0

Δϕ
Δt

⇒ vCM = R0ω

Rolling without slipping

vCM

⇒
ΔxCM

Δt
= ρ0

Δϕ
Δt

ΔxCM = ℓ(ρ0) = ρ0Δϕ

a b

a

ΔxCM

ℓ(ρ0)



ρ0 x

ω
CM x

Δϕ

CM
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• If an object rolling on a surface does not slip, then the 
distance traveled along the ground must be equal to the 
distance traveled by the rim of the wheel 

ΔxCM = l(R0) = R0Δϕ ⇒
ΔxCM

Δt
= R0

Δϕ
Δt

⇒ vCM = R0ω

Rolling without slipping

vCM

⇒
ΔxCM

Δt
= ρ0

Δϕ
Δt

⇒ vCM = ρ0ωΔxCM = ℓ(ρ0) = ρ0Δϕ

a b

a

ΔxCM

ℓ(ρ0)



ρ0 x

ω
CM x

Δϕ

CM
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• If an object rolling on a surface does not slip, then the 
distance traveled along the ground must be equal to the 
distance traveled by the rim of the wheel 

 

• At point of contact ,  (i.e. friction is static)

ΔxCM = l(R0) = R0Δϕ ⇒
ΔxCM

Δt
= R0

Δϕ
Δt

⇒ vCM = R0ω

b ⃗vground = ⃗vrim

Rolling without slipping

vCM

⇒
ΔxCM

Δt
= ρ0

Δϕ
Δt

⇒ vCM = ρ0ωΔxCM = ℓ(ρ0) = ρ0Δϕ

a b

a

ΔxCM

ℓ(ρ0)
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• If a rope rotates a pulley without slipping, then at the 
points of contact 

 

• Taking a derivative in time shows 
 

vrope = vrim = ρ0ω

arope = ρ0α

No-slip pulleys

ρ0

CM CM

vrope

ω



• An object with no translational motion still has kinetic 
energy, if it is rotating

Rotational kinetic energy
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• An object with no translational motion still has kinetic 
energy, if it is rotating 

• Rotational kinetic energy must be considered in 
conservation of energy 

K = Ktrans + Krot

Rotational kinetic energy

35



Rotational kinetic energy
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• Again imagine an object is composed of many differential 
elements, labeled 1, 2, 3, …, at a distance  from the axis 

             

i = ρi

= ∑
i

Δmi

2
v2

ϕi

ρi

ω



Rotational kinetic energy
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• Again imagine an object is composed of many differential 
elements, labeled 1, 2, 3, …, at a distance  from the axis 

             

i = ρi

Krot = ∑
i

Ktrans
i = ∑

i

Δmi

2
v2

ϕi

ρi

ω

viϕ

Δmi

= ∑
i

Δmi

2
v2

iϕ



Rotational kinetic energy
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• Again imagine an object is composed of many differential 
elements, labeled 1, 2, 3, …, at a distance  from the axis 

             

• Since , we see that 

             

i = ρi

Krot = ∑
i

Ktrans
i = ∑

i

Δmi

2
v2

ϕi

viϕ = ρiω

Krot =
1
2

ω2 ∑
i

Δmiρ2
i

ρi

ω

viϕ

Δmi

= ∑
i

Δmi

2
v2

iϕ



Rotational kinetic energy
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• Again imagine an object is composed of many differential 
elements, labeled 1, 2, 3, …, at a distance  from the axis 

             

• Since , we see that 

             

• Define , so that  

i = ρi

Krot = ∑
i

Ktrans
i = ∑

i

Δmi

2
v2

ϕi

viϕ = ρiω

Krot =
1
2

ω2 ∑
i

Δmiρ2
i

ICM = ∑
i

Δmiρ2
i Krot =

ICM

2
ω2

ρi

ω

viϕ

Δmi

= ∑
i

Δmi

2
v2

iϕ



Rotational kinetic energy
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• Again imagine an object is composed of many differential 
elements, labeled 1, 2, 3, …, at a distance  from the axis 

             

• Since , we see that 

             

• Define , so that  

• Thus, total kinetic energy is 

i = ρi

Krot = ∑
i

Ktrans
i = ∑

i

Δmi

2
v2

ϕi

viϕ = ρiω

Krot =
1
2

ω2 ∑
i

Δmiρ2
i

ICM = ∑
i

Δmiρ2
i Krot =

ICM

2
ω2

K =
m
2

v2 +
ICM

2
ω2

ρi

ω

viϕ

Δmi

= ∑
i

Δmi

2
v2

iϕ



Moment of inertia

41

• The moment of inertia  is analogous to the mass  

• Quantifies the rotational inertia of an object about a given 
axis of rotation, i.e. its resistance to changing its rotation

I m



Moment of inertia
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• The moment of inertia  is analogous to the mass  

• Quantifies the rotational inertia of an object about a given 
axis of rotation, i.e. its resistance to changing its rotation 

• We are often interested in the moment of inertia about an 
axis that passes through the center of mass 

I m

ICM



Moment of inertia
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• The moment of inertia  is analogous to the mass  

• Quantifies the rotational inertia of an object about a given 
axis of rotation, i.e. its resistance to changing its rotation 

• We are often interested in the moment of inertia about an 
axis that passes through the center of mass  

• Defined for discrete objects as , where  is 

the object’s distance from the axis of rotation

I m

ICM

I = ∑
i

miρ2
i ρi



Moment of inertia
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• The moment of inertia  is analogous to the mass  

• Quantifies the rotational inertia of an object about a given 
axis of rotation, i.e. its resistance to changing its rotation 

• We are often interested in the moment of inertia about an axis 
that passes through the center of mass  

• Defined for discrete objects as , where  is the 

object’s distance from the axis of rotation 

• In the limit of infinitesimally small differential elements 

 

• Units of [kg m2]

I m

ICM

I = ∑
i

miρ2
i ρi

I = ∫M
ρ2dm

⋅
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What is the moment of inertia of a uniform disk with 
mass , radius , and height , rotating about its 
axis of symmetry  at an angular velocity ?

M ρ0 h
̂z ω ̂z

Example: Uniform disk



Moment of inertia for various uniform objects
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• Moment of inertia depends on shape and mass distribution 

• Also depends on the axis of rotation
Object 

(rotation axis) Geometry Moment 
of inertia

Uniform sphere 
(about center)

Thin rod 
(about center)

Thin rod 
(about end)

Thin plate 
(about center)

Object 
(rotation axis) Geometry Moment of 

inertia

Thin hoop 
(about center)

Thin hoop 
(about diameter)

Solid cylinder 
(about center)

Hollow cylinder 
(about center)

Mρ2
0

M
2 (ρ2

1 + ρ2
2)

M
2

ρ2
0

M
2

ρ2
0 +

M
12

w2

2
5

Mr2
0

M
12

ℓ2

M
3

ℓ2

M
12 (ℓ2 + w2)

ρ0

ρ0

ρ0

ρ2

ρ1



Parallel axis (or Steiner) theorem

47

• The moment of inertia about any axis parallel to an axis 
that goes through the center of mass is given by 

 

• For example:

I = ICM + Mh2

Axis CM

ℓ

Axis A

ℓ

h



Conceptual question

All of the objects above have the same mass, the same 
radius, and are made of materials with different but uniform 
density. How are their moments of inertia about the axis 
related? 
A.  
B.  
C.  
D.

I3 > I2 > I1
I1 > I2 > I3
I3 > I1 > I2
I2 > I1 > I3

48

21 3

ρ0

ρ1
ρ0 ρ0

responseware.eu 
Session ID: epflphys101en

http://responseware.eu


DEMO (60): Racing cylinders

A cylinder with moment of inertia , radius , and mass  is 
initially at rest on an inclined plane. It rolls without slipping, 
descending a vertical distance . What is its translational 
speed at the bottom?

I ρ0 m

h

49



h

Rotation steals energy from translation

50

• More rotational inertia means rotation takes more energy 

• But rolling without slipping enables an object to avoid 
friction

Box (not sliding 
with friction)

without 
friction



Torque
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• Defined to be the moment of a force about a pivot point 
 

•
⃗τ = ⃗R × ⃗F = RF sin θ⃗τ = ⃗r × ⃗F



Torque
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• Defined to be the moment of a force about a pivot point 
 

• where  is the position vector from the pivot point to the 
location at which the force is being applied

⃗τ = ⃗R × ⃗F = RF sin θ
⃗r

τ

F
θ

Pivot 
point

r

̂z

̂ρ
̂ϕ

⃗τ = ⃗r × ⃗F



Torque
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• Defined to be the moment of a force about a pivot point 
 

• where  is the position vector from the pivot point to the 
location at which the force is being applied

⃗τ = ⃗R × ⃗F = RF sin θ
⃗r

τ

F
θ

Pivot 
point

r

̂z

̂ρ
̂ϕ

= rF sin θ ̂z⃗τ = ⃗r × ⃗F



Torque

54

• Defined to be the moment of a force about a pivot point 
 

• where  is the position vector from the pivot point to the 
location at which the force is being applied 

• It has units of [N m], which is similar to [J], but torques are 
never expressed in Joules 

• It is the analogue of a                                                         
force for rotation

⃗τ = ⃗R × ⃗F = RF sin θ
⃗r

⋅
τ

F
θ

Pivot 
point

r

̂z

̂ρ
̂ϕ

= rF sin θ ̂z⃗τ = ⃗r × ⃗F



Newton’s laws for rotation about a fixed axis
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• Consider rigid body rotation about a fixed axis
z

⃗ri

⃗Fi
Δmi



Static equilibrium
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• A solid body is in static equilibrium when the net external 
force and net external torque (around any point) are both 
zero  



Static equilibrium
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• A solid body is in static equilibrium when the net external 
force and net external torque (around any point) are both 
zero 

   and   ∑ ⃗F = 0 ∑ ⃗τ = 0



Static equilibrium
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• A solid body is in static equilibrium when the net external 
force and net external torque (around any point) are both 
zero 

   and    

• Torque is a vector, so they must be added as such
∑ ⃗F = 0 ∑ ⃗τ = 0



Static equilibrium
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• A solid body is in static equilibrium when the net external 
force and net external torque (around any point) are both 
zero 

   and    

• Torque is a vector, so they must be added as such 

• For calculating torque, the force of gravity acts at the 
center of gravity of the system, which is the center of mass 
if the gravitational force is uniform (e.g. at Earth’s surface)

∑ ⃗F = 0 ∑ ⃗τ = 0



Static equilibrium
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• A solid body is in static equilibrium when the net external 
force and net external torque (around any point) are both 
zero 

   and    

• Torque is a vector, so they must be added as such 

• For calculating torque, the force of gravity acts at the 
center of gravity of the system, which is the center of mass 
if the gravitational force is uniform (e.g. at Earth’s surface) 

• Fictitious forces act at the center of mass

∑ ⃗F = 0 ∑ ⃗τ = 0



DEMO (22)

Torque and static equilibrium

61



DEMO (30): Conceptual question

A fixed torque is applied to rotate the shaft of a beam. If the 
two weights on the beam are slid out, the angular 
acceleration of the wheel will… 

A. increase. 
B. decrease. 
C. remain the same. 
D. Not enough                                                           

information.  

62
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DEMO (223)

Leaning ladder

63



Summary of rotation and translation

64

Rotational motion 
(about a fixed axis)

Translational motion 
(in one dimension)

Angular position Position

Angular speed Speed

Angular acceleration Acceleration

Moment of inertia Mass

Net torque Net force

Rotational kinetic 
energy

Translational kinetic 
energy

Work Work

Power Power

Angular momentum Momentum

Net torque Net torque

ϕ x
ω = dϕ/dt v = dx/dt
α = dω/dt a = dv/dt

Στext = Iα ΣFext = ma

W = ∫
ϕb

ϕa

τdϕ W = ∫
xb

xa

Fdx

Krot = Iω2/2 Ktrans = mv2/2

P = FvP = τω
L = Iω p = mv

Στext = dL/dt ΣFext = dp/dt

I = ∫ ρ2dm m



A box, with its center of mass indicated by the dot, is placed 
on an inclined plane. In which of the four orientations shown, 
if any, does the box tip over? 

A. 1 
B. 2 
C. 3 
D. 4 
E. None of them.  

65
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Conceptual question
An object is in static equilibrium when the net force and the 
net torque on it are zero. Which of the following statements 
are correct for an object in an inertial frame of reference? 

A. Any object in equilibrium is at rest 
B. An object in equilibrium need not be at rest 

C. An object at rest must be in equilibrium

66

responseware.eu 
Session ID: epflphys101en

http://responseware.eu


Conceptual question
Point A sits at the outer edge (rim) of a merry-go-round, and 
point B sits halfway between the rim and the axis of rotation. 
The merry-go-round makes a complete revolution once 
every thirty seconds. The magnitude of the average angular 
velocity of point B is… 

A. half the angular speed of point A. 
B. the same as the angular speed of point A. 
C. twice the angular speed of point A. 
D. Not enough information is given to decide.  

67
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Conceptual question
In the figure, a force of magnitude  is applied to one end of 
a lever of length . What is the magnitude of the torque 
about the point ? 

A.  
B.  
C.  
D. None of the above.

F
L

S

FL sin θ
FL cos θ
FL tan θ

68

θ

F

S

L
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