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Announcement - g,

e We'll hold another mini mock exam on Tuesday
December 3rd

e |n-class (SG1) during normal lecture hours
(10:15-11:00)

* You can bring a “cheat” sheet containing formulas or all
of your notes, as you wish

e Hand exam to me at the end if you want to have it
graded (optional)

e Does not matter at all for your final grade

 Exam solutions will be published



L
Today’s agenda (Serway 10,12; MIT 16- 18) - s.wm

1. Review of circular motion

2. Rotation of rigid objects about a fixed axis

e Rotational kinetic energy
e Moment of inertia
e Torque

3. Static equilibrium



Week 4: Cylindrical coordinates o

e Position vector:
r() =p)p+z(t)2
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Week 4: Cylindrical coordinates "

e Position vector:
r() =p)p+z(t)2

* Linear velocity: S HNL

VN —
-~—

V(1) = pp + pdpp + 22

* Linear acceleration:
a0 = (5= pd®) o+ (206 + pi) b + 22

T - N>
\\ e
™
S

X



Week 4: Circular motion o

e In circular motion p(f) = p,
where p, Is constant
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Week 4: Circular motion

e In circular motion p(f) = p,
where p, Is constant

o Also z(f) = zo where Z, is a
constant (which we typically
choose to be 0 with an
appropriate reference frame)

<=




=PrL
Week 4: Circular motion = s

Center

e In circular motion p(¥) = p,
where p,, is constant

o Also z(f) = z, where z,is a
constant (which we typically
choose to be 0 with an
appropriate reference frame)

<=

>

e Position vector:
rt)=p0p+z202

* Linearvelocity:

V(1) = pp + pp + 22

Linear acceleration:

a0 = (5= pd®) o+ (206 + pd ) b + 22




Week 4: Circular motion

dp .
e Angular speed: w(t) = = ¢

e Angular acceleration: a(t) = @ = Cb



Week 4: Circular motion

de

* Angular speed: w(f) = — = ¢

e Angular acceleration: a(t) = @ = Cb

e Position: 7(t) = pyp(1)

o Velocity: ¥(£) = pyo(1)¢(1)
e Acceleration: A
a(t) = — polo()]* p + pyalt) ¢
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Week 4: Circular motion

dag :
 Angular speed: w(t) = i ¢

e Angular acceleration: a(t) = @ = €b

e Position: 7(t) = pyp(1)

e Velocity: v(7) = poa)(t)qg(t)
e Acceleration: A
dt) = — polo()]° p + pyalt) ¢

» Angular displacement: A¢¢

» Distance traveled (arc length): £ = pyA¢
11



=PrL
Week 4: Circular motion = s

Center

* Due to Newton’s 1st law, an object in circular motion must
be experiencing a net radial force (called the centripetal
force) v

12



=Pi-L
Week 4: Circular motion "

* Due to Newton’s 1st law, an object in circular motion must
be experiencing a net radial force (called the centripetal
force) y

* Determining the identity of this force /’\ ‘\
requires further investigation W/ F e

e For the case of a ball on a string, |
this force is provided by tension in \ / /
the string (possibly in combination \
with gravity) S

e Usinga = apﬁ + agbqg = — poa)zﬁ + poaqg, we know that

- ) A 7~
Fnet = md = — nmpyw P T mp0a¢
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Week 4: Cross (or vector) product

Two vectors are multiplied in a cross * axb
product to produce another vector

ixb=7C -
Magnitude: |¢| =c¢ = absind b
Direction: Use right hand rule

fd||b, thendx b =0orifd L b, then |G X b| = ab

Not commutative: @ X b = — b X a@
Distributive: @ X (b + &) = d X b +ad X C

- d . - da - _ db
Derivative product rule: —(a@a X b) = — X b+ a X —

dt dt dt 14



=PrL

Conceptual question esponsewareeu  ® S,

Session ID: epflphys101en center

A piece of sushi rests on a circular turntable, rotating about a
vertical axis at a constant angular speed w as illustrated Iin
the diagram below.

The sushi rotates with the turntable and fortunately does not
slip. What are the directions of the velocity, acceleration and
net force vectors acting on the sushi at the moment shown in
the diagram?

A —v D Fll—»v

—3d

——>F F
8. 5" E [l

= View of turntable
C | —v from above
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=Pir-L
Conceptual question esponsewareeu  ® S,

Session ID: epflphys101en center

A puck of mass m is moving in a circle at constant speed on
a frictionless table. The puck is connected by a massless

string to a suspended bob, also of mass m, which is at rest

below the table. \What is the magnitude of the centripetal
acceleration of the moving puck? Ignore friction.

A. Greaterthan g
B. Equalto g

C. Lessthan g
D. O
E. Not enough information to decide. Bob

16
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Angular velocity vector in circular motion = s

* Angular velocity vector points along
the axis of rotation according to the
right-hand rule

V=w Xp and @ =




Angular velocity vector in circular motion

* Angular velocity vector points along
the axis of rotation according to the
right-hand rule

V=wXp and @ =

 The angular acceleration vector is
. ixg;
a = e

* |f the direction of the rotation axis

does not change, the angular
acceleration vector points along it

a, = a Xp and

18



Rigid body iy

* |n arigid body all points move
together without deformation, i.e.
the distance between any two
points is fixed in time

19



Rigid body iy

* |n arigid body all points move
together without deformation, i.e.
the distance between any two
points is fixed in time

* Imagine an object is composed
of a huge number of tiny

differential elements, labeled 1 =
1,2, 3, ... with positions 7,

 Abody is rigid if, for all pairs of
differential elements j and k, the
distance Rjk.: | —1;l is
constant in time




=Pr-L
Pure translation of rigid bodies "

 \We already know how to handle pure translation of a rigid
body

 Represent the entire object as a point at the object’s
Center of Mass (CM), as discussed in lecture 6

 Then apply all net external forces to the CM and
calculate its motion

21



=PrL
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M Swiss
Plasma
Center

Pure translation of rigid bodies

 \We already know how to handle pure translation of a rigid
body

 Represent the entire object as a point at the object’s
Center of Mass (CM), as discussed in lecture 6

 Then apply all net external forces to the CM and
calculate its motion

 What about if the object is also rotating?

e Can decompose motion into pure translation of CM
(treated as above) and pure rotation around CM (will

study now)

22



=PrL

Pure rotation of a rigid body e

Center

* In pure rotational motion, all points in the object move in circles
around an axis of rotation through the CM

23



=PrL

Pure rotation of a rigid body e

Center

* In pure rotational motion, all points in the object move in circles
around an axis of rotation through the CM

e All points on a straight line drawn through the axis move through
the same angle in the same time

\ Ao
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=PrL

Pure rotation of a rigid body e

Center

* In pure rotational motion, all points in the object move in circles
around an axis of rotation through the CM

e All points on a straight line drawn through the axis move through
the same angle in the same time

A
 Therefore, every point has the same value of ® = Tgb (and a)
{

\ Ao
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=PrL

Pure rotation of a rigid body e

Center

* In pure rotational motion, all points in the object move in circles
around an axis of rotation through the CM

e All points on a straight line drawn through the axis move through
the same angle in the same time

A
 Therefore, every point has the same value of ® = Tgb (and a)
{

e The distance they move is the arc length £(p) = pAg

\ Ao

26



Rolling without slipping o -3

cPrL

Center

e |f an object rol
distance trave
distance trave

INng on a surface does not slip, then the
ed along the ground must be equal to the
ed by the rim of the wheel

Ag

v =

Po x CM

27



. . L cPrL
Rolling without slipping o -3

Center

e |f an object rolling on a surface does not slip, then the
distance traveled along the ground must be equal to the
distance traveled by the rim of the wheel

O
<
e
-]
v =
O
<
v =

ACM 28



Rolling without slipping o

e |f an object rolling on a surface does not slip, then the
distance traveled along the ground must be equal to the
distance traveled by the rim of the wheel

Axcy = C(pg) = poAd

O
<
e
-]
v =
O
<
v =

ACM 29



Rolling without slipping - -

e |f an object rolling on a surface does not slip, then the
distance traveled along the ground must be equal to the
distance traveled by the rim of the wheel

AXxcy Ag
Axcy = C(py) = poAP = A, PoAL
L” a
(Po) Ad
AXxcyy "



Rolling without slipping o

e |f an object rolling on a surface does not slip, then the
distance traveled along the ground must be equal to the
distance traveled by the rim of the wheel

AXxcy Ag
Axcy = €(py) = poA¢ = N = POE = Veu = Pow
A a
(Po) Ad
AXxcyy .



Rolling without slipping - -

e |f an object rolling on a surface does not slip, then the
distance traveled along the ground must be equal to the
distance traveled by the rim of the wheel

Axgy = £(p0) = pohp = M _, B0
X = Ve = Po®
cm = t\Po) = Po Af 07 7S cM — Fo
» At point of contact b, V,,,,,,a = V.., (i.€. friction is static)
4 a
(o) Ad

32



_ cPrL
No-slip pulleys o 3

Center

e |f a rope rotates a pulley without slipping, then at the
points of contact

vmpe = Viim = Po®@
 Taking a derivative in time shows

arope = Pt

33



Rotational kinetic energy

* An object with no translational motion still has kinetic
energy, if it is rotating

34



Rotational kinetic energy

* An object with no translational motion still has kinetic
energy, if it is rotating

e Rotational kinetic energy must be considered in
conservation of energy

K — Ktmns + Kmt

35



EPFL
Rotational kinetic energy ]

Center

 Again imagine an object is composed of many differential
elements, labeled 1 = 1, 2, 3, ..., at a distance p; from the axis

)

36



Rotational kinetic energy o

 Again imagine an object is composed of many differential
elements, labeled 1 = 1, 2, 3, ..., at a distance p; from the axis

Krot — Z I{itmns — A;nz Vl%b
I

l

37



=PrL

Rotational kinetic energy " s,
 Again imagine an object is composed of many differential
elements, labeled 1 = 1, 2, 3, ..., at a distance p; from the axis
Am.
r t _ L2
K?‘O — ZI{imns — 2 Vl¢
i

i
e Since v;, = p;w, we see that

1
K™ = 5602 Z Amp?

38



EPFL
Rotational kinetic energy ]

Center

* Again imagine an object is composed of many differential
elements, labeled 1 = 1, 2, 3, ..., at a distance p, from the axis

Am,

rot __ trans — __ L2

K= LK =
! l
e Since v;, = p;w, we see that Vig
1
K™ = 50)2 2 Amp? Ant.
i

I
 Define I, = Z Am.p?, so that K" = %wz

l

39



EPFL
Rotational kinetic energy ]

Center

* Again imagine an object is composed of many differential
elements, labeled i = 1, 2, 3, ..., at a distance p, from the axis

Kot — Z I{itmns — Z A;nl Vl%b

l

e Since v;;, = p;w, we see that Vig

2

1
Kot — _0)22 Amipiz Am

I
o Define I, = Z Amp?, so that K™ = M p?

l 2
m I
e Thus, total kinetic energy is K = Evz | CZMco2

40
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Moment of inertia

P
C

« The moment of inertia / is analogous to the mass m

* Quantifies the rotational inertia of an object about a given
axis of rotation, i.e. its resistance to changing its rotation

41



Moment of inertia e

« The moment of inertia / is analogous to the mass m

* Quantifies the rotational inertia of an object about a given
axis of rotation, i.e. its resistance to changing its rotation

e \We are often interested in the moment of inertia about an
axis that passes through the center of mass I,

42



Moment of inertia e

« The moment of inertia / is analogous to the mass m

* Quantifies the rotational inertia of an object about a given
axis of rotation, i.e. its resistance to changing its rotation

e \We are often interested in the moment of inertia about an
axis that passes through the center of mass I,

o Defined for discrete objects as [ = 2 ml-piz, where p; Is

the object’s distance from the axis of rotation

43



=PrL
Moment of inertia = sy

Center

« The moment of inertia / is analogous to the mass m

e Quantifies the rotational inertia of an object about a given
axis of rotation, i.e. its resistance to changing its rotation

e \We are often interested in the moment of inertia about an axis
that passes through the center of mass /-,

o Defined for discrete objects as [ = Z ml-pl.z, where p; is the

object’s distance from the axis of rotation

* |n the limit of infinitesimally small differential elements

I=J pdm
M

e Units of [kg-mZ2]
44



Example: Uniform disk o

What is the moment of inertia of a uniform disk with
mass M, radius p,, and height A, rotating about its

axis of symmetry Z at an angular velocity @wZ?

45



cPrL
Moment of inertia for various uniform objects = z:.

Center

e Moment of inertia depends on shape and mass distribution

* Also depends on the axis of rotation

Object Geomet Moment of Object Geomet Moment
(rotation axis) Y inertia (rotation axis) "y of inertia
AXI1S
Thin hoop P 2 Uniform sphere % 2
(about center) %= = =7 M’OO (about center) T— 5 MVO
.
I
Thin hoop ([ Po ﬂ 2 4 ﬂwz Thin rod | Axis_ %52
(about diameter) ¥\ |/ 2 Po 12 (about center) . p | 12
AXiS
Solid cylinder @l D M o) Thin rod AS ; M )
g2 —p , 7
(about center) » 2 0 (aboutend) 10—~ 3
AXis M Axis
Hollow cylinder ‘pl N 2 2 Thin plate (P2 2
(about center) p2| y (’0 1P 2) (about center) . 7 | (f W )




Parallel axis (or Steiner) theorem

e The moment of inertia about any axis parallel to an axis
that goes through the center of mass is given by

e For example: Axis CM Axis A

47



=Pir-L
Conceptual question esponsewareeu  ® S,

Session ID: epflphys101en center

pa
o <
A S
1 2 3

All of the objects above have the same mass, the same
radius, and are made of materials with different but uniform

density. How are their moments of inertia about the axis
related?

A L>1L>I
B. [, > 1, > I
C.L,>1, > 1,
D. I, > I, > I

48
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=PrL
DEMO (60): Racing cylinders e

Center

A cylinder with moment of inertia /, radius Py, and mass m is
initially at rest on an inclined plane. It rolls without slipping,

descending a vertical distance #. What is its translational
speed at the bottom?

49



Rotation steals energy from translation

Box (not sliding

with friction)
Hoop

©

Box (shiding)

(") Empty can without
@ Solid cylinder friction

Sphere /
<

 More rotational inertia means rotation takes more energy

e But rolling without slipping enables an object to avoid

friction

50



Torque - g,

* Defined to be the moment of a force about a pivot point
T=rXF

51



=P
Torque of 3

Center

e Defined to be the moment of a force about a pivot point
T=rXF
where 7 is the position vector from the pivot point to the
location at which the force is being applied

52



=P
Torque of 3

Center

e Defined to be the moment of a force about a pivot point
t=rX F =rFsin6?

where 7 is the position vector from the pivot point to the
location at which the force is being applied

53



=PrL
Torque o

Plasma
Center

e Defined to be the moment of a force about a pivot point
T=rX F =rFsin@3
where 7 is the position vector from the pivot point to the
location at which the force is being applied

e |t has units of [N-m], which is similar to [J], but torques are
never expressed in Joules

e |tis the analogue of a
force for rotation

54



=PrL
Newton’s laws for rotation about a fixed axis = s:=.

Center

 Consider rigid body rotation about a fixed axis

95
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Static equilibrium "3

P
C

 Asolid body is in static equilibrium when the net external
force and net external torque (around any point) are both
Zero

56



=PrL
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e

Static equilibrium

iISS
Plasma
Center

 Asolid body is in static equilibrium when the net external
force and net external torque (around any point) are both

Zero
ZF:O and Z?=O

S7



_ o =PrL
Static equilibrium - e,

Center

 Asolid body is in static equilibrium when the net external
force and net external torque (around any point) are both

Zero
ZF:O and Z?=O

 Torque is a vector, so they must be added as such

58



_ o =PrL
Static equilibrium - e,

Center

 Asolid body is in static equilibrium when the net external
force and net external torque (around any point) are both

Zero
ZF:O and Z?=O

 Torque is a vector, so they must be added as such

* For calculating torque, the force of gravity acts at the
center of gravity of the system, which is the center of mass
if the gravitational force is uniform (e.g. at Earth’s surface)

59



_ o =PrL
Static equilibrium - e,

Center

 Asolid body is in static equilibrium when the net external
force and net external torque (around any point) are both

Zero
ZF:O and Z?=O

 Torque is a vector, so they must be added as such

* For calculating torque, the force of gravity acts at the
center of gravity of the system, which is the center of mass
if the gravitational force is uniform (e.g. at Earth’s surface)

e Fictitious forces act at the center of mass

60



DEMO (22)

Torque and static equilibrium

61



cPrL
DEMO (30): Conceptual question wsonsewareen = s

Plasma

Session ID: epflphys101en center

A fixed torque is applied to rotate the shaft of a beam. If the
two weights on the beam are slid out, the angular
acceleration of the wheel will...

Increase.
decrease.

. remain the same.
. Not enough
information.

OOwWx
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DEMO (223)

Leaning ladder

63



Summary of rotation and translation 53

=PrL

Center

Rotational motion
(about a fixed axis)

Translational motion
(in one dimension)

Angular position gb
Angular speed = d¢/dt
Angular acceleration a = dw/dt
Moment of inertia I = Ipzdm
Net torque ZText = la
Rotational kinetic rot _ 2
energy K™ = Ilw*/2
Py,
Work W= Td¢
Y,
Power P =1w
Angular momentum L=I1w
Net torque ZText = dL/dt

Position X
Speed v = dx/dt
Acceleration a = dv/dt
Mass m
Net force 2F ext — ma
Translational kinetic trans __ 2
anergy K = mv-/2
nxb
Work W= Fdx
[y xa
Power P =Fv
Momentum p = my

Net torque 2F, = dp/dt
64
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COnce ptual queSthn responseware.eu = Swiss

Session ID: epflphys101en Center

A box, with its center of mass indicated by the dot, is placed
on an inclined plane. In which of the four orientations shown,

If any, does the box tip over?
1 2
3 4
65

A
B.
C.
D
E

ZhWwWN

one of them.
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=Pir-L
Conceptual question esponsewarecu W i

Session ID: epflphys101en center

An object is in static equilibrium when the net force and the
net torque on it are zero. Which of the following statements
are correct for an object in an inertial frame of reference?

A. Any object in equilibrium is at rest

B. An object in equilibrium need not be at rest
C. An object at rest must be in equilibrium

66
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EPFL
Conceptual question Session ID: epfphys10ten Gkt

Point A sits at the outer edge (rim) of a merry-go-round, and
point B sits halfway between the rim and the axis of rotation.
The merry-go-round makes a complete revolution once

every thirty seconds. The magnitude of the average angular

velocity of point B is...

A. half the angular speed of point A.

B. the same as the angular speed of point A.
C. twice the angular speed of point A.

D. Not enough information is given to decide.

67
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=PrL

Conceptual question esponsewareeu  ® S,

Session ID: epflphys101en center

In the figure, a force of magnitude F is applied to one end of
a lever of length L. What is the magnitude of the torque
about the point 87

A. FLsin@
B. FL.cos@

C. FLtan @
D. None of the above.

68
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