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1. Asteroid impact

a. Since the collision is inelastic, the total kinetic energy is not conserved. Since there are no external
forces on the system and matter does not enter or leave the system, the total momentum is conserved.
Since there are no external torques on the system and matter does not enter or leave the system, the
total angular momentum is conserved.

b. As specified in the problem statement, we are using the inertial Cartesian coordinate system given,
which is defined such that the planet is has no translational velocity before the collision. Additionally,
we are told that the planet is not rotating initially and that the asteroid can be treated as a point mass.
Thus, before the collision the only kinetic energy in the system is the translational kinetic energy of
the asteroid, which is given by

Ki =
m

2
v20 . (1)

c. From part b, we know that the only object that is moving is the asteroid. It carries a momentum of

p⃗i = mv0x̂, (2)

where we must remember that momentum is a vector.

d. To calculate the center of mass of the planet+asteroid system we must consider the displacement
vectors between three different points (indicated in the figure below): the geometric center of the
planet C, the location of the asteroid impact a, and the center of mass of the system G. To keep track
of them, we will be careful and use the notation given by the problem. Each position vector will have
two subscripts – the first indicating the start point of the vector and the second indicating the end
point. We will let the origin of the coordinate system (which is not specified in the problem statement)
be the geometric center of the planet C. Thus, we see that the location of the center of mass of the
planet on its own is

r⃗p = r⃗CC = 0. (3)
Just after the collision, the location of the asteroid is

r⃗a = r⃗Ca = −
√
R2 −D2x̂+Dŷ, (4)

where we have used the Pythagorean theorem to determine the x̂ component.
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To find the center of mass we take its definition and substitute equations (3) and (4) to find

R⃗CM = r⃗CG =

∑
i mir⃗i∑
i mi

=
mr⃗a +Mr⃗p
m+M

=
m

m+M

(
−
√
R2 −D2x̂+Dŷ

)
. (5)

The distance between C and G is simply the magnitude of this vector, which is

dCG = |r⃗CG| =
m

m+M

√
R2 −D2 +D2 =

m

m+M
R. (6)

Note that, since the planet+asteroid forms a rigid body, dCG will stay constant with time after the
collision as the object rotates and translates (despite the fact that r⃗CG will change direction).

e. The total angular momentum of the system is the sum of the angular momenta of the asteroid and the
planet

L⃗G = L⃗Ga + L⃗Gp. (7)

The asteroid is modeled as a point mass, so it has an angular momentum about G of

L⃗Ga = r⃗Ga ×mv⃗Ga, (8)

where r⃗Ga is the position vector from G to the asteroid and v⃗Ga is the velocity of the asteroid in
the frame of reference of G. The planet is a rigid body, so it has an angular momentum due to the
translational motion of its center of mass about G and its rotation about its center of mass. This is
given by

L⃗Gp = r⃗GC ×Mv⃗GC + IGω⃗p, (9)

where r⃗GC is the position vector from G to the center of mass of the planet C, v⃗GC is the velocity of
the center of mass of the planet C in the frame of reference of G, IG is the moment of inertia of the
planet+asteroid system about G, and ω⃗p is the angular velocity of the planet about its center of mass.
Combining equations (7) through (9), we see that the total angular momentum is

L⃗G = r⃗Ga ×mv⃗Ga + r⃗GC ×Mv⃗GC + IGω⃗p. (10)

From part a, we know that the total angular momentum will stay constant in time, so we will choose to
calculate all quantities at the moment just before the collision. At this time, the planet is not rotating,
so ω⃗p = 0 and we do not need to calculate IG (yet). The position vector r⃗GC is closely related to what
we have already calculated in equation (5) since

r⃗GC = −r⃗CG = − m

m+M

(
−
√
R2 −D2x̂+Dŷ

)
. (11)

The position vector r⃗Ga can be found using the vector addition relationship

r⃗Ca = r⃗CG + r⃗Ga, (12)

meaning the displacement from C to the asteroid is equal to the displacement from C to G plus the
displacement from G to the asteroid. Rearranging this and substituting equations (4) and (5) gives

r⃗Ga = r⃗Ca − r⃗CG =
(
−
√
R2 −D2x̂+Dŷ

)
− m

m+M

(
−
√
R2 −D2x̂+Dŷ

)
=

M

m+M

(
−
√

R2 −D2x̂+Dŷ
)
. (13)

The velocity vectors are more challenging. Strictly speaking we need to calculate them in the frame
of reference moving with G, which is the center of mass reference frame. However, since there are no
external forces on the asteroid+planet system, the center of mass velocity v⃗CM (i.e. the velocity of G
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as seen in the reference frame given in the problem) will be constant in time. Since the only initial
motion is in the x̂ direction, this means that v⃗CM = vCM x̂ is also only in the x̂ direction. Therefore,
the velocities in the frame of reference moving with G can be expressed as v⃗Ga = (v0 − vCM ) x̂ and
v⃗GC = −vCM x̂. While we still do not know vCM , we will see that it cancels and does not appear in the
final answer. Substituting all of these results into equation (10) and simplifying shows that the total
initial angular momentum about G is

L⃗Gi =
M

m+M

(
−
√

R2 −D2x̂+Dŷ
)
×m (v0 − vCM ) x̂− m

m+M

(
−
√
R2 −D2x̂+Dŷ

)
×M (−vCM x̂)

=
M

m+M
Dm (v0 − vCM ) ŷ × x̂+

m

m+M
DMvCM ŷ × x̂

=

(
mM

m+M
D (v0 − vCM ) +

mM

m+M
DvCM

)
(−ẑ) = − mM

m+M
Dv0ẑ. (14)

Note that this result is identical to the answer if you had calculated the total angular momentum in
the reference frame of the problem statement (as opposed to changing to the reference frame moving
with G). This is not a coincidence. When we calculate the angular momentum of a system about its
center of mass, we can adopt any inertial reference frame and will always find the same answer. This
is a shortcut that can be used to solve this problem more quickly.

f. The moment of inertia is defined as
IG =

∫
sys

ρ2dm, (15)

where ρ is the distance from an axis passing through G in the ẑ direction and the integral is per-
formed over the entire asteroid+planet system. Since an integral is just a sum, we can separate the
contributions from the asteroid Ia and the planet Ip according to

IG =

∫
asteroid

ρ2dm+

∫
planet

ρ2dm = Ia + Ip. (16)

Since the asteroid is a point mass, its contribution to the moment of inertia is simply

Ia = md2Ga = m|r⃗Ga|2 =
mM

(m+M)
2MR2. (17)

Here dGa is the distance from G to the asteroid, which was found by taking the magnitude of equation
(13).

The planet is a rigid uniform sphere, which has a momentum of inertia of ICM around any axis passing
through its center of mass. However, we need to calculate its momentum of inertia around G, which is
a distance dCG away from its center of mass. Thus, we must use the parallel axis theorem to find

Ip = ICM +Md2CG = ICM +M

(
m

m+M
R

)2

= ICM +
mM

(m+M)
2mR2, (18)

where we have used equation (6). Substituting equations (17) and (18) into equation (16) gives the
final answer of

IG =
mM

(m+M)
2MR2 + ICM +

mM

(m+M)
2mR2 = ICM +

mM

m+M
R2. (19)

g. In part a, we showed that total angular momentum is a conserved quantity, which is expressed as

L⃗Gi = L⃗Gf . (20)
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In part e, we calculated the total angular momentum before the collision L⃗Gi, which is given by equation
(14). However, we don’t actually need this information as we are permitted to use L⃗Gi in our solution.
All we need to do is can express the final total angular momentum as

L⃗Gf = IGω⃗f (21)

and combine equations (20) and (21) to find

L⃗Gi = IGω⃗f ⇒ ω⃗f =
L⃗Gi

IG
. (22)

h. In part a, we found that kinetic energy is not conserved in the collision. The work-kinetic energy
theorem

W = ∆K = Kf −Ki (23)

tells us that this change in kinetic energy is equal to the total work done by internal forces in the
inelastic collision. Importantly, we are only permitted to express our answer in terms of the total mass
as well as our solutions to parts b through g. In part b we calculated the total initial kinetic energy Ki,
so the challenge is to determine the final kinetic energy of the system. After the collision the asteroid
and planet are moving together as one combined object, which translates and rotates about its center
of mass G. Thus, equation (23) can be written as

W = Ktrans
f +Krot

f −Ki. (24)

The translational kinetic energy of the center of mass is

Ktrans
f =

mtot

2
V 2
CM , (25)

where VCM is the magnitude of the center of mass velocity

V⃗CM =

∑
i miv⃗i∑
i mi

=
mv⃗a +Mv⃗p

mtot
. (26)

The quantity in the numerator is the total momentum of the system, which is a conserved quantity.
Thus, the center of mass velocity can be written as V⃗CM = p⃗i/mtot, which can be substituted into
equation (25) to see that the final translational kinetic energy is

Ktrans
f =

p2i
2mtot

. (27)

The final rotational kinetic energy about the center of mass is

Krot
f =

IG
2
ω2
f , (28)

where both IG and ωf have been calculated in previous parts. Thus, substituting equations (27) and
(28) into equation (24) gives the final answer of

W =
p2i

2mtot
+

IG
2
ω2
f −Ki. (29)
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2. Bouncing

a. In the solutions, we will choose to exclusively use the coordinate system given in the problem statement.
It is perfectly fine to define your own coordinate with ŷ pointing upwards, but then ẑ must then point
out of the page (for the coordinate system to be right-handed). This will make the earlier parts of this
problem easier, but the last part will be harder (as the angular velocity will be in the −ẑ direction).
This part of the problem is simple ballistic motion. We can immediately write down the expressions
for the positions and velocities in the horizontal and vertical directions, which are

x(t) = vx0t+ x0 (1)
vx(t) = vx0 (2)

y(t) =
g

2
t2 + vy0t+ y0 (3)

vx(t) = gt+ vy0. (4)

We see that the terms with g are positive (instead of negative as is the case when ŷ points upwards).
From the problem statement, we know that the initial conditions are vx0 = v0, vy0 = 0, x0 = 0, and
y0 = −h0. Thus, our equations of motion become

x(t) = v0t (5)
vx(t) = v0 (6)

y(t) =
g

2
t2 − h0 (7)

vx(t) = gt. (8)

To find the location at which the ball hits the ground dc, we must first calculate the time at which the
ball hits the ground tc. This is defined by y(tc) = 0. Using equation (7), we see

0 =
g

2
t2c − h0 ⇒ tc =

√
2h0

g
. (9)

The horizontal distance traveled in this time is dc = x(tc). Using equations (5) and (9), we find the
final answer of

dc = v0

√
2h0

g
. (10)

b. This part is also simple ballistic motion. The velocity with which the ball hits the ground is

v⃗ci = vx(tc)x̂+ vy(tc)ŷ. (11)

Substituting equations (6), (8), and (9) gives the final answer of

v⃗ci = v0x̂+ gtcŷ = v0x̂+
√

2gh0ŷ. (12)

c. The free body diagram is shown below.

N
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̂x
̂y
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d. To calculate the maximum vertical distance by which the ball flattens, we must analyze the forces on
the ball. We start from Newton’s second law F⃗net = ma⃗. We only need to consider the ŷ component,

−N(t) = m
d2y

dt2
, (13)

where we have explicitly indicated the fact that the normal force will vary with time. The problem
statement tells us that we should model the normal force as a spring with a spring constant k and
equilibrium length ∆yc = 0, meaning that

N(t) = k∆yc(t). (14)

Substituting this gives

−k∆yc(t) = m
d2y

dt2
. (15)

Thinking carefully about the geometry of the problem and the coordinate system given to us, we see
that ∆yc(t) = y(t). For example, when the center of mass of the ball is at y = 0, it just barely touches
the ground meaning that ∆yc = 0. Additionally, the more positive y gets, the larger ∆yc. Substituting
∆yc(t) = y(t) and rearranging gives

d2y

dt2
+

k

m
y(t) = 0, (16)

which is the standard equation of motion for a harmonic oscillator. It has a general solution of

y(t) = A cos (ω0t+ φ) , (17)

where

ω0 =

√
k

m
(18)

and A and φ are integration constants.

To find A and φ, we must use the initial conditions. To make the math simpler we will define a new
time coordinate such that t = 0 corresponds to the moment that the ball first touches the ground.
This means that y(0) = 0, so we have

y(0) = 0 = A cos (φ) ⇒ 0 = cos (φ) ⇒ φ =
π

2
+ nπ, (19)

where n ∈ Z can be any integer. Note that we could take n = 0, which would make the math simpler
and still work. However, we will keep arbitrary n to show that all values of n give the same physical
solution. We can substitute equation (19) into equation (17) and use the identity cos (θ + π/2) = − sin θ
given in the problem statement to find

y(t) = A cos
(
ω0t+ nπ +

π

2

)
= −A sin (ω0t+ nπ) . (20)

Then we can apply sin (θ + π/2) = cos θ followed by cos (θ + π/2) = − sin θ, both a total of n times,
to get

y(t) = −(−1)nA sin (ω0t) . (21)

To determine the amplitude A, we must use an initial condition on the velocity. Fortunately, in part b
we already found the vertical component of the velocity when the ball first touches the ground. Thus,
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we see from equation (12) that vy(0) =
√
2gh0. Taking the derivative of equation (21), we see that this

initial condition implies that

vy(0) =
√
2gh0 = −(−1)nAω0 cos (0) ⇒ A = − (−1)n

ω0

√
2gh0. (22)

Substituting this back into equation (21) allows us to fully determine the vertical position of the center
of mass of the ball throughout the collision to be

y(t) =
(−1)2n

ω0

√
2gh0 sin (ω0t) =

1

ω0

√
2gh0 sin (ω0t) , (23)

where we have used properties of exponentials to show (−1)n(−1)n = (−1)2n = ((−1)2)n = (1)n = 1.
Analyzing equation (23), we see that the ball will first impact the ground at t = 0. Then y will increase
with time until sin (ω0t) = 1 when ω0t = π/2. At this moment, we can use equation (18) and remember
that ∆yc(t) = y(t) to see that the maximum value of ∆yc is

∆yc =
1

ω0

√
2gh0 =

√
2mgh0

k
. (24)

After this, y will decrease as the ball rebounds until eventually y = 0 again and the ball loses contact
with the ground. This occurs when ω0t = π, which means that the duration of the collision ∆tc is

ω0∆tc = π ⇒ ∆tc =
π

ω0
= π

√
m

k
. (25)

e. Since we have neglected the effect of friction and are modeling the normal force as an ideal spring,
there are no nonconservative forces acting on the ball. This means that we can apply conservation of
mechanical energy between when the ball is released and when it reaches its peak after rebounding off
the ground,

Ki + Ugi = Kf + Ugf ⇒ m

2
v20 +mgh0 =

m

2
v20 +mghf ⇒ hf = h0. (26)

Note that we have used the fact that there are no forces acting in the x̂ direction, so its horizontal
velocity never changes throughout the entirety of its motion. Given that it is returning to its original
height, its trajectory after bouncing is mirror symmetric to its trajectory before bouncing. Thus, we
can say that df = 2dc and use equation (10) to show that

df = 2v0

√
2h0

g
. (27)

Note that we have neglected the horizontal distance traveled by the ball while it was in contact with
the ground because the problem statement tells us that it is small.

f. This part is identical to parts d and e, except we now include a weak kinetic friction force. Importantly,
since the friction force is entirely in the horizontal direction, the vertical dynamics remain unchanged.
Hence, the results from our calculation in part d can still be used and we can already say that, as in
part e,

hf = h0. (28)

Unfortunately, calculating the horizontal distance traveled is more challenging. We start from Newton’s
second law in the x̂ direction during the collision with the ground, which can be written as

−Ff = m
dvx
dt

. (29)

7



PHYS-101(en) 19 January 2024 - Solution to the Final Exam

The magnitude of the kinetic friction force is Ff = µN . Remembering that ∆yc(t) = y(t) and
substituting equations (14), (18), and (23) allows us to express the friction force as

Ff = µk∆yc(t) =
µk

ω0

√
2gh0 sin (ω0t) = µ

√
2mgkh0 sin (ω0t) . (30)

Combining this with equation (29) gives the equation

dvx
dt

= −µ

√
2gkh0

m
sin (ω0t) . (31)

We can directly integrate this once in time and use equation (18) to find

vx(t) = µ
√
2gh0 cos (ω0t) + C, (32)

where C is an integration constant. To determine the integration constant, we need an initial condition.
We will use the horizontal component of the velocity when the ball first touches the ground. We
calculated this in part b, so we can use the horizontal component of equation (12) to find that

vx(0) = v0 = µ
√
2gh0 cos (0) + C ⇒ C = v0 − µ

√
2gh0. (33)

Substituting this back into equation (32) gives

vx(t) = v0 − µ
√
2gh0 (1− cos (ω0t)) , (34)

the horizontal component of the velocity while the ball is in contact with the ground. Once the ball
loses contact with the ground at t = ∆tc, the friction force no longer acts on the ball, so the horizontal
component of the velocity becomes constant again. We are interested in finding this final velocity that
the ball departs the ground with. Using equation (25), we see that this is given by

vxf = vx(∆tc) = v0 − µ
√
2gh0

(
1− cos

(
ω0

π

ω0

))
= v0 − 2µ

√
2gh0. (35)

Since the horizontal component of the velocity becomes constant after the bounce, the total horizontal
distance traveled between when the ball is released and when it reaches its peak height after the bounce
is

df = dc + vxf tc. (36)

The first term is the horizontal distance traveled before the bounce and the second is the horizontal
distance traveled after the bounce. The time between the bounce and the peak after the bounce is
still tc because it is determined by the vertical dynamics, which are the same as in the previous parts.
Thus, we can substitute equations (9), (10), and (35) into equation (36) to find the final answer is

df = v0

√
2h0

g
+
(
v0 − 2µ

√
2gh0

)√2h0

g
= 2v0

√
2h0

g
− 4µh0. (37)

Note that we have again neglected the distance traveled while in contact with the ground as it is
negligibly short since ∆tc ≪ tc. Additionally, notice that, if we set µ = 0, we recover the same final
answer as in part e.

g. This problem is hard. From our free body diagram in part c, we see that the friction force will create
a torque that will cause the ball to start to rotate. The key insight is that the ball will stop sliding if
it rotates fast enough to roll without slipping, which is governed by the condition that the horizontal
component of the center of mass velocity satisfies vx = ωR. However, we must also remember that,
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from our analysis in part f, the ball’s horizontal speed is decreasing while in contact with the ground.
Since the translational velocity is decreasing with time and the angular velocity is increasing, the ball
is more prone to roll without slipping at later times. Thus, kinetic friction will apply the entire time
the ball is in contact with the ground only if the final velocity satisfies

vxf > ωfR, (38)

where ωf is the final angular velocity when the ball loses contact with the ground. We can already use
equation (35) to replace vxf and find that

v0 − 2µ
√
2gh0 > ωfR. (39)

The challenge is to find ωf .

We start with Newton’s second law for rotation about the center of mass of the ball

τ⃗net = ICM α⃗, (40)

which relates the net torque τ⃗net to the angular acceleration α⃗ using the moment of inertia of the ball
about its center of mass ICM . While in contact with the ground, the ball experiences two forces, the
normal force and kinetic friction force. The torques from each of these has the form τ⃗ = r⃗ × F⃗ , where
r⃗ is the vector from the center of mass of the ball to the point of application of the force. Thus, we
can write equation (40) as

r⃗N × N⃗ + r⃗f × F⃗f = ICM α⃗. (41)

From our free body diagram we see that r⃗N = Rŷ, N⃗ = −Nŷ, r⃗f = Rŷ, and F⃗f = −Ff x̂. Substituting
these, Newton’s second law for rotation becomes

Rŷ × (−Nŷ) +Rŷ × (−Ff x̂) = ICM α⃗ ⇒ RFf ẑ = ICM α⃗, (42)

where we have used the fact that ŷ × ŷ = 0 and ŷ × x̂ = −ẑ. This implies that the ball will start
to rotate only about the ẑ axis, so we can write α⃗ = dω⃗/dt = (dω/dt)ẑ and substitute it into the ẑ
component of equation (42) to find

dω

dt
=

R

ICM
Ff . (43)

Since the problem statement tells us that ball can be approximated as a sphere at all time, we know
that neither R nor ICM will change with time. However, the friction force does. Fortunately, the
vertical and horizontal translational dynamics are still the same as in previous parts, so we can use
our solution for the friction force from part f (i.e. equation (30)). Substituting this into equation (43)
gives

dω

dt
=

R

ICM
µ
√

2mgkh0 sin (ω0t) . (44)

Integrating once in time and using equation (18) gives

ω(t) = − R

ICM

µ

ω0

√
2mgkh0 cos (ω0t) + C = − mR

ICM
µ
√
2gh0 cos (ω0t) + C, (45)

where C is an integration constant. Since the ball is released without any rotation, we can use the
initial condition ω(0) = 0 to calculate that the integration constant is

ω(0) = 0 = − mR

ICM
µ
√

2gh0 cos (0) + C ⇒ C =
mR

ICM
µ
√
2gh0. (46)

9
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Substituting this back into equation (45) gives the angular velocity as a function of time while the ball
is in contact with the ground,

ω(t) =
mR

ICM
µ
√
2gh0 (1− cos (ω0t)) . (47)

To determine if the ball slips at any time while it is in contact with the ground, we are interested in
the final angular velocity ωf = ω(∆tc) as it will be the largest. Using equation (25), we find that

ωf = ω(∆tc) =
mR

ICM
µ
√
2gh0

(
1− cos

(
ω0

π

ω0

))
= 2

mR

ICM
µ
√

2gh0. (48)

Substituting this into equation (39) allows us to derive

v0 − 2µ
√

2gh0 > 2
mR2

ICM
µ
√
2gh0 ⇒ v0 > 2µ

√
2gh0

(
1 +

mR2

ICM

)
⇒ µ <

v0

2
√
2gh0

(
1 +

mR2

ICM

)−1

. (49)

This is almost the final answer. However, we must remember that the problem statement does not give
ICM . It is perfectly acceptable (and much quicker) to simply copy ICM = (2/5)mR2 from the table
presented in class. However, for completeness, we will show how to calculate it below. Before that, we
will substitute ICM = (2/5)mR2 into equation (49) in order to find

µ <
v0

7
√
2gh0

. (50)

Thus, the largest value of µ for which the ball will slide the entire time it is in contact with ground is

µ =
v0

7
√
2gh0

. (51)

This is the final answer.
To calculate the moment of inertia of a sphere about its center of mass, we start from the definition of
the moment of inertia

ICM =

∫
m

ρ2dm, (52)

where we must integrate over the entire mass of the ball. Since the ball is three dimensional and a
uniform sphere, we will convert from an integral over mass to an integral over space using the volumetric
density

ρV =
m

V
=

dm

dV
, (53)

where ρV is the volumetric density (not the cylindrical radius ρ), V is the total volume, dm is the mass
of a differential element, and dV is the volume of a differential element. Since the object is a sphere,
it makes sense to use spherical coordinates (r, θ, ϕ). The differential volume in spherical coordinates is
dV = (r sin θdϕ)(rdθ)(dr) and the volume of sphere is V = (4/3)πR3, so equation (53) becomes

3m

4πR3
=

dm

(r sin θdϕ)(rdθ)(dr)
⇒ dm =

3m

4πR3
r2 sin θdϕdθdr. (54)

Substituting this into equation (52) gives

ICM =
3m

4πR3

∫ R

0

∫ π

0

∫ 2π

0

ρ2r2 sin θdϕdθdr, (55)

10
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where we have chosen the bounds of integration in order to integrate over the entire sphere. Before
we can take the integral, we must convert the cylindrical radius ρ into spherical coordinates. Using
trigonometry or looking it up in a table, we can find that ρ = r sin θ. Thus, the moment of inertia
becomes

ICM =
3m

4πR3

∫ R

0

∫ π

0

∫ 2π

0

r4 sin3 θdϕdθdr =
3m

4πR3

∫ R

0

r4
(∫ π

0

sin3 θ

(∫ 2π

0

dϕ

)
dθ

)
dr, (56)

where we have taken quantities outside of integrals when possible. The innermost integral over ϕ is
easy to take, as the argument of the integral is independent of ϕ. Thus, we find

ICM =
3m

4πR3

∫ R

0

r4
(∫ π

0

sin3 θ (2π) dθ

)
dr =

3m

2R3

∫ R

0

r4
(∫ π

0

sin3 θdθ

)
dr. (57)

Taking the integral in θ is more challenging. First we rearrange the trigonometric identity sin2 θ +
cos2 θ = 1 and use it to derive∫ π

0

sin3 θdθ =

∫ π

0

sin θ sin2 θdθ =

∫ π

0

sin θ
(
1− cos2 θ

)
dθ =

∫ π

0

sin θdθ −
∫ π

0

sin θ cos2 θdθ. (58)

The integral in the first term is easy take. For the second term, we will make the substitution u = cos θ
(and find the bounds for the integral in u by substituting the bounds in θ into this expression). Since
du/dθ = − sin θ, we know that dθ/du = −1/ sin θ and can write∫ π

0

sin3 θdθ = (− cos θ]
π
0 −

∫ −1

1

sin θu2 dθ

du
du = (− cos(π) + cos(0)) +

∫ −1

1

u2du

= 2 +

(
u3

3

]−1

1

= 2− 2

3
=

4

3
. (59)

Substituting this into equation (57) gives the expected answer of

ICM =
3m

2R3

∫ R

0

r4
(
4

3

)
dr =

2m

R3

∫ R

0

r4dr =
2m

R3

(
R5

5

)
=

2

5
mR2. (60)
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3. Axe throwing

a. The axe exhibits two types of motion as it moves through the air: translation of its center of mass and
rotation about its center of mass. Since the only force acting on the axe is gravity, the center of mass
follows ballistic motion. Thus, as in problem 2.a, we can immediately write down the expressions for
the horizontal and vertical positions of the center of mass, which are

xCM (t) = vxit+ xi (1)

yCM (t) = −g

2
t2 + vyit+ yi (2)

respectively. Note that, because ŷ points upwards in this problem, the gravitational term needs to
have a negative sign. The coordinate system is defined such that xi = 0 and yi = 0, so we find

xCM (t) = vxit (3)

yCM (t) = −g

2
t2 + vyit. (4)

Next we must calculate the effect of the rotational motion. First, we must determine the location of
center of mass along the handle, to see how far it is from the blade. We will define new coordinate s,
which has its origin at the location of the blade and increases as you move along the handle. In this
coordinate system, we know that the center of mass of the handle on its own is at sh = 2ℓ. This is
because the handle is uniform and symmetric, so we know that it is midway along its length and the
handle is 4ℓ long. Since we can model the blade as a point mass, its center of mass is at its location of
sb = 0. Thus, the center of mass of the entire axe (i.e. handle and blade together) is a distance of

sCM =

∑
i misi∑
i mi

=
msh +msb
m+m

= ℓ (5)

away from the blade.

Since there is no air resistance, while the axe is flying through the air, it experiences no torque. This
means the blade of the axe undergoes uniform circular motion with its initial angular velocity of ωiẑ
at a radius of ρ = sCM = ℓ away from the center of mass. Given such uniform circular motion, we
know that the velocity of the blade of the axe around the center of mass is

v⃗b = vϕϕ̂ = ℓωiϕ̂ = ℓωi (− sinϕx̂+ cosϕŷ) , (6)

where we have used the cylindrical coordinate unit vector to Cartesian coordinates using the relation
ϕ̂ = − sinϕx̂+cosϕŷ. We need to perform this conversion because the problem asks us for the position
in Cartesian coordinates. We want to find the position, so, since velocity is the derivative of position,
we can write

dr⃗b
dt

= ℓωi (− sin (ϕ(t)) x̂+ cos (ϕ(t)) ŷ) . (7)

We would like to integrate this, but one subtlety, which we have made explicit in this formula, is that
the angular position ϕ(t) is changing with time. To determine how it varies, we remember that the
angular velocity is constant ω(t) = ωi and that ω(t) = dϕ/dt. Combining these two relationships and
integrating once in time gives ϕ(t) = ωit + C. Since the initial condition for the angular position is
ϕ(0) = π/2, we see that C = π/2 and the angular position varies with time according to

ϕ(t) = ωit+
π

2
. (8)

12



PHYS-101(en) 19 January 2024 - Solution to the Final Exam

Substituting this into equation (7) gives

dr⃗b
dt

= ℓωi

(
− sin

(
ωit+

π

2

)
x̂+ cos

(
ωit+

π

2

)
ŷ
)
= −ℓωi (cos (ωit) x̂+ sin (ωit) ŷ) , (9)

where we have made use of the identities given in the question. Now we can directly integrate this
expression to find

r⃗b(t) = −ℓ sin (ωit) x̂+ ℓ cos (ωit) ŷ + C⃗, (10)

where C⃗ is a constant that is a vector (since the equation is a vector equation). To determine it we use
the initial condition that the blade is above the center of mass and a distance of ℓ away, so r⃗b(0) = ℓŷ.
Applying this initial condition we see that C⃗ = 0, so equation (10) becomes

r⃗b(t) = −ℓ sin (ωit) x̂+ ℓ cos (ωit) ŷ, (11)

which is the position of the blade relative to the center of mass.

Lastly, we must combine the translational motion (given by equations (3) and (4)) and rotational
motion (given by equation (11)) to find the motion of the blade in the laboratory coordinate system
defined in the problem statement. This can be accomplished by vector addition as equations (3) and (4)
give the position of the center of mass in the laboratory frame and equation (11) gives the position of
the blade relative to the center of mass. Thus, we sum the components of equation (11) with equations
(3) and (4) to find the final answer

xb(t) = vxit− ℓ sin (ωit) (12)

yb(t) = −g

2
t2 + vyit+ ℓ cos (ωit) . (13)

b. A good starting point to find forces is a free body diagram, which we draw below for the blade of the
axe in the laboratory frame. Note that F⃗h is drawn at an arbitrary angle as its direction will vary in
a complicated way.

mg
Fh

From this we see that Newton’s second law is

F⃗h −mgŷ = ma⃗b ⇒ F⃗h = mgŷ +ma⃗b (14)

for the blade, where a⃗b is the acceleration of the blade. Acceleration is just the second derivative of
the position, so we can use equations (12) and (13) to write

a⃗b =
d2xb

dt2
x̂+

d2yb
dt2

ŷ = ℓω2
i sin (ωit) x̂− gŷ − ℓω2

i cos (ωit) ŷ. (15)

Substituting this into equation (14) gives

F⃗h = mℓω2
i sin (ωit) x̂−mℓω2

i cos (ωit) ŷ = mℓω2
i (sin (ωit) x̂− cos (ωit) ŷ) . (16)

13
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Taking the magnitude of this gives the final answer of

Fh = mℓω2
i

√
sin2 (ωit) + cos2 (ωit) = mℓω2

i , (17)

where we have used the trigonometric identity sin2 θ + cos2 θ = 1.
The above derivation is performed in the laboratory frame given in the problem statement (which is
inertial), but we can perform the calculation more quickly in the center of mass reference frame (which is
non-inertial). In the center of mass frame, a fictitious force appears due to the translational acceleration
A⃗FN of the center of mass in the laboratory frame. This force has a strength of −mA⃗FN = mgŷ, as
the acceleration of the center of mass is simply −gŷ. Thus, Newton’s second law in the center of mass
frame is

F⃗h −mgŷ +mgŷ = ma⃗Nb ⇒ F⃗h = ma⃗Nb, (18)

where a⃗Nb is the acceleration of the blade in the non-inertial center of mass reference frame. This
acceleration is easy to calculate as, in the center of mass reference frame, the blade is only undergoing
uniform circular motion at a radius of ρ = ℓ with an angular velocity of ωi. Thus, the acceleration of
the blade is the centripetal acceleration a⃗Nb = −ℓω2

i ρ̂. Substituting this into equation (17) and taking
the magnitude gives the final answer of

F⃗h = −mℓω2
i ρ̂ ⇒ Fh = mℓω2

i , (19)

which is identical to equation (17).

c. In order for the axe blade to exactly hit the target, we require that xb(tf ) = d and yb(tf ) = l
simultaneously at some time tf . Using equations (12) and (13), these conditions become

d = vxitf − ℓ sin (ωitf ) (20)

ℓ = −g

2
t2f + vyitf + ℓ cos (ωitf ) . (21)

Additionally, we have a constraint on the angular position ϕ: we require the axe to hit the target
with the handle vertical such that ϕ(tf ) = π/2 − 2πn, where n ∈ Z+ can be any positive integer and
represents the number of full revolutions the axe makes before hitting the target. Note that we must
subtract 2πn (rather than add it) because the problem statement tells us that ωi < 0 (so ϕ must be
decreasing with time). Using equation (8), this conditions becomes

ωitf +
π

2
=

π

2
− 2πn ⇒ ωitf = −2πn. (22)

This is a constraint on ωi, but we still need to determine tf . Since we know vxi, we can find tf by
substituting equation (22) into equation (20) to find

d = vxitf − ℓ sin (−2πn) ⇒ tf =
d

vxi
. (23)

Then we can substitute both this and equation (22) into equation (21) to find that there is one allowed
value of vyi, which is

ℓ = −g

2

(
d

vxi

)2

+ vyi

(
d

vxi

)
+ ℓ cos (−2πn) ⇒ vyi =

g

2

d

vxi
. (24)

This is half of the final answer. The allowed values of ωi are found by substituting equation (23) into
equation (22) to find

ωi = −2πn
vxi
d

, (25)

where n ∈ Z+ can be any positive integer. In practice, when you throw an axe it typically rotates once
before hitting the target, which would correspond to n = 1.

14



PHYS-101(en) 19 January 2024 - Solution to the Final Exam

d. This details of this problem are hard. The fact that we need to take the small angle approximation
in θ ≪ π forces us to express dynamics in terms of θ, but θ is not the traditional cylindrical angle as
it is defined to start from the +ŷ axis and increase clockwise. Thus, it will be useful to also define
the traditional cylindrical angle ϕ (which starts from the +x̂ axis and increases counter-clockwise) as
shown in the figure below.

p
θ

ϕ

̂x

̂y
̂z

To understand the rotation of the board about point p, we will start by writing Newton’s second law
for rotation

τ⃗net = Ipα⃗. (26)

We will first focus on the right side of the equation. The target is only free to have angular acceleration
in the ±ẑ direction, so we can write α⃗ = αẑ. Additionally, we know that α = d2ϕ/dt2 using the
traditional cylindrical angle ϕ, which gives

τ⃗net = Ip
d2ϕ

dt2
ẑ. (27)

Eventually we must take the small angle approximation in θ ≪ π, so we need to convert from ϕ to θ.
We can do this by studying the above figure and noting that θ+ϕ = π/2. Rearranging and taking two
derivatives in times demonstrates that

ω =
dϕ

dt
= −dθ

dt
⇒ α =

d2ϕ

dt2
= −d2θ

dt2
, (28)

which allow us to write equation (27) as

τ⃗net = −Ip
d2θ

dt2
ẑ. (29)

Now we turn to the left side of Newton’s second law for rotation. There are several forces acting on
the board: gravity, the normal force from the ground, and some sort of friction force from the ground
(which is required to keep the board from translating). However, both the normal force and the friction
force are applied at the p as the board rotates. Thus, the only torque comes from gravity, so equation
(29) becomes

F⃗g = −Ip
d2θ

dt2
ẑ ⇒ r⃗g × (−Mgŷ) = −Ip

d2θ

dt2
ẑ ⇒ Mgr⃗g × ŷ = Ip

d2θ

dt2
ẑ. (30)

When calculating torques, the force from gravity acts at the center of mass of the object, which we
are told is at the geometric center of the board. However, one must be careful in expressing r⃗g as
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it must be valid as the board rotates and changes angle θ. To make it as simple as possible, we will
adopt a cylindrical coordinate system with the origin at p. Given these coordinates, we can write the
displacement from p to the center of the board as

r⃗g = hρ̂− rθ̂. (31)

Then we can write these unit vectors in Cartesian coordinates using the identities ρ̂ = sin θx̂+ cos θŷ
and θ̂ = cos θx̂ − sin θŷ. Note that these are not the standard conversions between cylindrical and
Cartesian unit vectors because the angle θ is defined from the +ŷ axis towards the +x̂ axis (as opposed
to the opposite as is conventional). Instead you have to think about how the unit vectors change as
θ is changed and write down the expressions on your own. Substituting these unit vector conversions,
equation (31) becomes

r⃗g = (h sin θ − r cos θ) x̂+ (h cos θ + r sin θ) ŷ, (32)

which can be used to write equation (30) as

Mg ((h sin θ − r cos θ) x̂+ (h cos θ + r sin θ) ŷ)× ŷ = Ip
d2θ

dt2
ẑ

⇒ Mg (h sin θ − r cos θ) ẑ = Ip
d2θ

dt2
ẑ. (33)

We can take the ẑ component of this equation to find

d2θ

dt2
− Mg

Ip
(h sin θ − r cos θ) = 0. (34)

This is an equation of motion for the angular position of the target, but it is very complicated and
difficult to solve. To simplify it, we will take the small angle approximation θ ≪ π. This will be a good
approximation if the board is tall and skinny (i.e. h ≫ r) because a small tilt angle will be sufficient
to move the center of mass of the board to the right of p (which ensures that the board will tip all
the way over). Thus, whether or not the board tips is entire determined by the behavior when θ ≪ π.
Assuming θ ≪ π allows us to approximate cos θ ≈ 1 and sin θ ≈ θ. Equation (34) becomes

d2θ

dt2
− Mgh

Ip
θ = −Mgr

Ip
, (35)

which is the final answer for the equation of motion governing the rotation of the target.

e. There are two ways to solve this equation. The quicker way is to notice that it has the form of the
forced damped harmonic equation from the Math Review document. This form is given by

d2x

dt2
+ 2λ

dx

dt
+ ω2

0x =
Fd

m
cos (ωdt) + C (36)

and the document tells us that it is solved by

x(t) = e−λt
(
A1e

t
√

λ2−ω2
0 +A2e

−t
√

λ2−ω2
0

)
+Ad(ωd, Fd) cos(ωdt+ φ(ωd)) +

C

ω2
0

, (37)

where A1 and A2 are integration constants and

Ad(ωd, Fd) =
Fd/m√

(2λωd)2 + (ω2
0 − ω2

d)
2

(38)

φ(ωd) = tan−1

(
2λωd

ω2
d − ω2

0

)
. (39)
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Thus, if we let x = θ, λ = 0, ω2
0 = −Mgh/Ip, Fd/m = 0, and C = −Mgr/Ip, we find that

Ad(ωd, Fd) = 0 (40)

φ(ωd) = tan−1 (0) = 0 (41)

and a solution of

θ(t) = A1e
t
√

Mgh/Ip +A2e
−t
√

Mgh/Ip +
r

h
. (42)

This is the final answer.

If you didn’t write down the solution, there is a second way to solve equation (35). First, we notice
that this differential equation has a constant inhomogeneous term (i.e. the term on the right side of
the equation). This can be removed by making the substitution

θ(t) = Θ(t) +

(
−Mgr

Ip

)
/

(
−Mgh

Ip

)
= Θ(t) +

r

h
(43)

so that equation (35) becomes

d2Θ

dt2
− Mgh

Ip
Θ(t) = 0. (44)

This is a standard technique to eliminate constant inhomogeneous terms, which we used to help solve
other differential equations encountered in this course. Studying equation (44), we see that it is quite
similar to the harmonic equation, except that the second term has a negative sign instead of a positive
sign. We can fix this fact if we use the imaginary unit i =

√
−1 to write it as

d2Θ

dt2
+

(
i

√
Mgh

Ip

)2

Θ(t) = 0. (45)

Thus, the equation can be cast as a harmonic equation and solved that way. However, we see that
ω0 = i

√
Mgh/Ip, so we would have i inside the cosine function. To get rid of it we would have to

use Euler’s formula, thereby converting the cosine into exponential functions. Instead we will use this
intuition that the solution is exponentials and guess a form to solve equation (44). We will guess

Θ(t) = A1e
C1t, (46)

where we don’t know either A1 or C1. Substituting this into equation (44) gives

A1C
2
1e

C1t −A1
Mgh

Ip
eC1t = 0 ⇒ C1 = ±

√
Mgh

Ip
. (47)

We see that if C1 has either of these two possible values, then the form we guessed will solve the
differential equation. Consequently, the most general possible solution is a linear combination of the
two possible solutions,

Θ(t) = A1e
t
√

Mgh/Ip +A2e
−t
√

Mgh/Ip , (48)

where A1 and A2 are integration constants. Substituting this back into equation (43) to get the solution
for θ(t) confirms the result we obtained from the Math Review document (e.g. equation (42)).

f. We have just obtained the general solution given by equation (42). To determine the integration
constants, we must use the initial conditions. We will define a new time coordinate such that the axe
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hits the target at t = 0. At this time, we know that the board has an angular position of θ(0) = 0.
Substituting equation (42) into this yields

θ(0) = 0 = A1 +A2 +
r

h
. (49)

Unfortunately, this is just one equation and we have two unknown integration constants. We must also
consider the initial angular velocity, which the question tells us is ω(0) = −ωp0. However, we must
remember that the angular velocity is ω = dϕ/dt, rather than dθ/dt. This means we must use equation
(28) to determine that the initial value of dθ/dt is actually +ωp0. Taking the derivative of equation
(42), evaluating it at t = 0, and setting the result equal to +ωp0 gives

ωp0 = A1

√
Mgh

Ip
−A2

√
Mgh

Ip
⇒ 0 = A1 −A2 − ωp0

√
Ip

Mgh
. (50)

If we sum equations (49) and (50), we can determine one of the integration constants,

0 = 2A1 +
r

h
− ωp0

√
Ip

Mgh
⇒ A1 =

1

2

(
ωp0

√
Ip

Mgh
− r

h

)
. (51)

Substituting this back into equation (49) gives the other,

A2 = −1

2

(
ωp0

√
Ip

Mgh
+

r

h

)
. (52)

Thus, we can substitute equations (51) and (52) into equation (42) to find that the full solution to the
differential equation is

θ(t) =
1

2

(
ωp0

√
Ip

Mgh
− r

h

)
et
√

Mgh/Ip − 1

2

(
ωp0

√
Ip

Mgh
+

r

h

)
e−t

√
Mgh/Ip +

r

h
. (53)

Studying the solution, we see that the first term is the important one in determining if the board tips
over. In the limit of long time t → ∞, this term will dominate as it is growing exponentially, while the
other terms are exponentially decaying or constant. If the prefactor of the first term is positive, then
θ will increase as t → ∞ and the board will tip over forwards about p. If the prefactor is negative, the
board may initially rotate forwards, but in the long time limit θ will eventually start to decrease with
time and the board will return to θ = 0. At this point it would be back to its initial angular position
and it would start rotating about a point that is not p (at which time our analysis would break down).
From this logic, we have deduced that the critical quantity is the prefactor of the first term. As long
as it is positive, i.e.

0 <
1

2

(
ωp0

√
Ip

Mgh
− r

h

)
⇒

√
g

h

Mr2

Ip
< ωp0, (54)

the board will tip over forwards in the limit of t → ∞. Thus, the minimum value of ωp0 for which
tipping still occurs is

ωp0 =

√
g

h

Mr2

Ip
. (55)
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