11: Rotation - feste Achse

- I. Wie beschreibt man die Dynamik des Rollens ohne Gleiten?
 - z. Erinnerung: 2. Gesetz der Rotation
- II. Wie bestimmt man das Trägheitsmoment eines starren Körpers ?
 Parallelachsen-Theorem (Steinersche Satz)
- III. Wie kann man die Rollbewegung als momentane Rotation um den Kontaktpunkt beschreiben ?
- IV. Welches Trägheitsmoment für welche Körper?
- V. Welches ist die mechanische Energie eines rotierenden starren Körpers ?
 - z. Erinnerung: Dynamik

Vorbereitung auf die Vorlesung und Übungen

Kapitel im Giancoli vor dem Kurs zu lesen (1.5 Seiten):

10-5 Torque and rotational inertia

Vorbereitende Übungen (4) vor der Übungssession zu erledigen :

Giancoli 10-32, 41, 47a, 56, 10-65, 71

Giancoli Kapitel 10-5 bis 10-9

Grütter Mechanik 2024

z. Erinnerung: Die Dynamik des Massenpunktes

Das 2. Axiom (Gesetz) bis jetzt

Linear (Lektion 4)

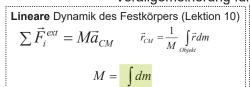
$$\vec{F}_{net} = \sum \vec{F}_i = m\vec{a}$$

Grütter Mechanik 2024

Rotation (Lektion 5)

$$\sum \vec{\tau}_i = I\vec{\alpha}$$

Verallgemeinerung für den starren Körper



Dynamik der **Rotation** eines Rades

$$\vec{r} \times \vec{F} = \text{ n } m r_{\! \perp}^{\ \ 2} \vec{\alpha} \qquad \text{ r}_{\! \perp} \text{: Distance zur }$$
 Drehachse

$$I^{CM} = \left(\sum \Delta m\right)r^2 = \int_{Objekt} r^2 dm$$

Trägheitsmoment eines Rades (Masse nur in den Pneus) $I^{CM} = MR^2$ Versprung im CM

Bezeichnet die Achse

11-2

11-1

11-1. Unter welchen Bedingungen rollt ein beschleunigtes Objekt ohne zu gleiten?

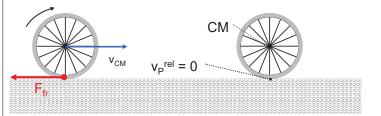
Ohne Gleiten: Der Kontaktpunkt P des Rades ist in Ruhe: v_P=0. Translation des CM und Rotation um den Massenschwerpunkt CM :

$$\vec{v}(\vec{r}_i) = \vec{v}_{CM} + \vec{\omega} \times (\vec{r}_i - \vec{r}_{CM})$$

1. Beziehung zwischen Geschwindigkeit der Rades $v_{\text{CM}},\,\omega$ und seinem Radius R

$$v_{CM} = -\omega R$$

2. Was garantiert dass ein beschleunigtes Rad nicht gleitet?



11-3

Wie bestimmt man die Beschleunigung eines Rades?

Methode 1: Translation + Rotation um den Massenschwerpunkt CM

Situation: Eine Kraft F wirkt am CM. Am Kontaktpunkt P: Reibungskraft $F_f \rightarrow$ Drehmoment $\tau_z^{CM} = RF_f(F_f \!\!<\!\! 0)$

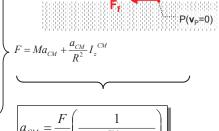
1) 2. Axiom (Translation):

$$F - F_f = Ma_{CM}$$

2) 2. Gesetz der Rotation:

$$\tau_z^{CM} = -RF_f = \frac{d\omega_z}{dt} I_z^{CM}$$

$$-F_f = -\frac{a_{CM}}{R^2} I_z^{CM}$$



E11-4

z.B.: Masse an einer Riemenscheibe

Grütter Mechanik 2024

Zugspannung am Faden?

Feststellungen (lineare Dynamik):

- 1) Actio=Reactio : Die Kraft F_T ist dieselbe an beiden Enden des Fadens
- 2) Die Scheibe bewegt sich nicht: Die durch die Masse induzierte Kraft am CM der Scheibe erhöht sich um F_T
- 3) Die Beschleunigung der Masse ergibt sich als

$$a = g - \frac{F_T}{m_b}$$

Dynamik der Rotation: Das resultierende Drehmoment auf den CM der Scheibe ist

$$\tau^{CM} = F_T R = I\alpha$$

$$a = \frac{F_T R^2}{I}$$

$$F_T = m_b g \left(\frac{I}{I + m_b R^2} \right)$$

E11-6

11-2. Was beschreibt die Proportionalität zwischen τ und α ?

Das Trägheitsmoment I und das « 2. Gesetz » der Rotation

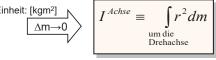
Das 2. Gesetz der Rotation:

$\boxed{\sum \vec{\tau}_{ext} = I^{Achse} \vec{\alpha}} I^{Achse} = \sum \Delta m_i r_i^2$

Inertie der Rotation

(Widerstand zur Änderung der Winkelgeschwindigkeit)

l≡Trägheitsmoment



r = Distanz zur Drehachse

Für zwei Objekte 1 und 2, die um die selbe Drehachse drehen, addieren sich deren Trägheitsmomente (Warum ?):

$$I_{tot}^{Achse} = I_{1}^{Achse} + I_{2}^{Achse} I_{tot}^{Achse} = \sum_{k} I_{k}^{Achse}$$

Welche Eigenschaften besitzt das Trägheitsmoment bezüglich des CM ?

I^{CM} = Trägheitsmoment bezüglich einer Drehachse durch den Massenschwerpunkt CM des Objektes

$$I^{CM} \equiv \int_{\substack{\text{um Drehachse} \\ \text{durch CM}}} r^2 dm$$

r = Distanz zur Drehachse

Parallelachsen-Theorem (Steiner)

Rotation um eine Drehachse mit Distanz h | |zu der Drehachse durch den CM lässt sich durch ein Trägheitsmoment l^{Achse} beschreiben, wobei

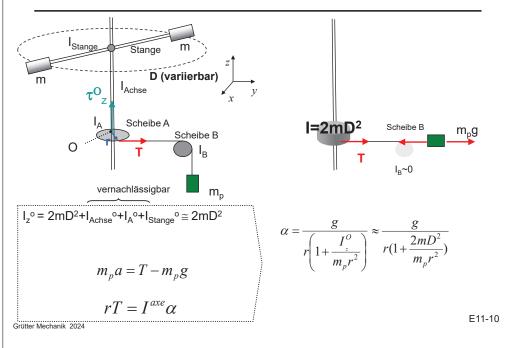
$$I^{Achse} = I^{CM} + mh^2$$

$$h >> R$$
 \Rightarrow $I^{Achse} = Mh^2$

11-8

Grütter Mechanik 2024

Demo: Variation des Trägheitsmomentes



11-3. Kann man eine Rotation (ohne Gleiten) auch um den Kontaktpunkt P analysieren?

Einleitung: Wie löst man Probleme der Dynamik der Rotation (feste Achse)?

1.) Für die lineare Bewegung des CM:

2. Axiom

$$\vec{F}_{net} = m\vec{a}_{CM}$$

2.) Rotation: 2.Gesetz

$$\vec{\tau}_{net}^{Achse} = I^{Achse} \vec{\alpha}$$

3.) 1 und 2 kombinieren→ Lösung

z.B.: Rollen ohne Gleiten

Am Kontaktpunkt P gilt zu jeder Zeit

v_P=Geschwindigkeit des Bodens (=0)

Translation um $v_{\rm CM}$

Rotation um P (Kontaktpunkt)

Rotation um den CM mit ω_R =-v/R

 $\mathbf{v}_{i} = \boldsymbol{\omega}_{R} \times \mathbf{r}_{i}$

Grütter Mechanik 2024

11-11

Demo: Von einem Faden gezogene Spulen

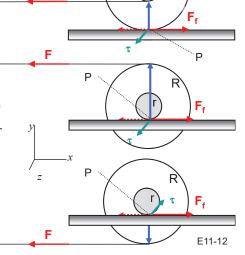
Frage: In welche Richtung rollt die Spule, wenn man am Faden zieht,?

Situation 1: Die Schnur ist auf dem kleinen Zylinder aufgerollt, die Spule rollt (ohne zu gleiten) auf dem grossen Zylinder

Situation 2: Man zieht oben mit der Schnur am grossen Zylinder, die Spule rollt (ohne Gleiten) auf dem kleinen Zylinder.

 $\tau^P = (R+r)F$

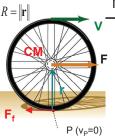
Situation 3: Man zieht unten mit der Schnur am grossen Zylinder, die Spule rollt (ohne Gleiten) auf dem kleinen Zylinder... $\tau^P = -(R - r)F$



Grütter Mechanik 2024

Wie bestimmt man die Beschleunigung des rollenden Rades?

Methode 2: Rotation um den Kontaktpunkt P



Situation: Eine Kraft F wird am CM angesetzt

 \rightarrow Drehmoment $\tau_z^P = -RF$

2. Gesetz (Rotation)

$$\tau_{z}^{P} = -RF = I_{z}^{P} \alpha$$

$$\alpha = -\frac{a_{CM}}{R}$$

$$a_{CM} = \frac{R^{2}}{I_{z}^{P}} F$$
(Steinersche Satz)
$$I_{z}^{P} = MR^{2} (1 + I_{z}^{CM} / MR^{2})$$

$$a_{CM} = \frac{F}{M} \left(\frac{1}{1 + I_z^{CM} / MR^2} \right)$$

Grütter Mechanik 2024

E11-14

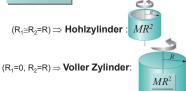
11-4. Welches ist das Trägheitsmoment des CM einer Achse?

Beispiel gewisser homogener Basisobjekte

Dünner Stab um sein Zentrum herum:

Hohler Zylinder bezüglich seiner Symmetrieachse:

Vollkugel



Hohlkugel

Grütter Mechanik 2024

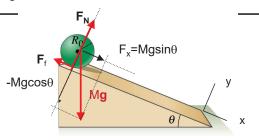
11-16

Wettrennen der Zylinder: durch Analyse der Kräfte

$$a_{CM} = \frac{F_x}{M} \left(\frac{1}{1 + I_z^{CM} / MR^2} \right)$$

(Beschleunigung des Rades, s. vorher)

$$g' = \frac{g}{\frac{I_z^{CM}}{MR^2} + 1}$$



Also, wer gewinnt das Rennen?

Hohlzylinder I/MR²=1

Vollzylinder: I/MR²=0.5

V V

Vollzylinder aus Metall: I/MR²=0.5

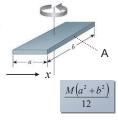
Vollzylinder aus Plastik: I/MR²=0.5

Grütter Mechanik 2024

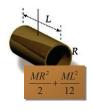
Q11-17

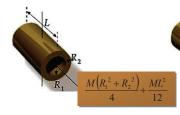
Noch mehr Trägheitsmomente

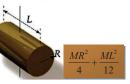
Parallelflache Form (Buch)



Zylinder, Rotation \perp zu seiner Symmetrieachse





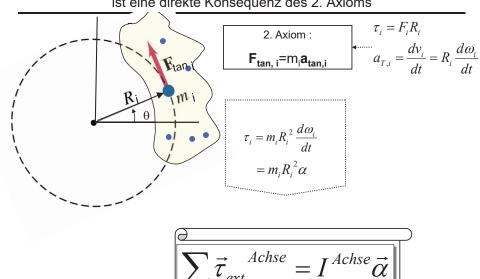


11-18

Grütter Mechanik 2024

z. Erinnerung: Das 2. Gesetz der Rotation

ist eine direkte Konsequenz des 2. Axioms



(siehe Lektion 5, 10 und 11)

Grütter Mechanik 2024

Wie beschreibt man die Bewegung eines an einem fixen Punkt aufgehängten Objektes?

Situation: Ein beliebiges Objekt ist an einem Drehpunkt P aufgehängt, und wird um θ_0 bezüglich der Vertikale ausgelenkt (Gleichgewicht entsteht, wenn der Massenschwerpunkt CM sich unterhalb von P befindet). Das Objekt wird losgelassen.

Frage: Welche Bewegung kann man beobachten?

$$\boxed{\sum \vec{\tau}_{ext}^{P} = I^{P} \vec{\alpha}}$$

$$\tau_z^P = -DMg\sin\theta = I_z^P\alpha = I_z^P\frac{d^2\theta}{dt^2}$$

$$\frac{d^2\theta}{dt^2} + \frac{DMg}{I_z^P} \sin\theta = 0$$

$$\frac{d^2\theta}{dt^2} + \frac{DMg}{I_z^P}\theta = 0$$

 $\frac{d^2\theta}{dt^2} + \frac{DMg}{I_z}\theta = 0$ Harmonische Schwingung mit $\omega_0 = \sqrt{\frac{DMg}{I_z}}$

$$\omega_0 = \sqrt{\frac{DMg}{I_z^P}}$$

СМ θ_0 Mg

Grütter Mechanik 2024

E11-20

11-19

(Fast) die ganze Dynamik zusammengefasst

Kraft und Drehmoment, Masse und Trägheitsmoment, kinetische Energie

NB. Die Gesetze der Drehbewegung sind eine <u>direkte</u> Folge der Newtonschen Axiome. Die Gesetze bestehen also als Zwillingen ...

Linear (s. Lektion 4,5,7 & 10)	Rotation (s. Lektion 5, 9 -11)
$\sum F = ma$	$\sum \tau_{ext}^{Achse} = I^{Achse} \alpha$
$\sum \vec{F} = M\vec{a}_{CM}$	$\sum \vec{\tau}_{ext}^{Achse} = I^{Achse} \vec{\alpha}$ $\vec{\tau} = \vec{r} \times \vec{F}$
$M = \int dm$	$I^{Achse} = \int_{\text{um Drehachse}} r^2 dm$
(Widerständ zur Änderung der Geschwindigkeit)	(Widerstand zur Änderung der Winkelgeschwindigkeit)
$K = M \frac{v_{CM}^2}{2}$	$K_{rot} = I \frac{\omega^2}{2}$
	(s. Lektion 4,5,7 & 10) $\sum F = ma$ $\sum \vec{F} = M\vec{a}_{CM}$ $M = \int dm$ (Widerständ zur Änderung der Geschwindigkeit)

Grütter Mechanik 2024

Welches ist die kinetische Energie eines starren Körpers?

$$V_{\text{CM}} = 0$$

$$V_{i} = \omega_{z} r_{i}$$

$$K = \frac{1}{2} \sum_{i} m_{i} v_{i}^{2}$$

$$K_{rot} = \frac{1}{2} I_{z}^{CM} \omega_{z}^{2}$$

$$K_{rot} = \frac{1}{2} I_{z}^{CM} \omega_{z}^{2}$$

$$K = \frac{1}{2} M v_{CM}^{2} + \frac{1}{2} I_{z}^{CM} \omega_{z}^{2}$$

11-5. Welches ist die mechanische Energie der Rotation?

(bezüglich einer festen Drehachse)

$$K_{rot} = \frac{I^{Achse}\omega^2}{2}$$

$$I^{Achse} = \sum \left(\Delta m r^2 \right) = \int_{Objekt} r^2 dm$$

Die mechanische Energie

$$E_{tot} = K + U + K_{rot}$$

für ein Objekt mit Masse M, das sich um sein Massenschwerpunkt CM dreht:

$$E_{tot} \equiv M\vec{g} \cdot \vec{r}_{CM} + M \frac{v_{CM}^2}{2} + I^{CM} \frac{\omega^2}{2}$$

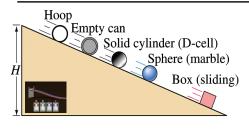
Erhaltung der mechanischen Energie

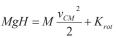
Für ein konservatives System in Drehung ist die mechanische Energie erhalten, sofern $\Sigma F_{ext} = 0$ und $\Sigma \tau_{ext} = 0$:

$$E = K_{CM} + K_{rot} + U_{CM} = konstant$$

Grütter Mechanik 2024

Wettbewerb der Zylinder: mit Energieerhaltung





 $MgH = M \frac{v_{CM}}{2} \left(1 + \frac{I^{CM}}{MR^2}\right) \qquad M \frac{v_{CM}}{2} = MgH \frac{1}{\left(1 + \frac{I^{CM}}{MR^2}\right)}$

Welcher kommt zuerst unten an?

		$\frac{I^{CM}}{MR^2}$	$\frac{K_{\scriptscriptstyle CM}}{MgH}$
\bigcup	Hohlzyl.	1	1/2
	Vollzyl.	1/2	2/3
	Kugel	2/5	5/7
	Schachtel		1

$$\frac{\mathsf{K}_{\mathsf{CM}}}{\mathsf{M} \frac{\mathsf{V}_{CM}^{2}}{2}} = MgH \frac{1}{\left(1 + \frac{I^{CM}}{MR^{2}}\right)}$$

Grütter Mechanik 2024