6: Physik der Planeten

Gravitation

I. Wie kann man die Bewegung in einem rotierenden Bezugssystem beschreiben ?

Zentrifugalkraft und Corioliseffekt

II. Wodurch wird die Umlaufbahn eines Planeten bestimmt?

Die 3 Keplerschen Gesetze Ursprung der Gezeiten

III. Warum ist der Raum gekrümmt?

Äquivalenz-prinzip

Vorbereitung auf die Vorlesung und Übungen

Kapitel im Giancoli vor dem Kurs zu lesen (2 Seiten):

11-8 Rotating frames of reference

6-1 Newton's law of universal gravitation

Vorbereitende Übungen (3) vor der Übungssession zu erledigen :

Giancoli 6-1, 3, 37

Giancoli Kapitel 6-1 bis 6-5; 6-8 sowie 11-8 bis 11-9

6-1

Grütter Mechanik 2024

6-1. Kann man die Rotation der Erde vernachlässigen?

Zentripetalbeschleunigung am Äguator:

Radius R_T = 6.4·10⁶m, Periode (1j) T=86.4·10³ s

 \Rightarrow a_R = 0.034 m/s² \cong 0.3% g

Schlussfolgerung:

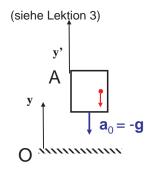
Für die Mehrheit der Beobachtungen kann man die Rotation der Erde vernachlässigen.

Aber: Es bestehen Ausnahmen

(s. weiter unten)

6-2

Wie muss man das 2. Axiom einem beschleunigten Bezugssystem anpassen ?



Situation: Man lässt einen Ball in einem frei fallenden Lift los.

Frage: Welches ist der Betrag der auf den Ball wirkenden resultierenden Kraft, vom Lift aus gesehen?

Für eine korrekte Darstellung der resutierenden Bewegung im beschleunigten Bezugssystem:

Muss man eine fiktive Kraft -ma₀ hinzufügen

[Der reellen Beschleunigung des Liftes entgegengesetzt]

Grütter Mechanik 2024

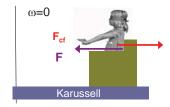
Welche Scheinkraft muss man einem rotierenden Bezugssystem anfügen?

In diesem Bezugssystem, das sich dem Karussel entsprechend dreht, beobachtet man, dass das Mädchen

- 1. sich nicht bewegt,
- 2. aber immer noch der Kraft des Stuhles ausgesetzt ist ...

Newton: « F=ma »: Einführen einer Scheinkraft (Beschleunigung): Zentrifugalkraft. Zeigt nach aussen mit Norm mv²/R

$$\vec{F}_{Cf} = -m\vec{\omega} \times (\vec{\omega} \times \vec{r})$$

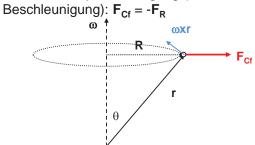


F_{Cf} ist eine Scheinkraft, **Trägheitskraft**, Folge des beschleunigten Bezugssystems

6-3

6-4

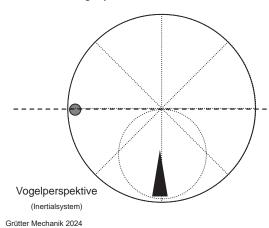
s. auch Zentripetalbedingung (radiale



Genügt die Zentrifugal«kraft» der Beschreibung aller Bewegungen im rotierenden Koordinatensystem?

Situation: Ein Pendel oberhalb einer sich drehenden Scheibe wird losgelassen. Seine Amplitude (Rsinθ) entspricht dem Radius der Scheibe und die Periode der der Scheibe.

Beobachtung: Das Pendel bewegt sich auf einer Geraden in einem Inertialsystem, aber auf einem Kreis im Bezugssystem der Scheibe.



Kann die Zentrifugalkraft die Beobachtung erklären?

6-5

Wann ist der Corioliseffekt zu berücksichtigen ?

Konsequenz des rotierenden Bezugssystems. Man muss zur resultierenden Kraft zwei Scheinkräfte addieren (Inertialkräfte), wovon eine dem Corioliseffekt zugeschrieben wird

Wann ist dieser Effekt wichtig ?

Coriolis «Kraft»

$$\vec{F}_{Co} = -2m\vec{\omega} \times \vec{v}$$

6-2. Wie bestimmen Distanz und Masse die Gravitationskraft?

1.) Auf der Erde: g=9.8 m/s²

Der Mond umkreist die Erde mit einer Periode von 27.3 Tagen und Radius d= 384'000km

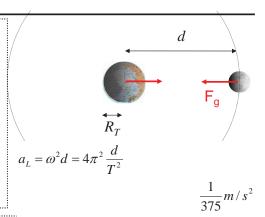
Zentripetalbeschleunigung des Mondes a₁ = 0.0027m/s²

$$\rightarrow$$
 a_L \cong g/3600

⇒ Mit zunehmender Distanz ist die Gravitationskraft stark abgeschwächt

$$d/R_T \cong 60$$

2.) Wenn wir unsere Masse verdoppeln, verdoppelt sich die Anziehungskraft: ⇒ F_q ∞ m



$$\Rightarrow$$
 g(r) \propto r⁻²

⇒ Zwei Objekte mit Massse m₁ und m₂:

$$\begin{array}{ccc} F_g \propto m_1 m_2 \\ \\ \Rightarrow & F_g \propto m_1 m_2 / r^2 \end{array}$$

Grütter Mechanik 2024

Wie lautet das universelle Gravitationsgesetz Newtons?

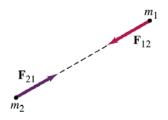
eine auf Distanz wirkende Aktion

Die Gravitationskraft zwischen zwei punktförmigen Massen wirkt immer auf deren Verbindungslinie mit Norm

Die Gravitationskonstante

 $G=6.67\cdot10^{-11}Nm^2/kg^2$

$$\left| \vec{F}_{12} \right| = G \frac{m_1 m_2}{\left| \vec{r}_{12} \right|^2}$$



Vektoriell:

$$\vec{F}_{12} = -G \frac{m_1 m_2}{\left| \vec{r}_1 - \vec{r}_2 \right|^3} (\vec{r}_1 - \vec{r}_2)$$

Mehrere Massen m_k die auf m₁ einwirken:

$$\vec{F}_{net} = \sum_{k} \vec{F}(\vec{r}_1 - \vec{r}_k) = \sum_{k} G \frac{m_1 m_k}{\left| \vec{r}_1 - \vec{r}_k \right|^3} (\vec{r}_1 - \vec{r}_k)$$

Beispiele

1. Wie kann man G bestimmen?

Das Experiment von Cavendish

2. Kann man die Masse der Erde M_T bestimmen, sofern man ihren Radius R_⊤ kennt?

$$g = GM_T/R_T^2 \rightarrow M_T = gR_T^2/G$$

 $M_T = 9.8 (6.38 \cdot 10^6)^2/6.67 \cdot 10^{-11}$

3. Welches ist die Schwerkraft anderswo?

	M/M _T	(R/R _T)2	g*/g
Mond	0.012	0.07	
Mars	0.10	0.28	
Jupiter	318	120	
Sonne	330'000	12100	
Sirius B	~ 330'000	~ 1	

$$g^* = G \frac{M}{R^2} \Rightarrow \frac{g^*}{g} = \frac{M}{M_T} \frac{R_T^2}{R^2}$$

E6-11

Grütter Mechanik 2024

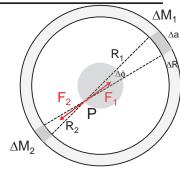
Wie verhält sich das Gewicht im Innern der Erde?

Situation: Man berücksichtige eine Hohlkugel mit Dicke ΔR und konstanter Dichte, und P sei ein Punkt in ihrem Innern mit Entfernung r vom Zentrum.

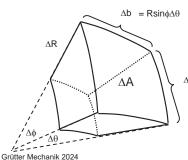
Frage: Welches ist die Schwerkraft bei P aufgrund der Masse die man unter einem fixen Winkel $\Delta \phi$ sieht?

Mit einer Dicke
$$\Delta R$$
, $\Delta V = \Delta R \cdot \Delta A = \Delta R \cdot \Delta a \cdot \Delta b$

Masse
$$\Delta M = \rho \cdot \Delta V$$



Oberfläche AA hängt von R2 ab



$$F = Gm \frac{\Delta M}{R^2}$$
 Unabhängig vo
$$= Gm \frac{\rho \Delta R \left(R^2 \sin \varphi \Delta \theta \Delta \varphi\right)}{R^2}$$
 Konsequenz ?
$$\vec{F_1} + \vec{F_2} = 0$$

Unabhängig von R!

Die Schwerkraft entspricht der einer Kugel mit Radius r (die Masse ausserhalb trägt nichts dazu bei), s. Serie 3.

$$F = Gm \frac{M(r)}{r^2} = Gm \frac{\rho_T \frac{4\pi}{3}r^3}{r^2} = \frac{4\pi}{3}Gm\rho_T r$$

Welche Konsequenzen entspringen dem Gravitationsgesetz?

Die 3 empirischen Gesetze Keplers (~1600)

1. Gesetz: Planeten bewegen sich auf elliptischen Bahnkurven, in deren einem gemeinsamen Brennpunkt die Sonne steht.

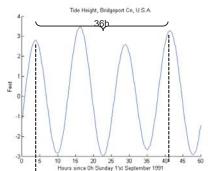
2. Gesetz: Der Ortsvektor des Planeten überstreicht in gleichen Zeiten gleich große Flächen.

Planet P b b F_2 R F_3 F_4 F_5 F_6 F_7 F_8 F_8 F

Grütter Mechanik 2024

6-13

6-3. Die Gezeiten

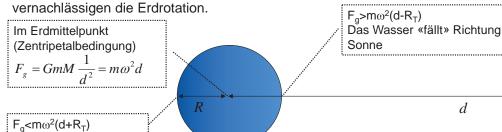


Warum ergibt sich ein maximaler (oder minimaler)
Wasserstand alle 12h anstatt alle 24 h?

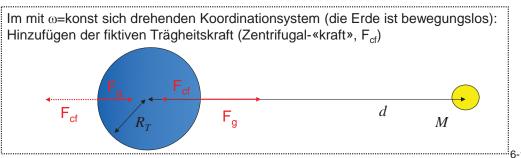
6-14

Warum ergibt sich eine Flut, wenn der Mond sich auf der anderen Seite der Erde befindet ?

Situation: «Erde» auf Kreisbahn um die «Sonne». Wir



Trägheit des Wassers (1. Axiom) : Tendez zur geradlinigen Laufbahn



Grütter Mechanik 2024

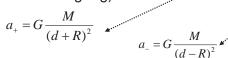
Wie entstehen Gezeiten?

Analyse in Bezug auf Beschleunigungen

1. Beschleunigung der Erde durch die Sonne (Mond):

$$a = G \frac{M}{d^2} = a_R$$
 (Zentripetalbedingung)

2. Kraft (Beschleunigung) an der Oberfläche:

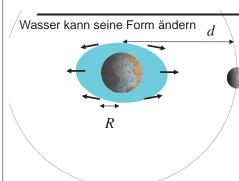


3. Beschleunigungs-Diskrepanz

$$\Delta a_{+} = a_{+} - a_{R} = G \frac{M}{(d+R)^{2}} - G \frac{M}{d^{2}}$$

$$\Delta a_{+} = -2G\frac{M}{d^{3}}R \qquad \Delta a_{-} = +2G\frac{M}{d^{3}}R$$
 negativ positiv

Hat die Sonne einen vernachlässigbaren Effekt?



$$\Delta a = 2GR \frac{M}{d^3}$$

$$2GR = 8.5 \times 10^{-4} \text{ Nm}^3/\text{kg}^2$$

1. Effekt des Mondes:

»Masse Mond $M_M = 7.4 \times 10^{22} \text{kg}$ »Distanz Mond-Erde $d_M = 3.8 \times 10^8 \text{m}$ Sonne

 $M_{\rm M}/d_{\rm M}^3$ = 1.3x10⁻³ kg/m³ \rightarrow $\Delta a_{\rm M}$ =1.2x10⁻⁶N/kg [m/s²]

2. Effekt der Sonne:

»Masse d. Sonne $M_S = 2x10^{30} kg$ »Distanz Sonne-Erde $d_S = 1.5x10^{11} m$

 M_s/d_s^3 = 5.9x10⁻⁴ kg/m³ (NB. d_s=1 UA) $\rightarrow \Delta a_s$ =0.51x10⁻⁶N/kg

entspricht ~43% dessen des Mondes

 \rightarrow minimaler/maximaler Tidenhub (Ebbe-Flut) ~ 0.7

Grütter Mechanik 2024

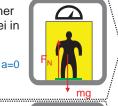
E6-17

6.4 Entspricht die Masse des Gravitationsgesetzes der trägen Masse ? Äquivalenzprinzip

Das Äquivalenzprinzip (Einstein 1915)

Die Masse (Trägheit) m (in F=ma) ist gleich der gravitationellen Masse m (in GMm/r²)

Fall 1: In der Gegenwart einer Schwerkraft (mg), der Lift sei in Ruhe (a=0).



Einbezug aller Kräfte ergibt F = ma = 0 $\square F_N - mg = 0 \Rightarrow F_N = mg$

F_N misst das Gewicht.

Fall 2: Ohne Schwerkraft. Der Lift wird mit a=g nach oben beschleunigt.

Im Bezugssystem des Liftes (a'=0):

☐ Es muss die **Trägheitskraft** *ma*(= -mg) berücksichtigt werden, die im entgegengesetzten Sinn der
Beschleunigung des Liftes wirkt

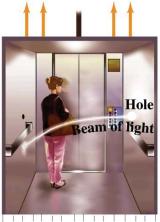
F_N misst das Gewicht.

«eine durch die Schwerkraft verursacht Bechleunigung, kann nicht von der aufgrund eines Bezugsystems, das in die entgegengesetzte Richtung beschleunigt wird, unterschieden werden »

6-20

Grütter Mechanik 2024

Kann die Schwerkraft das Licht beeinflussen?



Entlang y mit a_G=GM/r² beschleunigtes Bezugssystem

Kinematik (Approximation) für eine Zeit T:

$$\rightarrow$$
 x = cT;

$$v_y = -a_G T$$

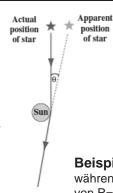
$$\rightarrow$$
 y = -a_GT²/2

Grütter Mechanik 2024

6-21

Der gekrümmte Raum ...

Von der Erde aus gesehen (1917)



Observer

Beispiel: Ein Lichtstrahl (Geschwindigkeit c=3·10⁸m/s), der die Sonne während 2s gerade passiert, legt eine ihrem Radius entsprechende Distanz von R=7·10⁸m zurück und ist einer mittleren Beschleunigung von g*~25g ausgesetzt.

Kinematik (s. vorher) $\rightarrow \Delta y=4g^*/2 \sim 500m \rightarrow tan\theta=\Delta y/R=7 \ 10^{-7} \sim \theta \ [rad]$

 \Rightarrow $\theta \sim 4 \cdot 10^{-5} \, Grad \sim 0.15 arcsec$

(Die Animation ist stark übertrieben)

Was versetzt ein Objekt in Bewegung?

(Zusammenfassung Lektionen 4-6)

Im natürlichen Zustand bewegt sich ein Objekt gleichförmig (1. Axiom). (4-2)

.....

Die Beschleunigung eines Objektes ist proportional zur resultierenden Kraft und invers mit seiner Masse gewichtet (2. Axiom). (4-3)

Jede auf ein Objekt wirkende Kraft, aufgrund der Aktion eines anderen Objektes, bedingt eine gleich starke, aber entgegengesetzt auf letzeres Objekt einwirkende Kraft, und umgekehrt (3. Axiom) (4-7)

Die radiale Komponente der resultierenden Kraft muss die Zentripetalbedingung erfüllen, sobald das Objekt sich auf einer kreisförmigen Bahn bewegt. (5-2)

Die Winkelbeschleunigung eines Objektes ist proportional zum resultierenden Drehmoment und invers mit seinem Trägheitsmoment gewichtet (2ème loi). (5-13)

Grütter Mechanik 2024

- Der Ruhezustand entspricht einer bewegungslosen gleichförmigen Bewegung.
- **Eine Kraft** ist eine Wechselwirkung zwischen zwei Körpern die sie anzieht oder abstosst.
- Die resultierende Kraft ist die vektorielle Summe aller Kräfte, die auf das Objekt wirken.
- Die Masse entspricht einem Widerstand zur Geschwindigkeitsänderung (Trägheitsmasse).
- Actio und Reactio wirken nie auf das gleiche Objekt.
- Die Zentripetalkraft gibt es nicht: Es handelt sich um eine Bedingung der resultierenden Kraft.
- Die Zentripetalbedingung ist obligatorisch, sobald man weiss, dass ein Objekt sich auf einer Kreisbahn bewegt.
- Das Drehmoment beschreibt die F\u00e4higkeit einer Kraft, eine Rotation auszu\u00fcben.
- Das Trägheitsmoment entspricht einem Widerstand zur Änderung der Winkelgeschwindigkeit.

6-24

Welches sind die spezifisch behandelten Kräfte?

(Zusammenfassung Lektionen 4-6)

Die Normalkraft wirkt stets senkrecht (normal) zur Oberfläche.

Die Federkraft ist proportional zur Verlängerung der Feder, aber deren entgegengesetzt. (4-11)

Die Reibung zwischen Oberflächen hängt ausschliessich von der gegenseitigen (4-15) Wechselwirkung und ihren Eigenschaften ab.

Der Strömungswiderstand hängt von der relativen Geschwindigkeit des Objektes ab (sowie seiner Form und der Viskosität des Mediums). (4-18)

Die Schwerkraft zwischen zwei Massen wirkt auf Distanz und ist umgekehrt proportional zur quadrierten Distanz. (6-10)

In einem mit a beschleunigten Bezugssystem, muss man eine Trägheitskraft –ma hinzufügen.

(6-3)

Die Trägheitskräfte eines rotierenden Bezugssystems bestehen aus der Zentrifugalkraft und dem Corioliseffekt.

- Die Proportionalität zwischen Federkraft und Federverlängerung ist nur in einem gewissen Bereich gültig.
- Die Feder schwingt.
- Die statische Reibungskraft zwischen Oberflächen (d.h. ohne relative Geschwindigkeit) kann die Richtung ändern und hat einen Maximalbetrag.
- Die Gleitreibungskraft und der Strömungswiderstand wirken der Bewegung des Objektes entgegen.
- Die Trägheitsmasse ist der Gravitationsmasse gleichzusetzen.
- Trägheitskräfte sind Scheinkräfte, d.h. sie entspringen keinem physikalischen Phänomen.
- Der Gebrauch der Trägheitskräfte erlaubt es, das 2. Axiom in einem beschleunigten Bezugssystem anzuwenden.

Die Dynamik kurzgefasst (Lektionen 4 bis 6)

Die lineare und rotationelle Dynamik sind Zwillinge

- 1. Die 3 Axiome Newtons:
 - Trägheitsgesetz: v=const ohne Kräfte
 - Resultierende Kraft $\Sigma \mathbf{F} = \mathbf{ma(t)}$
 - Actio=Reactio

- + Addition/Multiplikation der Vektoren
- + Kinematik (Differentiation und Integration von Vektoren, i.e. Bewegungsgleichungen)

2. Reibungskräfte:

 $\label{eq:max} \text{Maximale statische Reibungskraft } F_{max} \equiv \mu_s F_N \\ - \qquad \qquad \mu_s (v = 0) \geq \mu_k (v \neq 0)$ Gleitreibungskraft: $F_{fr} = \mu_k F_N$

$$\mu_s(v=0) \ge \mu_k(v \ne 0)$$

Strömungswiderstand (laminar):

$$F_v = -b(v_c - v_f)$$

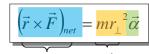
3. Hookesches Gesetz: $\vec{F}_{ressort} = -k\vec{\chi}$ 4. Gravitationsgesetz: $\vec{F}_{12} = -G\frac{m_1m_2}{|\vec{r}_1 - \vec{r}_2|^3}(\vec{r}_1 - \vec{r}_2)$

4. Dynamik der Rotation:

2. Gesetz der Rotation:

Zentripetalbedingung

$$\vec{F}_R = -m\omega^2 \vec{r}_\perp = m\vec{\omega} \times (\vec{\omega} \times \vec{r})$$



5. Trägheitskräfte eines rotierenden Bezugssystems: $^{\tau}$

Zentrifugalkraft
$$-m\vec{\omega}\times(\vec{\omega}\times\vec{r})$$

Corioliseffekt
$$-2m\vec{\omega}\times\vec{v}$$

6-26