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1: Kinematik der Translation

|. Was ist Physik ?

Der Ansatz des Physikers
Analyse der Einheiten
Approximation/Abschatzung

ll. Wie beschreibt man eine Translationsbewegung ?
Momentan-Geschwindigkeit und -Beschleunigung
Koordinatensysteme

Vorbereitung auf die Vorlesung und Ubungen
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* 1_7 DimenSiOIlS and Dimensional AHE!]YSiS A dimensional check shows that the former (£/g) is correct:
1) = i = VI = 1

When we speak of the dimensions of a quantity, we are referring to the type of base N V [L/77]
units or base quantities that make it up. The dimensions of area, for example, are  yhereas the latter (g/£) is not:
always length squared, abbreviated [L?|, using square brackets; the units can be /7
' ' [L/77] 1 1

square meters, square feet, cm?, and so on. Velocity, on the other hand, can be [T] # + _ - .

measured in units of km/h, m/s, or mi/h, but the dimensions are always a length [L] \" (£] NV [77] (7]

divided by a time [7]: that is, [L/T]. Note that the constant 27 has no dimensions and so can’t be checked using dimensior
The formula for a quantity may be different in different cases, but the dimen- Further uses of dimensional analysis are found in Appendix C.

sions remain the same. For example, the area of a triangle of base b and height 4 is
A = 1bh, whereas the area of a circle of radius ris A = #mr%. The formulas are
different in the two cases, but the dimensions of area are always [LZ]‘

Dimensions can be used as a help in working out relationships, a procedure
referred to as dimensional analysis. One useful technique is the use of dimensions
to check if a relationship is incorrect. Note that we add or subtract quantities only
if they have the same dimensions (we don’t add centimeters and hours); and
the quantities on each side of an equals sign must have the same dimensions. (In
numerical calculations, the units must also be the same on both sides of an equation.)

For example, suppose you derived the equation v = v, + 3at®, where v is the
speed of an object after a time f, v, is the object’s initial speed, and the object
undergoes an acceleration a. Let’s do a dimensional check to see if this equation
could be correct or is surely incorrect. Note that numerical factors, like the 1 here,
do not affect dimensional checks. We write a dimensional equation as follows,
remembering that the dimensions of speed are [L/T] and (as we shall see in
Chapter 2) the dimensions of acceleration are [LXTZ]:

7] (5] [ - [7] o

The dimensions are incorrect: on the right side, we have the sum of quantities
whose dimensions are not the same. Thus we conclude that an error was made in
the derivation of the original cquation.

A dimensional check can only tell you when a relationship is wrong. It can’t
tell you if it is completely right. For example, a dimensionless numerical factor (such
as 5 or 27r) could be missing,

Dimensional analysis can also be used as a quick check on an equation you are
not sure about. For example, suppose that you can’t remember whether the equa-
tion for the period of a simple pendulum 7T (the time to make one back-and-forth
swing) of length £is T = 27VI/g or T = 2w \Vg/l, where g is the acceleration
due to gravity and, like all accelerations, has dimensions [L-/Tz]. (Do not worry
about these formulas—the correct one will be derived in Chapter 14; what we are
concerned about here is a person’s recalling whether it contains £/g or g/L) 1-3



2—1 Reference Frames and Displacement

Any measurement of position, distance, or speed must be made with respect to a
reference frame, or frame of reference. For example, while vou are on a train trav
eling at 80 km/h, suppose a person walks past you toward the front of the train at
a speed of, say, Skm/h (Fig. 2-2). This 5km/h is the person’s speed with respect to
the train as [rame of reference. With respect 1o the ground, thal person is moving
at a speed of B0km/h + 5km/h = 85 km/h. It is always important to specify the
frame of reference when stating a speed. In everyday life, we usually mean “with
respect to the Earth” without even thinking about it, but the reference frame must
be specified whenever there might be confusion.

When specifying the motion of an object, it is important to specify not only the
speed butl also the direction of motion. Often we can specily a direction by using
the cardinal points, north, east, south, and west, and by “up” and “down.” In
physics, we often draw a sct of coordinate axes, as shown in Fig. 2-3, to represent
a frame of reference. We can always place the origin 0, and the directions of the x
and y axes, as we like for convenience. The x and y axes are always perpendicular
to each other. Objects positioned to the right of the origin of coordinates () on
the x axis have an x coordinate which we usually choose to be positive; then points
to the left of 0 have a negative x coordinate. The position along the v axis is usually
considered posilive when above 0, and negative when below 0, although the
reverse convention can be used if convenient. Any point on the plane can be
specified by giving its x and y coordinates. In three dimensions, a z axis perpendicular
to the x and y axes is added.

For one-dimensional motion, we often choose the x axis as the line along
which the motion takes place. Then the position ol an object al any moment is
given by its x coordinate. If the motion is vertical, as for a dropped object, we
usually use the y axis.

Gritter Mechanik - Annex

{a) (h}
FIGURE 2-1 The pinecone in (a)
undergoes pure translation as it falls,

whereas in (b) it is rotating as well as
translating.

FIGURE 2-2 A person walks
toward the front of a train at 5 km/h.
The train is moving 80 km/h with
respect o the ground, so the walking
person’s speed, relative Lo the
ground, is 85 km/h.

FIGURE 2=3 Standard set of xy
coordinate axes,

+¥




/M, cAauTIiON
The displacement may not equal the

total distance traveled

X

West () 40m  30m East
[ .

Displacement

FIGURE 2-4 A person walks 70 m
cast, then 30 m west. The total
distance traveled is 100 m (path is
shown dashed in black); but the
displacement, shown as a solid blue
arrow, is 40 m to the east.

FIGURE 2-5 The arrow represents
the displacement x; = x). Distances
are in meters.

v

X.| Xﬂz
O 0 20 30 40
Distance (m)

FIGURE 2-6 For the displacement
Ax = xo = x; = 10.0m = 30.0m,
the displacement vector points to
the left.

*2 1

i-»— Ax ——i

+ } 4 } x
20 30 40
Distance (1)
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We need to make a distinction between the distance an object has traveled and
its displacement, which is defined as the change in position of the object. That is,
displacement is how far the object is from its starting point. To see the distinction
between total distance and displacement, imagine a person walking 70m to the
east and then turning around and walking back (west) a distance of 30w
(see Fig. 2-4). The total distance traveled is 100 m, but the displacement is only
4 m since the person is now only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction. Such guan:
tities are called vectors, and are represented by arrows in diagrams. For example, in
Fig. 2-4, the blue arrow represents the displacement whose magnitude is 40 m and
whose direction is 1o the right (east).

We will deal with vectors more fully in Chapter 3. For now, we deal only with
motion in one dimension, along a line. In this case, vectors which point in one
direction will have a positive sign, whereas vectors that point in the opposite direc-
tion will have a negative sign, along with their magnitude.

Consider the motion of an object over a particular time interval. Suppose that
at some initial time, call it {;, the object is on the x axis at the position x; in the
coordinate system shown in Fig. 2-5. At some later time, £, suppose the object has
moved to position x,. The displacement of our object is x; — x,, and is repre-
sented by the arrow pointing to the right in Fig. 2-5. Tt is convenient to write

Ax = x, — Xy,

2

where the symbol A (Greek letter delta) means “change in.” Then Ax means “the

change in x,” or "change in position,” which 1s the displacement. Note that the “change

In" any quantity means the final value of that guantity, minus the initial value.
Suppose x; = 10.0m and x; = 30.0m. Then

Ar = x;, —xy = 300m — 10.0m = 20.0m,

so the displacement is 20.0 m in the positive direction, Fig. 2-5.

Now consider an object moving to the lefi as shown in Fig. 2-6. Here the
object, say, a person, starts at x; = 30.0m and walks to the left to the point
x, = 10.0m. In this case her displacement is

Ar = x, = x; = 100m = 300m = =20.0m,

and the blue arrow representing the vector displacement points to the left. For
one-dimensional motion along the x axis, a vector pointing to the right has a
positive sign, whereas a vector pointing to the left has a negative sign.

EXERCISE A An ant starts at x = 20cm on a piece of graph paper and walks along the
x axis to x = —20cm. It then turns around and walks back to x = —10cm. What is
the ant’s displacement and total distance traveled?

1-5



Vorbereitungsubungen (aus Giancoli)
= im Stil, die gute Formel finden und dann anwenden

2. (I) How many significant figures do each of the following
numbers have: (a) 214, (b) 81.60, (¢) 7.03, (d) 0.03,
(e) 0.0086, (f) 3236, and (g) 87007

8. (II) Multiply 2.079 x 10°m by 0.082 x 107, taking into
account significant figures.

*36.

*37.

(IT) The speed v of an object is given by the equation
v = At® — Bt, where ¢ refers to time. (¢) What are the
dimensions of A and B? (b) What are the SI units for the
constants A and B?

(IT) Three students derive the following equations in which
x refers to distance traveled, v the speed, a the acceleration
{m,fsz), { the time, and the subscript zero (g) means a quantity
at time ¢ = 0: (a) x = vt* + 2at, (b) x = vyt + Sat’, and
(¢) x = vt + 2at>. Which of these could possibly be
correct according to a dimensional check?

Gritter Mechanik - Annex

1.

21.

(I) If you are driving 110 km/h along a straight road and
you look to the side for 2.0s, how far do you travel during
this inattentive period?

(I) A rolling ball moves from x; = 34cm to x; = —4.2cm
during the time from f; = 3.0s to f, = 5.1s. What is its
average velocity?

(I) At highway speeds, a particular automobile is capable of
an acceleration of about 1.8 m/s® At this rate, how long
does it take to accelerate from 80 km/h to 110 km/h?

. (IT) A particle moves along the x axis. Its position as a func-

tion of time is given by x = 6.8¢ + 8.5¢%, where f is in
seconds and x i1s in meters. What 1s the acceleration as a
function of time?

. (I) A car slows down from 25m/s to rest in a distance of

85 m. What was its acceleration, assumed constant?

. (IT) Determine the stopping distances for an automobile

with an initial speed of 95 km/h and human reaction time of
1.0s: (a) for an acceleration a = —5.0m/s* (b) for
a=—7.0m/s.

1-6



2: Kinematik im Raum

|. Wie kann man im allgemeinen die geradlinige Bewegung herleiten ?

Integration der Bewegungsgleichung
g — Erdbeschleunigung

ll. Wovon hangt die allgemeine Beschreibung der Bewegung ab ?

Wurfparabel
Inertialsysteme

Vorbereitung auf die Vorlesung und Ubungen

. Kapitel im Giancoli vor dem Kurs zu lesen (3 Seiten):
: 2-7 Freely falling objects

3-6 Vector Kinematics —
. Vorbereitende Ubungen (3) vor der Ubungssession zu erledigen : §

' Giancoli 3-28, 29, 57 s

Giancoli Kapitel 2-6 bis 3-9
2-7
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FIGURE 2-25 Galileo Galilei
(1564-1642),

/M CAUTION

FIGURE 2-26 Multiflash
photograph of a falling apple, at equal
time intervals. The apple falls farther
during each successive interval, which
means it is accelerating,

r

{a) (k)
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2-7 Freely Falling Objects

Ome of the most common examples of uniformly accelerated motion is that of an
object allowed to fall freely near the Earth’s surface. That a falling object is accel-
erating may not be obvious at first. And beware of thinking, as was widely believed
before the time of Galileo (Fig. 2-25), that heavier objects fall faster than lighter
objects and that the speed of fall is proportional to how heavy the object is,

Galileo made use of his new techmique of imagining what would happen in
idealized (simplificd) cases. For [ree [all, he postulated that all objects would [all with
the same constant acceleration in the absence of air or other resistance. He showed
that this postulate predicts that for an object falling from rest, the distance traveled
will be proportional to the square of the time (Fig. 2-26); that is, d o *. We can see
this from Eq. 2-12b; but Galileo was the first to derive this mathematical relation.

To support his claim that falling objects increase in speed as they fall, Galileo
made use of a clever argument: a heavy stone dropped from a height of 2 m will
drive a stake into the ground much further than will the same stone dropped from
a height of only 0.2 m. Clearly, the stone must be moving [aster in the [ormer case.

Galileo claimed that all objects, light or heavy, fall with the same acceleration, at
least in the absence of air. If you hold a piece of paper horizontally in one hand and
a heavier object—say, a bascball—in the other, and release them at the same time as
in Fig. 2-27a, the heavier object will reach the ground first. But if you repeat the
experiment, this time crumpling the paper into a small wad (sce Fig. 2-27b), you will
find that the two objects reach the floor at nearly the same time.

Galileo was sure that air acts as a resistance to very light objects that have a
large surface area. Bul in many ordinary circumstances this air resistance is negli-
gible. Tn a chamber from which the air has been removed, even light objects like a
feather or a horizontally held piece of paper will fall with the same acceleration as
any other object (see Fig. 2-28). Such a demonstration in vacuum was nol possible
in Galileo’s time, which makes Galileo’s achievement all the greater. Galileo is
often called the “father of modern science,” not only for the content of his science
{astronomical discoveries, inertia, free fall) but also for his approach to science
(idealization and simplification, mathematization of theory, theories that have
testable consequences, experiments Lo lest theoretical predictions).

Galileo's specific contribution to our understanding of the motion of falling
objects can be summarized as follows:

at a given location on the Earth and in the absence of air resistance, all objects

fall with the same constant acceleration.

We call this acceleration the acceleration due to gra\-‘it}' on the surface of the
Earth, and we give it the symbaol g. Its magnitude is approximately

g = 9.80m/s% [at surface of Earth]
In British units g is about 32 1/s*. Actually, g varies slightly according to latitude and
elevation, but these variations are so small that we will ignore them for mosi

FIGURE 2-27 (a) A ball and a -
light piece of paper are dropped at

the same time. (b) Repeated, with ‘
the paper wadded up.

-
FIGURE 2-28 A rock ‘
and a feather are dropped -
simultaneously (a) in air,
b) in a vacuum, "
(b) in & vacuum Adr-filled wbe Evacused tube
(a) {b)

purposes. The effects of air resistance are often small, and we will neglect them for
the most part. However, air resistance will be noticeable even on a reasonably heavy
ohject if the velocity hecomes large,” Acceleration due to gravity is a vector as is any
acceleration, and its direction is downward, toward the center of the Earth.

When dealing with freely [alling objects we can make use of Eqs. 2-12, where
for @ we use the value of g given above. Also, since the motion is vertical we will
substitute y in place of x, and y; in place of x;. We take y» = 0 unless otherwise
specified. It is arbitrary whether we choose v to be positive in the upward direction
or in the downward direction; but we must be consistent abour it throughowt a
problem’s solution.

2-8



3—-6 Vector Kinematics

We can now extend our definitions of velocity and acceleration in a formal way to
two- and three-dimensional motion. Suppose a particle follows a path in the xy plane
as shown in Fig. 3-16. At time {,, the particle is at point P;, and at time {,, it is at
point P;. The vector F; is the position vector of the particle at time #; (it represents
the displacement of the particle from the origin of the coordinate system). And ¥,

FIGURE 3-16 Path of a particle in
the xy plane. At time £ the particle is
at point P, given by the position
vector Ty ; at {» the particle is at point
% given by the position vector T, .
The displacement vector for the time
interval f; — {1 is AT = T2 — Ty,

: s - Ar NP
is the position vector at time f,. \ 2

In one dimension, we defined displacement as the change in position of the 2 \
particle. In the more general case of two or three dimensions, the displacement r AR
vector is defined as the vector representing change in position. We call it AF,’ T,

where

Af = 1, — 1.
This represents the displacement during the time interval At =, — (;. 0 x
“We used D for the displacement vector earlier in the Chapter for illustrating vector addition. The new
nolation here, AT, emphasizes that it is the dilference between two position vectors, SECTION 3-6 59
¥ In unit vector notation, we can write
AF A s -
P, f P, = xit yjt+ gk (3-6a)
- ‘\"‘\\ where x;, y;, and z; are the coordinates of point P;. Similarly,
\\ r = xzi\ + yzj + zzﬁ.
= A \\ Hence
r r . 2 i n
! : : AF = (= x)i+ (n — wi + (22 — 2)k (3-6b)
If the motion is along the x axis only, then y, — y; =0, z, — z; = 0, and the
magnitude of the displacement is Ar = x, — x;, which is consistent with our
carlier one-dimensional equation (Section 2-1). Even in one dimension, displace-
0 ment is a vector, as are velocity and acceleration.
@ The average velocity vector over the time interval Af = 1, — #; is defined as
‘ . AF
7 average velocity = Ve 3-7)
P i
_ ___,)—'-—-"—"-’:,__ Now let us consider shorter and shorter time intervals—that is, we let Af approach
N zero so that the distance between points P, and P; also approaches zero, Fig. 3-17.
\\ We define the instantaneous velocity vector as the limit of the average velocity as
. \ At approaches zero:
K - AF ¥
v = qim A _ @
v = lim, At dt (3-8
The direction of ¥ at any moment is along the line tangent to the path at that
moment (Fig. 3-17).
0 ®) Note that the magnitude of the average velocity in Fig. 3-16 is not equal to the

FIGURE 3-17 (a) As we take At

and AT smaller and smaller [compare
to Fig. 3-16] we sce that the direction

of Ar and of the instantaneous

velocity (A¥/At, where At — 0) is

(b) tangent to the curve at P, .

average speed, which is the actual distance traveled along the path, Af, divided by
At. In some special cases, the average speed and average velocity are equal (such
as motion along a straight line in one direction), but in general they are not.
However, in the limit Af — 0, Ar always approaches Af, so the instantancous
speed always equals the magnitude of the instantaneous velocity at any time.

The instantaneous velocity (Eq. 3-8) is equal to the derivative of the position
vector with respect to time. Equation 3-8 can be written in terms of components
starting with Eq. 3—6a as:

2-9



FIGURE 3-18 (a) Velocity vectors ¥,
and ¥, at instants ¢, and t, for a particle
at points P; and P,, as in Fig. 3-16.

(b) The direction of the average
acceleration is in the direction of

AV =¥V, — ¥,

dr de, dy, dz. - N -
E = EI +EJ +Ek 2 i | + vk, (3-9)

where v, = dx/df, v, = dy/dt, v, = dz/dt are the x, y, and z components of the

velocity. Note that di/dl = dj/dt = dﬁ/dt = (0 since these unit vectors are
constant in both magnitude and direction.

the velocity changes but also if its direction changes. For example, a person riding
in a car traveling at constant speed around a curve, or a child riding on a merry-go-
round, will both experience an acceleration because of a change in the direction of
the velocity, even though the speed may be constant. (More on this in Chapter 5.)
In general, we will use the terms “velocity” and “acceleration” to mean the instan-
tancous values. If we want to discuss average values, we will use the word “average.”

Gritter Mechanik - Annex

(I) A tiger leaps horizontally from a 7.5-m-high rock with a
speed of 3.2 m/s. How far from the base of the rock will she

(I) A diver running 2.3 m/s dives out horizontally from the
edge of a vertical cliff and 3.0s later reaches the water
below. How high was the cliff and how far from its base did
the diver hit the water?

(I) A person going for a morning jog on the deck of a cruise
ship is running toward the bow (front) of the ship at 2.0 m/s
while the ship is moving ahead at 8.5 m/s. What is the velocity
of the jogger relative to the water? Later, the jogger is
moving toward the stern (rear) of the ship. What is the
jogger’s velocity relative to the water now?

¥ Acceleration in two or three dimensions is treated in a similar way. The
P, Vv, average acceleration vector, over a time interval Af = £, — {; is defined as
T RN average acceleration = A _B-Ww (3-10)
P & N
- \62 where AV is the change in the instantaneous velocity vector during that time
f A8 interval: AV = ¥, — ¥,. Note that ¥, in many cases, such as in Fig. 3—-18a, may not
T, be in the same direction as ¥,. Hence the average acceleration vector may be in a
different direction from either v, or ¥, (Fig. 3-18b). Furthermore, ¥, and ¥, may have
the same magnitude but different directions, and the difference of two such vectors
x will not be zero. Hence acceleration can result from either a change in the magnitude
(a) of the velocity, or from a change in direction of the velocity, or from a change in both.
0 f the velocity, or £ h direction of the velocity, or f h both
The instantaneous acceleration vector is defined as the limit of the average
acceleration vector as the time interval At is allowed to approach zero:
M1
AV dv
b ; i=lim— = — 3-11
v; ;AV A=0 At dt G-11)
and is thus the derivative of v with respect to ¢. |___
b d is thus the d t f th respect to ¢ 28
We can write 8 using components: |
|
dav dvy . dv,. dov, . 9
dt dr dt dt 1 29
= ayi +ayj +ak, (3-12) I
where a, = dv,/dl, elc. Because v, = dx/dl, then a, = dv,/dt = d’x/dl*, as 1
we saw in Section 2-4. Thus we can also write the acceleration as |
|
d’x , dzy s d*z .
i= —i+—=j+—=k (3-12¢) 1
dar a? T ar I
The instantaneous acceleration will be nonzero not only when the magnitude of 1 57
|
|
|
|
|
|
|
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3: Kinematik der Rotation

|. Wie beschreibt man eine kreisformige (und oszillierende) Bewegung ?

ll. Welche Bedingungen umschreiben ein Objekt auf einem Kreis ?
Winkelbeschleunigung

lll. Wie kann man die kreisformige Bewegung allgemein beschreiben ?
Prazession

lll. Wie beschreibt man die Bewegung in zylindrischen Koordinaten ?

V. Wie beschreibt man die Bewegung in einem linear beschleunigten
Bezugssystem ?

....................................................................................................................................................................................................................................................................

Vorbereitung auf die Vorlesung und Ubungen

Kapitel im Giancoli vor dem Kurs zu lesen (3.5 Seiten):
' 5-2 Uniform circular motion - kinematics
: 10-1 Angular quantities
: Vorbereitende Ubungen (6) vor der Ubungssession zu erledigen :
' Giancoli 5-36, 38
Giancoli 10-4, 5ab, 7abc, 12ab

Giancoli Kapitel 5-2 und 10-1 bis 10-3 311
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Anhang: Komponenten eines Vektors
kartesiche, polare & zylindrische Koordinaten (siche auch Mathe support, e.g. youtube)

21 Segment fir den

olar kartesisch nent
Y P ¥ . Definition: ganzen r?ls

Winkelposition 6
.~ 0=IR

— Einheit: radian [rad]
»  360°=2x rad

0 (=30°)

0

v= (v, 0) =v(cosO X+sinby)

V=V, X +V Y =(V,,V
x yY = (VoVy) 6 Segmente bis hier. -

—_————

V,=vcosb, v, =vsind

Z _ z P= (pO,GO,ZO) |0P|2 = ,002 +202
P = (X0,Y0,Zo) e ;
o \ : Zusammenhange: |
: |OP|2 =x02+y02+202 :
I ' i X=pcoso 224 2
1 | =X :
; > %0 : > 20 y:pSine P y
| 0 | '
0 : - Y >~ | 7=7
:/‘J//./ -=7 > ~ A J y .........................................................
i Yo 0, 0o
X X 3-12

) X 0
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5-2 Uniform Circular Motion—Kinematics ~ FIGURE5-10 A small abject

moving in a circle, showing how the

An object moves in a straight line if the net force on it acts in the direction of
molion, or the net force is zero. If the net force acts at an angle to the direction of
motion at any moment, then the object moves in a curved path. An example of the
latter is projectile motion, which we discussed in Chapter 3. Another important case
is that of an ohject moving in a circle, such as a ball at the end of a string revolving
around one’s head, or the nearly circular motion of the Moon about the Earth.

An object thal moves in a circle al constant speed v is said lo experience
uniformn circular motion. The magnitude of the velocity remains constant in this
case, but the direction of the velocity continuously changes as the object moves
around the circle (Fig. 5-10). Because acceleration is defined as the rate of change
of velocity, a change in direction of velocity constitutes an acceleration, just as a
change in magnitude of velocily does. Thus, an object revolving in a circle is contin-
uously accelerating, even when the speed remains constant (w, = v, = v). We
now investigate this acceleration guantitatively.

C

vy

FIGURE 5-11

change in velocity, AV, for a particle
moving in a circle, The length AFis the
distance along the arc. from A o B

Gri_._. .

(a)

(b)

(©)

Determining the

velocity changes. At each point,
the instantaneous velocity is in a
direction tangent to the circular path.

Acceleration is defined as

AV Y

= lmy s
where AV is the change in velocity during the short time interval Af. We will eventually
consider the situation in which Ar approaches zero and thus obtain the instantaneous
acceleration. But for purposes of making a clear drawing (Fig. 5-11), we consider a
nonzero Ume inlerval. During the time interval Af, the particle in Fig. 5-11a moves
from point A to point B, covering a distance Af along the arc which subtends an
angle Af. The change in the velocity vector is %, — ¥ = A¥, and is shown in Fig. 5-11h.

Now we let Af be very small, approaching zero. Then Af and A# are also very
small, and ¥, will be almost parallel to v, (Fig. 5-11c); Av will be essentially
perpendicular to them. Thus A¥ points toward the center of the circle. Since d, by
definition, is in the same direction as AV, it too must point toward the center of the
circle. Therefore, this acceleration is called centripetal acceleration (“center-
pointing” acceleration) or radial acceleration (since it is directed along the radius,
toward the center of the circle), and we denote it by &g .

We next determine the magnitude of the radial (centripetal) acceleration, aj, .
Because CA in Fig. 5-11a is perpendicular to ¥, and CB is perpendicular 1o ¥,
it follows that the angle A, defined as the angle between CA and CB, is also
the angle between ¥, and ¥, Hence the vectors ¥, %, and A¥ in Fig. 5-11b
form a triangle that is geometrically similar’ to triangle CAB in Fig. 5-11a.
1f we take Af to be very small (letting Af be very small) and setting » = v, = 1w,
because the magnitude of the velocity is assumed not Lo change, we can wrile

Av Af
— A 4
w F
ar
H
Av =~ AL
r

This is an exact equality when Af approaches zero, for then the arc length Af
equals the chord length AB. We want to find the instantaneous acceleration, ay, so
we use the expression above lo wrile

. Aw . v AL
VR v
Then, because
. Al
B3y
is just the linear speed, v, of the object, we have for the centripetal (radial) acceleration
ap = UT |[centripetal (radial) acceleration] (5-1)
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FIGURE 5-12 For uniform circular
maotion, @i is always perpendicular to ¥,

36. (I) A jet plane traveling 1890 km/h (525 m/s) pulls out of a :
dive by moving in an arc of radius 4.80 km. What is the!
plane’s acceleration in g’s?

Gritter Mechanik - Annex

Equation 5-1 is valid even when v is not constant.

To summarize, an object moving in a civele of radius r at constant speed v has
an acceleration whose direction is imward the cenier of the circle and whose magni-
tude is ag = v*/r. It is not surprising that this acceleration depends on » and r.
The greater the speed v, the [aster the veloeity changes direction; and the larger
the radius, the less rapidly the velocity changes direction.

The acceleration vector points toward the center of the circle. But the velocity
vector always points in the direction of motion, which is tangential to the circle.
Thus the velocity and acceleration vectors are perpendicular to each other at every
poeint in the path for uniform circular motion (Fig. 5-12). This is another example
that illustrates the error in thinking that acceleration and velocity are always in the
same direction. For an object falling vertically, @ and # are indeed parallel. But in
circular motion, & and ¥ are perpendicular, nol parallel {nor were they parallel in
projectile motion, Section 3-7).

EXERCISE C Can Eguations 212, the kimematic equations for constant acceleration, be
used for uniform eircular mation? For example, could Eq, 2-12b be used to caleulate the
time for the revolving ball in Fig. 5-12 to make one revelution?

Circular motion is often described in terms of the frequency f, the number of
revolutions per second. The period 7T of an objeet revolving in oa cirele is
the time required for one complete revolution. Period and frequency are related by

T L (5-2)
f

For example, if an object revolves at a frequency of 3rev/s, then each revolution
lakes %w For an object revolving in a cirele (of circumlerence 2ar) al conslant
speed v, we can write

) 2ar

v o= T r
since in one revolution the object travels one circumference.

38. (11) How fast (in rpm) must a centrifuge rotate if a particle
8.00 cm from the axis of rotation is to experience an acceler- |
ation of 125,000 g’s?
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We will consider mainly the rotation of rigid objects. A rigid object is an object
with a delinite shape that doesn’t change. so thatl the particles composing il slay in
fixed positions relative to one another. Any real object is capable of vibrating or
deforming when a force is exerted on it. But these effects are often very small, so
the concept of an ideal rigid object is very useful as a good approximation.

Our development of rotational motion will parallel our discussion of translational
motion: rotational position, angular velocity, angular acceleration, rotational inertia,
and the rotational analog of force, “lorque.”

10-1 Angular Quantities

The motion of a rigid object can be analyzed as the translational motion of its center
of mass plus rotational motion about its center of mass (Sections Y9-8 and 9-9). We
have already discussed translational motion in detail, so now we focus our attention
on purely rotational motion. By purely rotational motion of an object about a fixed
axis, we mean that all points in the object move in circles, such as the point P on the
rotating wheel of Fig, 10-1, and that the centers of these circles all lie on a line
called the axis of rotation. In Fig. 10-1 the axis of rotation is perpendicular to the
page and passes through point O. We assume the axis is [ixed in an inertial relerence
frame, but we will not always insist that the axis pass through the center of mass.
For a three-dimensional rigid object rotating about a fixed axis, we will use the
symbol R to represent the perpendicular distance of a point or particle from the axis
of rotation. We do this to distinguish R from r, which will continue to represent the
position ol a particle with relerence to the origin {point) of some coordinale sysiem.
This distinction is illustrated in Fig. 10-2. This distinction may seem like a small
point, but not being fully aware of it can cause huge errors when working with
rotational motion. For a flat, very thin object, like a wheel, with the origin in the plane
of the object (at the center of a wheel, for example), R and » will be nearly the same.
Every point in an object rotating about a fixed axis moves in a circle (shown
dashed in Fig. 10-1 for point P) whose center is on the axis of rotation and whose radius
is R, the distance of that point from the axis of rotation. A straight line drawn from the
axis lo any point in the object sweeps oul the same angle 8 in the same time interval,
To indicate the angular position of the object, or how far it has rotated, we
specify the angle # of some particular line in the object (red in Fig. 10-1) with respect
to some reference ling, such as the x axis in Fig. 10-1. A point in the object, such as P
in Fig, 10-1b, moves through an angle @ when it travels the distance { measured along
the circumfercnee of its circular path. Angles are commonly stated in degrees, but the
mathematics of circular motion is much simpler if we use the radian for angular
measure. One radian (zbbreviated rad) is defined as the angle subtended by an arc
whose length is equal to the radius. For example, in Fig, 10-1, point P is a distance R
from the axis of rotation, and it has moved a distance { along the arc of a circle. The
arc length ¥ is said 1o “subtend” the angle f. In general, any angle 8 is given by
i = % [# in radians] (10-1a)

1 R II'
Iy D.——.Jr— o
s P
\.‘ 'i-‘,
A I‘.
s o
(a) “EEemen

FIGURE 10-1 Looking at a wheel
that is rotating counterclockwise
about an axis through the wheel’s
center at O (axis perpendicular to
the page). Each point, such as point P,
maoves in a circular path; £ is the
distance P travels as the wheel

rotates through the angle 8,

FIGURE 10-2 Showing the
distinction between ¥ (the position
vector) and R (the distance from the
rotation axis) for a point P on the
edge of a cylinder rotating about the
I axis.

Gritter Mechanik - Annex

where R is the radius of the circle and { is the arc length subtended by the angle 8,
which is specified in radians. I[ £ = R, then 8 = 1 rad.

The radian, being the ratio of two lengths, is dimensionless. We thus do not have
to mention it in calculations, although it is usually best to include it to remind us the
angle is in radians and not degrees. We can rewrite Eq. 10-1a in terms of arc length &

£ = R6. (10-1b)
Radians can be related to degrees in the following way. In a complete cirele there
are 360°, which must correspond to an arc length equal to the circumference of the
circle, £ = 2xR. Thus 6 = /R = 27R/R = 27 rad in a complete circle, so

360" = 27 rad
One radian is therefore 360°/2a = 360°/6.28 = 57.3°. An object that makes one
complete revolution (rev) has rotated through 360°, or 27 radians:

lrev = 360" = 27 rad.
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Angular acceleration (denoled by @, the Greek lowercase letter alpha), in
analogy to linear acceleration, is defined as the change in angular velocity divided by
the time required to make this change. The average angular acceleration is defined as

_ fihy = A
- £ 7L _ =% 10-3a
“ At At (=50
where @ is the angular velocity initially, and w, is the angular velocity after a time
imterval A Instantaneous angular acceleration is defined as the limit of this ratio
as Af approaches zero:

Aw _ do

fm A~ (10-30)

0 =

Since e 15 the same [or all points of a rotating objecl, Eq. 10-3 tells us thal o also
will be the same for all points. Thus, w and « are properties of the rotating ohject
as a whole. With « measured in radians per second and { in seconds, & has units of
radians per second squared (rad/s’).

Each point or particle of a rotating rigid object has, at any instant, a linear
velocity @ and a linear acceleration a. We can relate the linear gquantities at cach
point, v and @, 1o the angular gquantities, w and o, of the rotating ohject. Consider a
point P located a distance R from the axis of rotation. as in Fig. 10-5. If the ohject
rotates with angular velocily e, any point will have a linear velocily whose direction
is tangent to its circular path. The magnitude of that point’s linear velocity is
v = di/di. From Eq. 10-1b, a change in rotation angle 6 (in radians) is related to
the linear distance traveled by of = R df. Hence

-
et el
or
v = Ruw, (10-4)

where R is a fixed distance from the rolation axis and e is given in rad/s. Thus,
although w is the same for every point in the rotating ohject at any instant, the
lincar velocity v is greater for points farther from the axis (Fig. 10-6). Note that
Eq. 10-4 is valid both instantaneously and on the average,

If the angular velocity of a rotating object changes, the object as a whole—and
each point in it—has an angular acceleration. Each point also has a linear acceler-
alion whose direclion is tangenl to thal poinl’s circular path. We use Eg. 10-4
(# = Rw) to show that the angular acceleration w« is related to the tangential
linear acceleration ag, of a point in the rotating object by

dw i
Ban = 7 T Rd_r
or

M = R (10-5)

In this equation, R is the radius of the circle in which the particle is moving, and
the subscripl “lan™ in ay,, stands [or “langential.”

FIGURE 10-5 A point Pona
rotating whee! has a lincar velocity ¥
at any moment.

FIGURE 10-6 A wheel rotating
uniformly counterclockwise, Two
points on the wheel, at distances K,
and Ry from the center, have the
same angular velocily w because
they travel through the same angle 6
in the same time interval, But the
two points have different lingar
velocitics because they travel
different distances in the same time
interval. Since Ry = R, , then

g = o, (because v = Hw).
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is u-ﬁl}' 1%, For larger al;lglcs the
error increases rapidly.

FIGURE 10-4 A wheel rotates
from {a) initial position @, 1o

{b) final position d,. The angular
displacement is Af = i — 8.

{b)

FIGURE 10-7 On a rotating wheel
whose angular speed is increasing, a
point I has both tangential and radial
{centripetal) components of linear
acceleration. (See also Chapter 5.)
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To describe rotational motion, we make use of angular quantities, such as
angular velocity and angular acceleration. These are defined in analogy to the
corresponding quantities in linear motion, and are chosen to describe the rotating
abject as a whole, so they have the same value for each point in the rotating object.
Each point in a rolating object also has translational velocity and acceleration, but
they have different values for different points in the ohject,

When an object, such as the bicycle wheel in Fig. 10-4, rotates from
some initial position, specified by 6, to some [inal position, &, ils angular
displacement is

Af = d, — 8.

The angular velocity (denoted by w, the Greek lowercase letter omega) is
delined in analogy with linear (lranslational) velocity that was discussed in
Chapter 2. Instead of linear displacement, we use the angular displacement. Thus

the average angular velocity of an object rotating about a fixed axis is defined as
the time rale ol change ol angular position:

Ad
At
where A# is the angle through which the object has rolated in the time interval Af.
The instantaneous angular velocity is the limit of this ratio as Af approaches zero:

Ad dfl

1 = _ =
s AL dt

o =

(10-2a)

@ = (10-2h)
Angular velocity has units of radians per second {rad/s). Note that all poinis in a
rigid object rotate with the same angular velocity, since every position in the object
moves through the same angle in the same time interval.

An object such as the wheel in Fig. 10—4 can rotate about a fixed axis either

The total linear acceleration of a point at any instant is the vector sum of two

componenLs:
i = iy, + g,

where the radial component, d,, is the radial or “centripetal” acceleration and its
direction is toward the center of the point’s circular path; see Fig. 10-7. We saw in
Chapter 5 {Eq. 5-1) thal a particle moving in a circle of radius R with linecar speed o
has a radial acceleration a, = v*/R; we can rewrite this in terms of e using Eq. 10-4:
v' _ (Rw)
R R
Equation 10-6 applies to any particle of a rotating object. Thus the centripetal
acceleration is grealer the [arther you are [rom the axis of rotation: the children
farthest out on a carousel experience the grealest acceleration,

Table 10-1 summarizes the relationships between the angular guantities
describing the rotation of an object to the linear quantities for each point of
the object.

w'R. (10-6)

g =
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We can relate the anpgular velocity @ to the frequency of rotation, f. The
frequency is the number of complete revolutions (rev) per sccond, as we saw in
Chapter 5. One revolution {of a wheel, say) corresponds to an angle of 27 radians,
and thus 1rev/s = 2w rad/s. Hence, in general, the frequency f is related to the
angular velocity w by

i
f= 2m

or
w = 2wf. {(10-T)

The unit for Eru,qul.,nl,}', revolutions per second (rev/s), is given the special name
the hertz (Hz). That is

1 Hz I rev/s.
MNote that “revolution” is not really a unit, so we can also write 1Hz = 157!
The time required for one complete reveolution is the period 7, and it is
related to the frequency by
T = 1 (10-8)
f

If a particle rotates at a frequency of three revolutions per second, then the period
ol cach revolution 15 11':.
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(I) The blades in a blender rotate at a rate of 6500 rpm. |
When the motor is turned off during operation, the blades'
slow to rest in 4.0s. What is the angular acceleration as the

blades slow down? |

(II) (a) A grinding wheel 0.35m in diameter rotates at '
2500 rpm. Calculate its angular velocity in rad/s. (b) What

are the linear speed and acceleration of a point on the cdgc I
of the grinding wheel? 1

(IT) Calculate the angular velocity of (@) the second hand, :
(b) the minute hand, and (c¢) the hour hand, of a clock. State ,
in rad/s. (d) What is the angular acceleration in each case? |

(IT) A 64-cm-diameter wheel accelerates uniformly about its :
center from 130 rpm to 280 rpm in 4.0s. Determine (a) its
angular acceleration, and (b) the radial and tangentiall
components of the linear acceleration of a point on the edge !
of the wheel 2.0 s after it has started accelerating.



4: Dynamik der geradlinigen Bewegung
Die drei Axiome von Newton

1. Welches ist der naturliche Zustand aller Dinge und wie kann man ihn

andern ?
Die Masse widersetzt sich der Anderung der Geschwindigkeit

2.Welches ist das Verhaltnis zweier wechselwirkender Objekte ?

Federkraft

3.Wie beeinflussen Reibungskrafte die Bewegung eines Objektes ?
Zwischen Oberflachen von Festkorpern
Viskose Reibung

4.Wie geht man ein Problem der Dynamik an ?

Kapltel im Giancoli vor dem Kurs zu lesen (/ Seite):
4-1 Force
4-3 Mass

Vorbereitende Ubungen (7) vor der Ubungssession zu erledigen :
Giancoli 4-2, 22, 37
Giancoli 5-1, 2, 5, 66a

Giancoli Kapitel 4-1 bis 4-8 und 5-1, 5-6 4-19
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Zugabe
Sind die Schnurkrafte, die auf eine Rolle einwirken, unabhangig von 0 ?

........
* .
* 0
* 0
o 0

Rolle unbeweglich L
(ohne Beschleunigung): | | Aquivalentes Schema:

Fp1+Fp2=-Fr O‘éb I:ressort




e have discussed how motion is described in terms of velocity and
acceleration. Now we deal with the question of why objects move as
they do: What makes an object at rest begin to move? What causes an
object to accelerate or decelerate? What is involved when an object
moves in a curved path? We can answer in each case that a force is required. In this
Chapter', we will investigate the connection between force and motion, which is the
subject called dynamics, 5.7 A net force of 265 N accelerates a bike and rider a 1

(I} A net force of 265N accelerates a bike and rider at
4—-1 Force

2.30m/s". What is the mass of the bike and rider together? |

37. (II) The two forces ii"1 and Fg shown in Fig. 4-40a and b
(looking down) act on a 18.5-kg object on a frictionless
tabletop. If F = 102N and F, = 160N, find the net
force on the object and its acceleration for (a) and (b).

¥ ¥

|
Intuitively, we experience foree as any kind of a push or a pull on an object. When !
vou push a stalled car or a grocery cart (Fig. 4-1), you are exerting a force on it. !
When a motor lifts an elevator, or a hammer hits a nail, or the wind blows the 1
leaves of a tree, a force is being exerted. We often call these conract forces because !
the force is exerted when one object comes in contact with another object. On the 1
other hand, we say that an object falls because of the force of grawvity. 1
If an object is at rest, to start it moving requires force—that is, a force is 1
needed o accelerate an object from zero velocily to a nonzero velocity, For an 1
object already moving, if you want to change its velocity—either in direction orin |
magnitude—a force is required. In other words, to accelerate an object, a force is |
always required. In Section 4-4 we discuss the precise relation between acceleration |
and net force, which 1s Newton’s second law, 1
One way to measure the magnitude (or strength) of a force is to use a spring |
FIGURE 4-1 A force exerted on a scale (Fig. 4-2). Normally, such a spring scale is used to find the weight of an |
grocery carl—in this case exeried by ghject; by weight we mean the force of pravity acting on the object (Section 4-6). | ¥,
a person. The spring scale, once calibrated, can be used to measure other kinds of forces as |
well, such as the pulling force shown in Fig. 4-2. 1 (@) (b)
A force exerted in a different direction has a different effect. Force has 1 FIGURE 4-40 Problem 37.
1
|
1
|
|
|
1
|
|
|
1
|
|
|
1
|

F,

?1 120¢

dircction as well as magnitude, and is indeed a vector that follows the rules of
vector addition discussed in Chapter 3. We can represent any force on a diagram
by an arrow, just as we did with velocity. The direction of the arrow is the direction of
the push or pull, and its length is drawn proportional to the magnitude of the force.

2, (I1) (a) What is the acceleration of two falling sky divers
{mass = 132 kg including parachuic) when the upward lorce
of air resistance is equal to one-fourth of their weight? (b) After
popping open the parachuie, the divers descend leisurely to the
ground at constant speed. What now is the force of air resis-
tance on the sky divers and their parachute? See Fig, 4-32,

S D1 TFAE 6T R OLNY

_r\ '"i'_'_"_"'"' 7, {}
FIGURE 4-2 A spring scale used o =
measure a force.

N

FIGURE 4-32 Problem 22.
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4-3 Mass

Newton’s second law, which we come to in the next Section, makes use of the
concepl of mass, Newton used the term mass as a synonym [or guantity of matter,
This intuitive notion of the mass of an object is not very precise because the
concept “quantity of matter” is not very well defined. More precisely, we can say
that mass is a measure of the inertia of an object. The more mass an object has, the
greater the force needed to give it a particular acceleration. 1t is harder to start it
moving from rest, or to stop it when it is moving, or to change its velocity sideways
out of a straight-line path. A truck has much more inertia than a baseball moving
at the same speed, and a much greater force is needed to change the truck’s
velocity at the same rate as the ball’s. The truck therefore has much more mass.

To quantify the concept of mass, we musi define a standard. In SI units, the
unit of mass is the kilogram (kg) as we discussed in Chapter 1, Section 1-4.

The terms mass and weight are oflen confused with one another, but it is
important to distinguish between them. Mass is a propertv of an object itself
(a measure of an object’s inertia, or its “quantity of matter™). Weight, on the other
hand, is a force, the pull of gravity acting on an object. To see the difference,
suppose we take an object to the Moon. The object will weigh only about one-sixth
as much as it did on Earth, since the force of gravity is weaker, But its mass will be
the same. It will have the same amount of matter as on Earth, and will have just as
much inertia—for in the absence of friction, it will be just as hard to start it
moving on the Moon as on Earth, or to stop it once it is moving. (More on weight
in Section 4-6.)

Gritter Mechanik - Annex

1.

(1) If the cocfficient of kinetic friction between a 22-kg crate
and the floor is (L3, what horizontal force is required to
move the crate at a steady speed across the floor? What
horizontal force is required if py is zero?

(1) A force of 35.0 N is required to start a 6.0-kg box moving
across a horizontal conerete floor. (a) What is the coefficient
of static friction between the box and the floor? () If the
35.0-N force continues, the box accelerates at 0.60m/s%
What is the coefficient of kinetic friction?

(1) What is the maximum acceleration a car can undergo if
the coefficient of static friction between the tires and the
ground is (.97

(II) The terminal velocity of a 3 % 107 kg raindrop is about
9m/s Assuming a drag force Fpy = —bv, determine (a) the
value of the constant b and (&) the time required for such a
drop, starting from rest, to reach 63% of terminal velocity,

4-22



5:Dynamik der Kreisbewegung (Rotation)

|. Welche Krafte fUhren zu einer gleichmassigen Kreisbewegung ?
Die Bedingung der Zentripetalkraft

ll. Welche Krafte fUhren zu einer Schwingung (Oszillation) ?

lll. Wie kann man die Winkelgeschwindigkeit andern ?

Drehmoment
Inertial- oder Tragheitsmoment

lll. Wie beschreibt man die Bewegung in Kugelkoordinaten ?

....................................................................................................................................................................................................................................................................

Vorbereitung auf die Vorlesung und Ubungen

Kapitel im Giancoli vor dem Kurs zu lesen (3 Seiten):
: 5-3 Dynamics of uniform circular motion
10-5 torque

Vorbereitende Ubungen (4) vor der Ubungssession zu erledigen :
Giancoli 5-34, 49
Giancoli 10-26, 27

Giancoli Kapitel 5-3 bis 5-5; 10-4(5); und 11-2 5.93
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FIGURE 5-14 A force is required
to keep an object moving in a circle.
1f the speed is constant, the force is
directed toward the circle’s center.

&EAUTIO

Cer i

be exerted by an object)

CE LY ol d e

O TOFCe T C& FRLAT

5-3 Dynamics of Uniform Circular Motion

According to Newton's second law (EF = mii), an object that is accelerating
must have a net force acting on it. An object moving in a circle, such as a ball on
the end of a string, must therefore have a force applied to it to keep it moving in
that eircle. That is, a net force is necessary (o give it centripelal acceleration. The
magnitude of the required force can be calculated using Newton’s second law for
the radial component, ZF, = may, where agis the centripetal acceleration,
ap = v°/r, and EFy is the total {or net) force in the radial direction:
212
ZFy = mag = m bT [cireular motion] (5-3)

For uniform circular motion (» = conslanl), the acceleration is ay, which is
directed toward the center of the circle at any moment. Thus the net force too must
be directed toward the center of the circle, Fig. 5-14. A net force is nccessary
because il no net force were exerted on the object, it would nol move in a circle
but in a straight line, as Newton’s first law tells us. The direction of the net force is
continually changing so that it is always dirceted toward the center of the circle.
This force is sometimes called a centripetal (“pointing toward the center™) force.
But be aware that “centripetal force” does not indicate some new kind of force.
The term merely deseribes the direction of the net force needed 1o provide a
circular path: the net force is directed toward the circle’s center. The force must be
applied by other objects. For example, to swing a ball in a circle on the end of a
string, you pull on the string and the string exerts the force on the ball. (Try it.)

There is a common misconception that an object moving in a cirele has an outward

force acting on it, a so-called centrifugal (“center-fleeing™) force. This is incorrect: there
is no outward force on the revolving object. Consider, for example, a person swinging a
ball on the end of a string around her head (Fig. 5-15). If you have ever done this vour-
self, vou know that you feel a force pulling outward on vour hand. The misconception
arises when this pull is interpreted as an outward “centrifugal” lorce pulling on the ball
that is transmitied along the string to your hand. This is not what is happening at all. To
keep the ball moving in a cirele, you pull inwardly on the string, and the string exerts
this force on the ball. The ball exerts an equal and opposite force on the string
{Newton’s third law), and #is is the outward force your hand feels (see Fig. 5-15).
The [orce on the ball is the one exerted inwardly on il by you, via the string. To
see even more convincing evidence that a “centrifugal force™ does not act on the
ball, consider what happens when you let go of the string. If a centrifugal force
were acting, the ball would fly outward, as shown in Fig. 5-16a. But it doesn’t; the
ball flies off tangentially (Fig. 5-16b), in the direction of the velocity it had at the
moment it was released, because the inward force no longer aets, Try it and see!

EXERCISE E Reiurn to the Chapter-Opening Question, page 112, and answer 1t again now. Try
to explain why yvou may have answered differently the first time.

can round a turn of radius 80.0 m on a flat road if the coeffi-
cient of friction between tires and road is 0.657 Is this result
independent of the mass of the car?

/M CAUTION

1 .. . — "
There is no real “centrifugal force

—_———

- e
- Force on ball "~
7 - ex grﬂed by
7 siring

/

| Force on hand
| exerted by
| string

FIGURE 5-15 Swinging a ball on
the end of a string,

FIGURE 5-16 I centrifugal force
existed, the revolving ball would [y
outward as in (a) when released. In

fact, it flies off tangentially as in (b).

For example, in (c) sparks fly in
straight lines tangentially from the
edge of a rotating grinding wheel,
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34. (I) What is the maximum speed with which a 1200-kg car 49, (II) On an ice rink two skaters of equal mass grab hands:
and spin in a mutual circle once every 2.5s. If we assume |
their arms are each 0.80 m long and their individual masses !
are 60.0 kg, how hard are they pulling on one another?
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FIGURE 10=17 A mass m rotating
in a circle of radius K about a fixed
point.

NEWTON'S SECOND LAW
FOR ROTATION

|'/ _
AN

-

FIGURE 10-18 A large-diameter
cylinder has greater rotational
inertia than one of equal mass but
smaller diameter.

/M CAUTION
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10-5 Rotational Dynamics;
Torque and Rotational Inertia

We discussed in Section 10-4 that the angular acceleration a of a rotating object is
proportional to the net torque = applied to it:

[F s E'.—‘

where we write 27 (o remind us that it is the ref lorgue (sum of all torgues acling
on the object) that is proportional 1o a. This corresponds to Newton's second law
for translational motion, @ oc £F, but here torque has taken the place of force,
and, correspondingly, the angular acceleration e takes the place of the linear
acceleration a. In the linear case, the acceleration is not only proportional 1o the
nel foree, but it is also inversely proportional (o the inertia of the object, which we
call its mass, m. Thus we could write a = ZF/m. But what plays the role of mass
for the rotational case? That is what we now set out to determine, At the same
time, we will see that the relation & oo Z¢ [ollows directly [rom Newton's second
law, ZF = ma.

We first consider a very simple case: a particle of mass m rotating in a circle of
radius R at the end of a string or rod whose mass we can ignore compared to m
(Fig. 10-17), and we assume that a single force F acts on m tangent to the circle as
shown. The torgque that gives rise (o the angular acceleration s 7 = RF. II we use
Newton's second law for linear guantities, £F = ma, and Eq. 10-5 relating
the angular acceleration to the tangential linear acceleration, ag, = Re, then
we have

Fo= ma
iR,

where a is given in rad/s’. When we multiply both sides of this equation by R, we
find that the torque v = RF = R(mRa), or

T mRa. |single particle] (10-11)

126. (II) A person exerts a horizontal force of 32 N on the end of
! a door 96 cm wide. What is the magnitude of the torque if the

Here at last we have a direct relation between the angular acceleration and the
applied torque r. The quantity mR® represents the rotational inertia of the particle
and is called its moment of inertia.

Now let us consider a rotating rigid object, such as a wheel rotating ahout
a fixed axis through its center, such as an axle. We can think of the wheel as
consisting of many particles located at various distances from the axis of rotation.
We can apply Eq. 10-11 to each particle of the object; that is, we write =, = m; Rl a
for the '™ particle of the object. Then we sum over all the particles. The sum of the
various torques is just the total torque, Z7, so we obtain:

Er = (EmRi)a |axis fixed] (10-12)
where we factored out the o since it is the same for all the particles of a rigid
object. The resultant torque, Z7, represents the sum of all internal torques that
each particle exerts on another, plus all external torques applied from the outside:
21 = Z7ey t E7py. The sum of the internal torgues is zero from Newton's third
law. Hence Er represents the resultant external torque.

The sum Em, R} in Eq. 10-12 represents the sum of the masses of each
particle in the object multiplied by the square of the distance of that particle from
the axis of rotation, If we give each particle a number (1,2, 3,...), then

SR o= m R} + mp RS + maRY +
This summation is called the moment of inertia (or rotational inertia) I of the object:
I = ZmR = m R} + maRE + -, (10-13)
Combining Eqs. 10-12 and 10-13, we can write
- e axis fixed in (10-14)

inertial reference frame

This is the rotational equivalent of Newton's second law. It is valid for the rotation

of a rigid object about a fixed axis’ It can be shown (see Chapter 11) that

Eq. 10-14 is valid even when the object is translating with acceleration, as long as [

und a are caleulated about the center of mass of the object, and the rotation axis

lhrough the ©m doesn't change direction. (A ball rolling down a ramp is an
I example.) Then

: force is exerted (a) perpendicular to the door and (b) at a 60.0° | (27)em = JoyCens a’;:flf‘:;‘; ’fcg;::;‘;“ (10-15)
" angle to the face of the door? 1 ) _
IthrL the subscript oM means “caleulated about the center of mass.™
1 27. (II) Two blocks, each of mass 1, are attached to the ends of We sce that the moment of inertia, I, which is a measure of the rotational
1 a massless rod which prOtS as shown in f‘lg 10-48. lmtlally imertia of an object, plays the same role for rotational motion that mass does for
1 the rod is held in the horizontal pOSlthIl and then released. lrd.mlullunal maotion. As can be seen from Eq. 10-13, the l'UI'.dI'.:I.Ul'ld.l :13L,rt|d of an
" Caleul h itud d di . £ th I ohject depends not only on its mass, but also on how that mass is distributed with
i_lcu ate the magm_tu _C an irection of the net torque on Jrespect to the axis. For example, a larpe-diameter cylinder will have greater
1 this system when it is first released. | rotational inertia than one of equal mass but smaller diameter (and therefore
| greater length), Fig. 1018, The former will be harder to start rotating, and harder
1 - - ‘I R— " . | to stop. When the mass is concentrated farther from the axis of rotation, the
1 B I rotational inertia is greater. For rotational motion, the mass of an ohject cannor be
I m v i m I considered as concentrated at its center of mass.
|
|
|
|
|
: FIGURE 10-48 P
roblem 27. 1
l e e e e e e e e e e e e e e e e e e e e e e = = =
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6: Physik der Planeten

Gravitation

|. Wie kann man die Bewegung in einem rotierenden Bezugssystem
beschreiben ?
Zentrifugalkraft und Corioliseffekt

Il. Wodurch wird die Umlaufbahn eines Planeten bestimmt ?
Die 3 Keplerschen Gesetze
Ursprung der Gezeiten

I1l. Warum ist der Raum gekrimmt ?
Aquivalenz-prinzip

Vorbereitung auf die Vorlesung und Ubungen

Kapitel im Giancoli vor dem Kurs zu lesen (2 Seiten):
11-8 Rotating frames of reference

: 6-1 Newton’s law of universal gravitation
. Vorbereitende Ubungen (3) vor der Ubungssession zu erledigen :

Giancoli 6-1, 3, 37

Giancoli Kapitel 6-1 bis 6-5; 6-8 sowie 11-8 bis 11-9
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Anhang A. Herleitung der Norm des Corioliseffektes.
(Siehe auch Lektion 3)

Situation: Ein Objekt passiert das

AX = Ay’ SinAB = v, AtsinAG
Zentrum des Karussel.

] VyAtAe € e SiNAO=AD
Im rotierenden Bezugssystem ist dieses Objekt

einer zu seiner Geschwindigkeit senkrechten =V AtAtw <
Beschleunigung ausgesetzt.

(nur eine kurze Zeit At bertcksichtigt) Kinematik:
AX’
. AX’ = a°At?/2
I S } a,° = 2Vy(’°z
Vy e,

In vektorieller Form ? |

TN = | dg, =—20%7V

............ QJ NB. Bewegungen parallel zu o erfahren keine solche
/ Beschleunigung und werden nicht bertcksichtigt.

. / Warum ? Siehe ... dr . _

i —— =wWXr
P _— 5 dt 6-27
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Anhang B: Direkte Herleitung des 2. Keplerschen Gesetzes
aus dem Gravitationsgesetz

.........................................................................................................

« Der Ortsvektor des Planeten gDefinition _ jo7 - I
Uberstreicht in At gleich grol3e Flachen» : P m(r ....... ’ )
P L dA rvsin@

L=mrvsin@ :

dt 2
H — 7
: YT

# Ursprung O [

' .~ dA=r vdt sin6/2 dA =—dt
~~~~~~ 2m
TTe- v
v . .
0 7 f vdtsin IdA = Ad=—A~At A= jdt
B 4 2m 0o
i & . . & - :M und At sind konstant,
—=—xmV+rxm—=FxF)=0
dt dt dt :aber L ?

(fg)=r'g+ /2 e ;
=, e e AA = konst. :
o xe Zentralkraft (Gravitation) : “i (Konsequenz der Erhaltung von

- 3 ©©=rxF=0 i L, siehe Lektion 9) 6228
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Anhang C: Beweis dass das 1. Keplersche Gesetz eine
direkte Konsequenz des Gravitationsgesetzes ist.

A _ s ~ _ dF
LO /\i(ﬁxL):ExL:—szjw{lx(?xﬁ)} - (d?)
dt m r r "

-------------
..........

éZentraIfraft e GmM |7 v_ 7F¥_ Y
i=0=dL/dt == r— Vi i=-GmM||——
3 ror

.................................

~ |
I

~ | <=y

L

@ Ursprungin O

(5 L)e)=Gmm (1) +13 a

r
F-(ﬁxi): (17><17)-Z = GmMpr + Dr cos@
v P
L-L Planet
m

1. Gesetz Die Planeten bewegen
sich auf elliptischen Bahnen, in
deren einem Brennpunkt sich die
Sonne befindet.

6-29
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*11-8 Rotating Frames of Reference;
Inertial Forces

Inertial and Noninertial Reference Frames

Up to now, we have examined the motion of objects, including circular and rotational
maotion, from the outside, as observers fixed on the Earth. Sometimes it is convenient
to place ourselves (in theory, if not physically) into a reference frame that is rotating.
Let us examine the motion of objects from the point of view, or frame of reference, of
persons seated on a rotating platform such as a merry-go-round. It looks to them as if
the rest of the world is going around them. But let us focus attention on what they
observe when they place a tennis ball on the floor of the rotating platform, which
we assume is [rictionless. If they put the ball down gently, without giving it any
push, they will observe that it accelerates from rest and moves outward as shown
in Fig. 11-25a. According to Newton's first law, an object initially at rest should
stay at rest if no net force acts on it. But, according to the observers on the rotating
platform, the ball starts moving even though there is no net force acting on it. To
observers on the ground this is all very clear: the ball has an initial velocity when it is
released (because the platform is moving), and it simply continues moving in a
straight-line path as shown in Fig. 11-25b, in accordance with Newton's first law.

But what shall we do about the frame of reference of the observers on the rotating
platform? Since the ball moves without any net force on it, Newton’s first law, the
law of inertia, does not hold in this rotating frame of reference. For this reason,
such a frame is called a noninertial reference frame. An inertial reference frame
(as we discussed in Chapter 4) is one in which the law of inertia—Newton’s first
law—does hold, and so do Newton’s second and third laws. In a noninertial reference
frame, such as our rotating platform, Newton’s second law also doces not hold. For
instance in the situation described above, there is no net force on the ball; yet, with
respect to the rotating platform, the ball accelerates.

Fictitious (Inertial) Forces

Because Newton's laws do not hold when observations are made with respect to a
rotating frame of reference, calculation of motion can be complicated. However, we
can still make use of Newton’s laws in such a reference frame if we make use of a
trick. The ball on the rotating platform of Fig. 11-25a flies outward when released
(even though no force is actually acting on it). So the trick we use is to write down
the equation ZF = ma as il a force equal 1o mu'/r (or mw'r) were acting radially
outward on the object in addition to any other forces that may be acting. This exira
force, which might be designated as “centrifugal force” since it seems to act
outward, is called a fictitious force or psendoforce. It is a pseudoforce (“pscudo”
means “false”) because there is no object that exerts this foree. Furthermore, when
viewed from an inertial reference frame, the effect doesn™t exist at all. We have
made up this pscudoforee so that we can make calculations in a noninertial frame
using Newton’s sceond law, ZF = ma. Thus the observer in the noninertial frame
of Fig. 11-25a uses Newlon’s second law [or the ball’s outward motion by assuming
that a force equal to mv?/r acts on it. Such pseudoforces are also called inertial
forees since they arise only because the reference [rame is not an inertial one.

Gritter Mechanik - Annex

FIGURE 11-25 Path of a ball
released on a rotating merry-go-
round (a) in the reference frame of
the merry-go-round, and (b) in a
reference frame fixed on the ground.

People on ground
appear tn move

Ns wiay

L | f‘
ALY -
o Path of ball
wilh respect
Lo rolating
platform (i.c.,
s seen by
observer on
platform)

{a) Rotuing reference frame

Faih of ball
with respect

Lo ground
(i.e.. a8 seen
by observers
on the ground )

[

-7 Pladorm rotating

counterclockwise

(b)) Ineriial reference Mrame

The Earth itself 18 rotating on its axis. Thus, strictly speaking, Newton's laws
arc not valid on the Earth. However, the effeet of the Earth’s rotation is usually so
small that it can be ignored, although it does influence the movement of large air
masses and ocean currents. Because ol the Earth’s rotation, the material of the
Earth is concentrated slightly more at the equator. The Earth is thus not a perfect
sphere bul is slightly fatler at the equator than al the poles.
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6—1 Newton’s Law of Universal Gravitation

Among his many great accomplishments, Sir Isaac Newton examined the motion
of the heavenly bodies—the plancts and the Moon. In particular, he wondered
about the nature of the force that must act to keep the Moen in its nearly circular
orbit around the Earth.

Newton was also thinking about the problem of gravity. Since falling objects
accelerate, Newton had concluded that they must have a force exerted on them, a
force we call the foree of gravity. Whenever an object has a force exerted on it, that
force is exerted by some other object. But what exerts the force of gravity? Every
object on the surface of the Earth feels the force of gravity, and no matter where
the object is, the lorce is directed toward the center of the Earth (Fig 6-1).
Newton concluded that it must be the Earth itself that exerts the gravitational
force on objects at its surface.

According to legend, Newton noticed an apple drop from a tree. He is said to
have been struck with a sudden inspiration: If gravity acts at the tops of trees, and
even al the tops of mountains, then perhaps it acts all the way to the Moon! With
this idea that it 1s Earth’s gravity that holds the Moon in its orbit, Newton devel-
oped his great theory of gravitation. But there was controversy at the time. Many
thinkers had trouble accepting the idea of a force “acting at a distance.” Typical
forces act through contact—your hand pushes a carl and pulls a wagon, a bat hits
a ball, and so on. But gravity acts without contact, said Newton: the Earth cxerts a
force on a falling apple and on the Moon, even though there is no contact, and the
two objects may even be very far apart.

Newton set about determining the magnitude of the gravitational force that
the Earth exerts on the Moon as compared to the gravitational force on ohjects at
the Earth's surface. At the surface of the Earth, the foree of gravity accelerates
objects at 9.80 m/s”. The centripetal acceleration of the Moon is calculated from
ay = v'/r (see Example 5-9) and gives ay = 0.00272m/s®. In terms of the
acceleration of gravity al the Earth’s surface, g, this is equivalent lo

0.00272 m/s* 1
980m/ss ©  3600°

K

That is, the acceleration of the Moon toward the Earth is about s as great as the
acceleration of objects at the Earth’s surface. The Moon is 384,000 km from the
Earth, which is about 60 times the Earth’s radius of 6380 km. That is, the Moon is
60 times farther from the Earth’s center than are objecis at the Earth’s surface.
But 60 x 60 = 60° = 3600. Again that number 3600! Newton concluded that the
gravitational force F exerted by the Earth on any object decreases with the square
of its distance, r, from the Earth’s center:

1
F oo —
2
The Moon is 60 Earth radii away, so it feels a gravitational force only 75 = wg

times as strong as it would if it were a point at the Earth’s surface.
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P FIGURE 6-2 The gravitational
Fe P force one object exerts on a second
L ohject is directed toward the first
X object, and is equal and opposite to

the force exerted by the second
ohject on the first.

== M ~
FG; 00N (]
! Gravitational
ﬁ'{; ¢ force exerted on

..J' Maoon by Earth

wd

FIGURE 6-1 Anywhere on Earth,

whether in Alaska, Australia, or Earth
Peru, the force of gravity acts

downward toward the center of the

Earth.

Gravitational force
exerted on Earth
by the Moon

Newton realized that the foree of gravity on an objeet depends not only on
distance but also on the object’s mass. In fact, it is directly proportional to its mass,
as we have seen. According to Newlon’s third law, when the Earth exerts its gravi-
tational force on any object, such as the Moon, that object exerts an equal and
opposite force on the Earth (Fig. 6-2). Because of this symmetry, Newton
reasoned, the magnitude of the force of gravity must be proportional to both the
masses, Thus

' = e,

P

where m is the mass of the Earth, my the mass of the other object, and r the
distance from the Earth’s cenler to the center of the olher object.

Newton went a step further in his analysis of gravity, In his examination of the
orbits of the planets, he concluded that the force required to hold the different
planets in their orbits around the Sun seems to diminish as the inverse square ol
their distance from the Sun. This led him to believe that 1t 1s also the gravitational
force that acts between the Sun and each of the planets to keep them in their
orbits. And il gravity acls between these objects, why not between all objects? Thus
he proposed his law of universal gravitation, which we can state as follows:

Every particle in the universe attracts every other particle with a force that is

proportional to the product of their masses and inversely proportional to the

square of the distance between them. This force acts along the line joining the
two particles.

The magnitude of the gravitational force can be written as

m,m
F = G—> (6-1)
r
where m, and m; are the masses of the two particles, r is the distance between
them, and (5 is a universal constant which must be measured experimentally and
has the same numerical value for all ohjects.



FIGURE 6-3 Schematic diagram of
Cavendish's apparatus. Two spheres
are altached to a light horizontal
rod, which is suspended at its center
by a thin [iber. When a third sphere
(labeled A) is brought close to one of
the suspended spheres, the
gravitational force causes the latter
to move, and this twists the fiber
slightly. The tiny movement is
magnified by the use of a narrow
light beam directed at a mirror
mounted on the fiber, The beam
reflects onto a scale. Previous
determination of how large a force
will twist the fiber a given amount
then allows the experimenter to
determine the magnitude of the
gravitational force between two
objects.

e
£ :
~ Light \
source
@ {narrow beam)
A
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The value of ¢ must be very small, since we are not aware of any force of
attraction between ordinary-sized objects, such as between two haseballs. The force
between 1wo ordinary objects was first measured by Henry Cavendish in 1798,
over 100 years after Newton published his law. To detect and measure the incred-
ibly small foree between ordinary objects, he used an apparatus like that shown in
Fig. 6-3. Cavendish confirmed Newton's hypothesis that two objects attract one
another and that Eqg. 6-1 accurately describes this force. In addition, because
Cavendish could measure F, m,, m,, and » accuralely, he was able to determine
the value of the constant (v as well. The accepted value today is

G = 6.67 % 107" N-m*/kg®.
{Sce Table inside front cover for values of all constants to highest known precision.)

Strictly speaking, Eq. 6—1 gives the magnitude of the gravitational force that one
particle exerts on a second particle that is a distance r away. For an extended object
{(that is, not a point), we must consider how to measure the distance r. You might
think that » would be the distance between the centers of the objects. This is true for
two spheres, and is often a good approximation for other objects. A correct caleulation
treats cach extended body as a collection of particles, and the total force is the
sum of the forces due to all the particles. The sum over all these particles is often
best done using integral calculus, which Newton himself invented. When extended
bodies are small compared to the distance between them (as for the Earth—Sun
system), little inaccuracy results from considering them as point particles,

1. (I} Calculate the force of Earth's gravity on a spacecraft |
2.0¥0) Earth radii above the Earth’s surface if its mass is 1480 kg, |

- |

3 (1) A hypothetical planet has a radius 2.3 times that of |
Earth, but has the same mass. What is the acceleration due |

to gravity near its surface? 1

. |

37, (1) Use Kepler’s laws and the period of the Moon (27.4d) to I
determine the period of an artificial satellite orbiting very |
near the Earth's surface, 1

—— e o e o e e e e e e e e e e e e e e e e e e = = )
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7: Arbeit und Energie

|. Wie kann man die Geschwindigkeit eines Objektes aufgrund seiner
Bahnkurve bestimmen (ohne die benétigte Zeit zu berechnen) ?

Das Arbeit-Energie Prinzip
Konservative Krafte

ll. Welche Energieformen hangen von der Position des Objektes ab ?
Mechanische Energie

lll. Wie berechnet man die Leistung eines sich in Bewegung befindenden
Objektes ?

I\VV. Unter welchen Umstanden ist die mechanische Energie nicht erhalten ?
Energieerhaltungssatz

Nicht-konservative Krafte

....................................................................................................................................................................................................................................................................

Vorbereitung auf die Vorlesung und Ubungen

Kapitel im Giancoli vor dem Kurs zu lesen (4 Seiten):
: 7-1 Work done by a constant force
7-4 Kinetic energy and the work-energy principle
: 8-5 Law of conservation of energy
i Vorbereitende Ubungen (9) vor der Ubungssession zu erledigen :
: Giancoli 7-5, 50, 53, (59), 63abc
8-12, 62, 70, 39

Giancoli Kapitel 7-1 bis 7-4; 8-1 bis 8-8
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Anhang: Die Arbeit einer Kraft im Allgemeinen

AW. =FAl cos6, =F.-Al.  LimesAl > 0:
AW = Fcos@dl = F -dl

, ~ : Diese Integrale (=Flache der
w._, :I F-dl i Funktion F(x)) berechnet man in
@ : dem man der Bahnkurve folgt

.......................................................................................

dW — F | dl = md- dl O T aAnAbLARALALAKALD O . :b
. —— (a) 1 ]%istgnce,l ! (b) Distance, [
v o dl — :
=m———dl =mdy -— Kinetische Energie
dt dt )
=mv-dv { mv-dv= m(vxdvx +v,dv, +vzdvz) =—
dv)+d()+d(¥)) 2
=m
2
— = 2
:md(vz-v) _ td(m; )= dK QED
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Anhang: Konserv

ative Kraft auf einer geschlossenen Bahnkurve

Aquivalente Definition:

2

Die Arbeit einer konservativen Kraft
ist gleich null auf einer
geschlossenen Bahnkurve.

Gritter Mechanik - Annex

Beweis: waA =w' +wp

per Definition  W,” =W, (konservative Kraft)

1 2
Wy, = F-dl =|F-(=dl)=-W,
und es folgt, dass 2 1
_)VVlill :VV11—42 _Vsz =0
QED
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Beispiel und Bonus-Quiz

R——9¢
°
°
°
h h’
°
Q v Q v
AZI =
p—— p——o
A

Annahme Az<<h

Gritter Mechanik - Annex

Situation: Das Ende einer Feder im Ruhezustand
befindet sich im Punkt Q. Die Feder wird um eine Lange
Az komprimiert, bevor sie losgelassen wird. Beim
Loslassen wird eine Kugel bis in eine Hohe h
katapultiert. (Fig. A)

Frage 1: Wiirde man die Feder um die Halfte komprimieren
(Az'=0.5 Az), wie in B illustriert, bis in welche Hohe wurde die
Kugel fliegen ?

a) h'= 2h

b) h
c) b’ h/2
d) h'=h/4

Frage 2: Verdoppelt man die Masse der Kugel (m'=2m mit
AZ’=Az) in A, welche Hohe wurde sie nun erreichen?

a) h'= 2h

b) h
c) b’ h/2
d) h'=h/4
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zB. Arbeit einer geradlinigen Bewegung mit Reibung

Aber, ich
z. Erinnerung: Die gesamte Arbeit W, auf arbeite
einen Kérper der sich bewegt entspricht der doch:
Summe aller Arbeiten die von den auf den
Korper einwirkenden Kraften geleistet werden.
=N F
w . =>W
net ; k E ______ 9_* / | <
ﬁnet — Zﬁk Ffr < ’
p d
v mg il

Beispiel: W, = F\dcos90+mgdcos90 +Fdcos6 + F,dcos180 =0-d =0
I\ ~ J & J _/

A

v '
0 0 (Fcosb — F;)d

(v=const—Fcos0 = Fy)

Die Krafte normal zur Bahnkurve (mg, Fy sont L a d) verrichten keine Arbeit. Die
Stosskraft F und die Reibungskraft F;. verrichten Arbeit

7-37
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7—1 Work Done by a Constant Force

The word work has a variety of meanings in everyday language. But in physics,
work is given a very specific meaning to describe what is accomplished when a
force acts on an object, and the object moves through a distance. We consider only
translational motion for now and, unless otherwise explained, objects are assumed

1o be rigid with no complicating internal motion, and can be treated like particles. Then  (and which one), or the total (net) work done by the ner force on the object.

the work done on an object by a constant force (constant in both magnitude and
direction) is defined to be the product of the magnitude of the displaceinent times the
compenent of the force parallel to the displacement. In equation [orm, we can wrile

W = Fd,

where F) is the component of the constant force F parallel to the displacement d.
‘We can also write

W = Fdcosé,
where F is the magnitude ol the constant [oree, d is the magnilude of the displace-
ment of the object, and @ is the angle between the directions of the force and the
displacement (Fig. 7-1). The cos 6 factor appears in Eq. 7-1 because Feosé (= F|)
1s the component of F that is parallel to d. Work is a scalar quantity—it has only
magnitude, which can be positive or negative.

Let us consider the case in which the motion and the [orce are in the same
direction, so # =0 and cosf = 1; in this case, W = Fd. For example, if vou
push a loaded grocery cart a distance of 50 m by exerting a horizontal force of
30N on the cart, you do 30N x 50m = 1500 N-m of work on the cart.

As this example shows, in ST units work is measured in newton-meters (N-m).
A special name 1s given 1o this unit, the joule (J): 1J = 1 N-m.

[In the cgs system, the unit of work is called the erg and is defined as
1 erg = 1 dyne-cm. In British units, work is measured in foot-pounds. It is easy to
show that 1J = 107erg = 0.7376 ft-1h.]

(7-1)

A force can be exerted on an object and yet do no work. If you hold a
heavy bag of groceries in your hands at rest, you do no work on it. You do exert a
force on the bag, but the displacement of the bag is zero, so the work done by
vou on the bag is W = (). You need both a force and a displacement to do work.
You also do no work on the bag of groceries if you carry it as you walk horizontally
across the floor at constant velocity, as shown in Fig. 7-2. No horizontal force is
required (o move the bag at a constant velocity, The person shown in Fg, 7-2 does exert
an upward force Fp on the bag equal to its weight. But this upward force is perpendicular
to the horizontal displacement of the bag and thus is doing no work. This conclusion
comes [rom our definition of work, Eq. 7-1: W = 0, because 8 = 90" and cos 90° = (),

:- (I1) Estimate the work vou do to mow a lawn 10m by 20m
1 with a 50-cm wide mower. Assume you push with a force of

I about 15 N.

|5l]. (I) At room temperature, an oxygen molecule, with mass of
I 531 x 107 kg, typically has a kinetic energy of about
I 621 x 1072 J. How fast is it moving?

153, (I) How much work must be done to stop a 1300-kg car
! traveling at 95 km/h?
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Thus, when a particular force is perpendicular to the displacement, no work is done
by that force. When you start or stop walking, there is a horizontal acceleration and
you do briefly exert a horizontal force, and thus do work on the bag.

When we deal with work, as with force, it 18 necessary to specify whether you
are talking about work done by a specific object or done on a specific object. It is

,also important to specify whether the work done is due 1o one particular force

Ay cAauTioN

State thai work is done

FIGURE 7-1

A person pulling a

crate along the floor. The work done

by the force Fis W = Fd cos ),

where d is the displacement.

FIGURE 7-2 The person does no

/=

work on the bag of groceries since Fp
is perpendicular to the displacement d.

1
T

59. (IT) A 1200-kg car rolling on a horizontal surface has speed |

63,

v = 66 km/h when it strikes a horizontal coiled spring and |
is brought to rest in a distance of 2.2 m. What is the spring|
constant of the spring? 1

(I1) (@) How much work is done by the horizontal force |
Ip = 150N on the 18-kg block of Fig. 7-29 when the |
force pushes the block 5.0m up along the 327 frictionless |
incline? (b) How much work is done by the gravitational !
force on the block during this displacement? (c) How!
much work is done by the normal force? (d) WhaLI
is the speed of the block (assume that it is zero initially) !
after this displacement? [Hini: Work-energy involves net

work done.]
18kg "

32°

//
FP //
——
150N

FIGURE 7-29
Problems 63 and 64.

on or by an object



7—-4 Kinetic Energy and the
Work-Energy Principle

Energy i1s one of the most important concepts in science. Yet we cannot give a
simple general definition of energy in only a few words, Nonetheless, each specific
tvpe of energy can be defined fairly simply. In this Chapter we define translational
kinetic energy: in the next Chapter, we take up potential energy. In later Chapters
we will examine other types of energy, such as that related to heat (Chaplers 19
and 20). The crucial aspect of all the types of energy is that the sum of all types, the
fotal energy, is the same after any process as it was before: that is, energy is a
conserved guantity.

For the purposes of this Chapter, we can define energy in the traditional way
as “the ahility to do work.” This simple definition is not very precise, nor is it really
valid for all types of energy.’ It works, however, for mechanical energy which we
discuss in this Chapter and the next. We now define and discuss one of the basic
lypes of energy, kinelic energy.

A moving object can do work on another object it strikes. A flving cannonball
does work on a brick wall it knocks down; a moving hammer docs work on a nail
it drives into wood. In either case, a moving object exerts a force on a second
object which undergoes a displacement. An object in motion has the ability to do
work and thus can be said to have energy. The energy of motion is called kinetic
energy, from the Greek word kinerikos, meaning “motion.”

To obtain a gquantitative definition for kinetic energy, let us consider a simple
rigid object of mass m (treated as a particle) that is moving in a straight line with
an initial speed »,. To accelerate it uniformly to a speed ., a constant net force
Frer 18 exerted on it parallel 1o its motion over a displacement o, Fig. 7-14.

Then the net work done on the object is W, = F,d. We apply Newton's
second law, £, = ma, and use Eq. 2-12¢ (-vi = v + 2ad), which we rewrite as

v 2
'i'..:z - L‘l
a = ———-:
2d
where v is the initial speed and , the final speed. Substituting this into F,,, = ma,
we determine the work done:
2 2 2 _ .2
v = v — v
Wi = Fuad = mad = m(#jd = m(%)
or ) )
Wy = smuvs — fmvl. (7-9)

We define the quantity 1mwv* 1o be the translational kinetic energy, K, of the object:
K smv’,

(We call this “translational” kinetic energy to distinguish it [rom rotational kinetic
energy, which we discuss in Chapter 10.) Equation 7-9, derived here for one-
dimensional motion with a constant force, is valid in general for translational
motion of an object in three dimensions and even if the force varies, as we will
show at the end of this Section.

(7-10)

"Energy associated with heat is often not available to do work, as we will discuss in Chapter 20,

FIGURE 7-14 A constant net force

Fer accelerates a car from speed v,

. . to speed v, over a displacement d. ¥ ¥2
We can rewrite Eq. 7-9 as: The net work done is Wie = Fred. m— —F, 5 s —F
Woe K, = K, I !
or
Wy = AK = 3mvd — Tmoi. (7-11) | WORK-ENERGY PRINCIPLE

Equation 7-11 {or Eg. 7-9) 15 a useful result known as the work-energy principle.

It can be stated in words:

The net work done on an object is equal to the change in the object’s

kinetic energy.

Notice that we made use of Newton's sccond law, F,,, = ma, where

T

| WORK-ENERGY PRINCIPLE

Fye 18 the net

force—the sum of all forces acting on the object. Thus, the work-energy principle

is valid only if W is the net work done on the object—that is, the work done by all

[orees acting on the objecl.
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/M CAUTION

Work-energy valid only for net work
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The work-energy principle 15 a very useful reformulation of Newton's
laws. It tells us that if (positive) net work W is done on an object, the object’s
kinetic energy increases by an amount W, The principle also holds true for
the reverse situation: if the net work W done on an object is negative,
the object’s kinetic energy decreases by an amount W. That is, a netl [orce
exerted on an object opposite to the object’s direction of motion decreases its
speed and its kinetic energy. An example is a mmmg hammer (Fig. 7 H}
striking a nail. The net force on the hammer (=F in Fig. 7-15, where F is
assumed constant for simplicity) acts toward the left, whereas the displacement d
of the hammer is toward the right. So the net work done on the hammer,
W, = (F){d)(cos 180") = —Fd, is negative and the hammer's kinetic energy
decreases (usually to zero).

Figure 7-15 also illustrates how energy can be considered the ability to
do work. The hammer, as it slows down, does positive work on the nail:
W, = (+F)(+d){cos0") = Fd and is positive. The decrease in kinetic energy of
the hammer (= Fd by Eq. 7-11) is equal to the work the hammer can do on
another object, the nail in this case.

The translational kinetic energy (= $mv?) is directly proportional to the mass
of the object, and it is also proportional to the square of the speed. Thus, if the
mass is doubled, the kinetic energy is doubled. But if the speed is doubled, the
object has four times as much kinetic energy and is therefore capable of doing four
times as much work.

Beecause of the direct connection between work and kinetic energy, energy is
measured in the same units as work: joules in 51 units. [The energy unit is ergs in
the cgs, and foot-pounds in the British sysiem.] Like work, kinetic energy is a
scalar quantity. The kinetic energy of a group of objects is the sum of the kinetic
energies of the individual objects.

The work-energy principle can be applied to a particle, and also to an object
that can be approximated as a parlicle, such as an object that is rigid or whose
internal motions are insignificant. It is very useful in simple situations, as we will
see in the Examples below. The work-energy principle is not as powerful and
encompassing as the law of conservation of energy which we treat in the next
Chapter, and should not itsell be considered a statement ol energy conservation.
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— (om hammer) (on nail)

B

FIGURE 7-15 A moving hammer
strikes a nail and comes 1o rest. The
hammer exerts a loree Fon the nail;
the nail exerts a force — 8 on the
hammer {(Newton's third law). The
work done on the nail by the
hammer is positive (W, = Fd = 0).
The work done on the hammer by
the nail is negative (W, = —Fd).

12. (I) Jane, looking for Tarzan, is running at top speed
(5.0m/s) and grabs a vinc hanging vertically from a tall tree
in the jungle. How high can she swing upward? Does the
length of the vine affect your answer?

62. (1) How long will it take a 1750-W motor to lift a 335-kg
piano to a sixth-story window 16.0 m above?

70. (1) A pump lifts 21.0kg of water per minute through a
height of 3.50 m. What minimum output rating (watts) must
the pump motor have?

39. (II) You drop a ball from a height of 2.0 m, and it bounces back
to a height of 1.5 m. (a) What fraction of its initial energy is lost
during the bounce? (b) What is the ball's speed just before
and just after the bounce? (¢) Where did the energy go?



8-5 The Law of Conservation of Energy

We now take into account nonconservative forces such as [riction, since they are
important in real situations. For example, consider again the roller-coaster car in
Fig. 8-8, but this time let us include friction. The car will not in this case reach the
same height on the second hill as it had on the first hill because of friction.

In this, and in other natural processes, the mechanical energy (sum of the
kinetic and potential energies) does not remain constant but decreases. Because
frictional forces reduce the mechanical energy (but not the total energy), they
are called dissipative forces. Historically, the presence of dissipative forces hindered
the formulation of a comprehensive conservation of energy law until well into
the nineteenth century. It was not until then that heat, which is always produced
when there is friction (try rubbing vour hands together), was interpreted in
terms of cnergy. Quantitative studies in the nineteenth-century (Chapter 19)
demonstrated that if heat is considered as a transfer of energy (sometimes called
thermal energy), then the total energy is conserved in any process. For example, if
the roller-coaster car in Fig. 8-8 is subject to [rictional [orces, then the initial toial
energy of the car will be equal to the car’s kinetic energy plus the potential energy
at any subsequent point along its path plus the amount of thermal energy produced
in the process. A block sliding freely across a table, for example, comes to rest
because of friction. Its initial kinetic energy is all transformed into thermal energy.
The block and table are a little warmer as a result of this process: both have
absorbed some thermal energy. Another example of the transformation of kinetic
energy into thermal energy can be observed by vigorously striking a nail several
times with a hammer and then gently touching the nail with your finger.

According to the atomic theory, thermal energy represents kinetic energy of
rapidly moving molecules, We shall see in Chapter 18 that a rise in temperature
corresponds to an increase in the average kinetic energy of the molecules. Because
thermal energy represents the energy of atoms and molecules that make up an
object, it is often called internal energy. Internal energy, rom the atomic poinl of
view, can include not only kinetic energy of molecules but also potential energy
{usually clectrical in nature) because of the relative positions of atoms within
molecules. On a macroscopic level, thermal or internal energy corresponds to
nonconservative forces such as friction. But at the atomic level, the energy is partly
kinetic, partly polential corresponding 1o forces thal are conservative, For
example, the energy stored in food or in a fuel such as gasoline can be regarded as
potential energy stored by virtue of the relative positions of the atoms within a
molecule due to electric forces between atoms (referred to as chemical bonds). For
this energy to be used to do work, it must be released, usually through chemical
reactions (Fig. 8-15). This is analogous to a compressed spring which, when
released, can do work.

Phys | SV 2013

To establish the more general law of conservation of energy, it required nine-
teenth-century physicists to recognize electrical, chemical. and other forms of
energy in addition to heat and to explore if in fact they could fit into a conserva-
tion law, For each type of force, conservative or nonconservative, it has always
been found possible to define a type of energy thal corresponds to the work done
by such a force. And it has been found experimentally that the total energy F
always remains constant. That is, the change in the total energy, kinelic plus polen-
tial plus all other forms of energy, equals zero:

AK + AU + [change in all other forms of energy] = 0. (8-14)

This is one of the most important principles in physics. It is called the law of
conservation of energy and can be stated as follows:

The total energy is neither increased nor decreased in any process. Energy can
For conservative mechanical systems, this law can be derived from Newton's laws
(Section 8-3) and thus is equivalent to them. But in its full generality, the validity
of the law ol conservation ol energy rests on experimental observation,

Even though Newton’s laws have been found to fail in the submicroscopic
world of the atom, the law of conservation of energy has been found to hold there
and in every experimenial siluation so far tested.

FIGURE 8-15 The burning of fuel

(a chemical reaction) releases
energy to boil water in this steam
engine. The steam produced expands
against a piston to do work in
turning the wheels.
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8: Schwingungen

|.  Wie analysiert man die Krafte eines Potentials?
Energie-diagramm
(In-)stabile Gleichgewichte

ll. Wie beschreibt man die Bewegung am stabilen Gleichgewicht ?
Harmonische Schwingungen
Gedampfte harmonische Schwingungen

lll.  Was beschreibt die erzwungene harmonische Schwingung ?
Resonanz

Vorbereitung fur den Kurs und die Uebungen

Kapitel im Giancoli vor dem Kurs zu lesen (4 p):

: 8-9 Potential energy diagrams
14-1 Oscillations of a spring; 14-2 Simple harmonic motion
14-7 Damped harmonic oscillator

: 14-8 Forced oscillations

Vorbereitungsiibungen (4) vor den Ubungen zu 16sen:

: Giancoli 14-3, 9, 59, 65

Giancoli Kapitel 8-9;14-1 bis 5; 14-7 und 14-8
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Anhang A. Wie kann man die mathematische
Losung des gedampften Pendels bestimmen ?

Mit dem Ansatz (s. Kurs)

x(t) = Ae  cos(wt + @)

Davon die 1. und 2. Ableitung (Annahme ¢=0): % Ml = e ()

2
Cj; y [Ae “(— wsin(ot)- acos(a)t))]
- i — (fgy=Fg+fg’
[— Aoe™ (- wsin(wt)-a cos(a)t))] [Ae‘“’ (— o’ cos(awt )+ aw sin(a)t))]
Ae™ [2aa)sin(a)t) (a2 ~-w’ )cos(a)t)]
|nd|eBewegungsg|e|chungemsetzennaChS|nundCOSgrupp|eren
d’x k b dx
x50
di m m dt :
 [2aw] i sin(or) |o® —@?|  cos(ax)
Ae™ b
2 [~ w] isin(wr) m ~a] : cos(wt)
: ; "~ cos(wt)
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Anhang A (Folge) Welches sind die Konstanten des
gedampften Pendels ?

Ae™[C, sin(at )+ C, cos(at)|=0

ey
--------
------
1 L

Ae™® [20((0] sm(a)t)

—[- ] s1n(a)t)

[az—a)z] gcos(a)t)

%[_ al cos(ot)

= cos(ot)

frea,, et
Teagntt

b k
C,=a’-& ——a+—
m o m
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C,=2a0——w
FUr irgendeine Zeit t
gultig :
C,=C,=0
NB. Ae*t£0

Eigenkreisfrequenz des
harmonischen Oszillators (=) 8-44



Anhang B Wie bestimmt man die Bewegung in Anwesenheit
einer periodischen Kraft?

Situation: Eine Masse ist an einer Feder

aufgehangt. Eine sinusoidale Kraft wirkt auf die d*x . (t) ) dx F, ( t) =2
Masse. Frage: Welche Amplitude ergibt sich fir dtz — 1 @’xlr)+ TE—;COS ) 02:%

die Bewegung der Masse ?

M|t demAnsatz  x(7) = R, Cos(a)t — go) = R, cospcos ot + R, sin ¢ sin ot
: = Acos wt + Bsin wt

2
Seiner 1. und 2. Ableitung ax —Awsin ot + B cos wt fhf =—Aw" coswt — Bw” sin wt
t
t 1) In die Bewegungsgleichung einsetzen Gliltig fur alle Zeiten t:

2) Nach sin und cos gruppieren C,sinwt +C, coswt =0 C,=C,=0

--------
......................
................
........

: C1 : : C1 :
[cooz —a)ZJB%iH(COf) lwoz —Q’ZJA??OS(@‘) | Zwei Unbekannte (A, B)
| _o A:sin(a)t) = Bgcos(a)t) éwf(l) )Glelchungen (C,=0
1R i : _h cos(at) i 2
LY m . Eine Losung firAund B! ;
| 8-45
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*8-9 Potential Energy Diagrams;
Stable and Unstable Equilibrium

If only conservative forces do work on an object, we can learn a great deal
about its motion simply by examining a potential energy diagram—the graph of
Ui {x) versus x. An example of a potential energy diagram is shown in Fig. 8-23. The
rather complex curve represents some complicated potential energy U{x). The
total energy £ = K + U is constant and can be represented as a horizontal line
on this graph. Four different possible values for £ are shown, labeled £, E,, E;,
and F£5. What the actual value of E will be for a given system depends on the
initial conditions. (For example, the total energy £ of a mass oscillating on the end
of a spring depends on the amount the spring is initially compressed or stretched.)
Kinetic energy K = $mu* cannot be less than zero (v would be imaginary), and
because £ = U + K = constant, then IJ{x) must be less than or equal to £ for all
situations: L/(x) = F. Thus the minimum value which the total energy can take
for the potential energy shown in Fig. 8-23 is that labeled F;. For this value of E,
the mass can only be at rest at x = x;. The system has potential energy but no kinetic
energy al this position.

If the system’s total energy £ is greater than Ej, say it is £, on our plot, the
system can have both kinetic and potential energy. Because energy is conserved,

K = E =U(x).

Since the curve represents U x) at each x, the kinetic energy at any value of x is
represented by the distance between the £ line and the curve U{x) at that value
of x. In the diagram, the kinetic energy for an object at x,, when iis total energy
is E,, is indicated by the notation K.

An object with energy FE, can oscillate only between the points x; and x;. This
is because if x = x; or x < x5, the potential energy would be greater than F,
meaning K = 1mv* < 0 and v would be imaginary, and so impossible. At x, and
x4 the velocity is zero, since £ = U7 at these points. Hence x. and x, are called the
turning points of the motion. If the object is at x;, say, moving to the right, its
kinetic energy {and speed) decreases until it reaches zero at x = x,. The object
then reverses direction, proceeding to the left and inereasing in speed until it
passes xp again. It continues to move, decreasing in speed until it reaches x = x5,
where again © = 0, and the object again reverses direction.

If the object has energy £ = E; in Fig. 8-23, there are lour turning points. The
object can move in only one of the two potential energy “valleys,” depending on
where it is initially. It cannot get from one valley to the other because of the barrier
between them—Ifor example atl a point such as x,, U > £;, which means v would
be imaginary.! For energy Ej, there is only one turning point since Uix) < E; for
all x = x.. Thus our object, if moving initially to the left, varies in speed as it passes
the potential valleys but eventually stops and turns around at x = x;. It then
proceeds to the right indefinitely, never to return.
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How do we know the object reverses direction at the turning points? Because
of the force exerted on it. The force F is related to the potential energy U by
Eq. 87, F = —dU/fdx. The force Fis equal to the negative of the slope of the
[/-versus-x curve at any point x. At x = x,, for example, the slope is positive so the
force is negative, which means it acts to the left (toward decreasing values of x).

Al x = x the slope is zero, so F = (. At such a point the particle 1s said to
be in equilibrium. This term means simply that the net force on the object is zero.
Henee, its aceeleration is zero, and so if it is initially at rest, it remains at rest. If the
object at rest at x = x; were moved slightly to the left or right, a nonzero force
would act on it in the direction to move it back toward x,. An object that returns
toward its equilibrium point when displaced slightly is said to be at a point of
stable equilibrivm. Any minimum in the polential energy curve represents a point
of stable equilibrium.

An object at x = x, would also be in equilibrium, since F = —dU/dx = 0.
If the object were displaced a bit to either side of x,, a force would act to pull the
object gway from the equilibrium peint. Points like x,, where the poleniial energy
curve has a maximum, are points of unstable equilibriuin. The object will nor
return to equilibrium if displaced slightly, but instead will move farther away.
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any objects vibrate or oscillate—an object on the end of a spring, a

tuning fork, the balance wheel of an old watch, a pendulum, a plastic

ruler held firmly over the edge of a table and gently struck, the strings

of a guitar or piano. Spiders detect prey by the vibrations of their
webs; cars oscillate up and down when they hit a bump: buildings and bridges
vibrate when heavy trucks pass or the wind is fierce. Indeed, because most solids
are clastic (see Chapter 12), they vibrate (at least briefly) when given an impulse.
Electrical oscillations are necessary in radio and television sets. At the atomic level,
atoms vibrate within a molecule, and the atoms of a solid vibrate about their relatively
fixed positions. Because it is so common in everyday life and occurs in so many
areas of physics, oscillatory motion is of great importance. Mechanical oscillations
are fully described on the basis of Newtonian mechanics.

14-1 Oscillations of a Spring

When an object vibrates or oscillates back and forth, over the same path, each
oscillation taking the same amount of time, the motion is periodic. The simplest form
of periodic motion is represented by an object oscillating on the end of a uniform
coil spring. Because many other types of oscillatory motion closely resemble this
system, we will look at it in detail. We assume that the mass of the spring can be
ignored, and that the spring 1s mounted horizontally, as shown mn Fig. 14-1a, so
that the object of mass m slides without friction on the horizontal surface. Any
spring has a natural length at which it exerts no force on the mass m. The position
of the mass at this point is called the equilibrium position. If the mass is moved
cither to the left, which compresses the spring, or to the right, which stretches it,
the spring exerts a force on the mass that acts in the direction of returning the
mass to the equilibrium position; hence it is called a restoring force. We consider
the common siluation where we can assume the restoring lorce F is directlly
proportional to the displacement x the spring has been stretched (Fig. 14-1b) or
compressed (Fig. 14-1c) from the equilibrium position:

F = —kx [force exerted by spring] (14-1)

Note that the equilibrium position has been chosen at x = 0 and the minus sign
in Eq. 14-1 indicates that the restoring force is always in the direction opposite to
the displacement x. For example, if we choose the positive direction to the right in
Fig. 14-1, x is positive when the spring is stretched (Fig. 14-1b), but the direction
of the restoring force is to the left (negative direction). If the spring is compressed,
x is negative (to the left) but the force F acts toward the right (Fig. 14-1c).

Note that the force F in Eq. 14-1 is not a constant, but varies with position.
Therefore the acceleration of the mass m 1s not constant, so we cannot use the
equations for constant acceleration developed in Chapter 2.
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Let us examine what happens when our uniform spring is initially compressed a
distance x = — A, as shown in Fig. 14-2a, and then released on the frictionless surface.
The spring exerts a force on the mass that pushes it toward the equilibrium position.
But because the mass has inertia, it passes the equilibrium position with considerable
speed. Indeed, as the mass reaches the equilibrium position, the force on it decreases
to zero, but its speed at this point is a maximum, v, (Fig. 14-2b). As the mass moves
farther to the right, the force on it acts to slow it down, and it stops for an mstant at
x = A (Fig. 14-2c). It then begins moving back in the opposite direction, accelerating
until it passes the equilibrium point (Fig. 14-2d), and then slows down until it reaches
zero speed at the original starting point, x = —A (Fig. 14-2¢). It then repeats the
motion, moving back and forth symmetrically between x = A and x = —A.

14-2 Simple Harmonic Motion

Any oscillating system for which the net restoring force is directly proportional to
the negative of the displacement (as in Eq. 14-1, F = —kx) is said to exhibit
simple harmonic motion (SHM). Such a system is often called a simple harmonic
oscillator (SHO). We saw in Chapter 12 (Section 12-4) that most solid materials
stretch or compress according to Eq. 14-1 as long as the displacement is not too
great. Because of this, many natural oscillations are simple harmonic or close to it.

14-7 Damped Harmonic Motion

The amplitude of any real oscillating spring or swinging pendulum slowly decreases
in time until the oscillations stop altogether. Figure 14-19 shows a typical graph of
the displacement as a function of time. This is called damped harmonic motion. The
damping’ is generally due to the resistance of air and to internal friction within
the oscillating system. The energy that is dissipated to thermal energy is reflected in
a decrecased amplitude of oscillation.

Since natural oscillating systems are damped in general, why do we even lalk
about (undamped) simple harmonic motion? The answer is that SHM is much
easier o deal with mathematically. And il the damping is not large, the oscillations
can be thought of as simple harmonic motion on which the damping is superposed,
as represented by the dashed curves in Fig. 14-19. Although damping does alter
the frequency of vibration, the effect is usually small if the damping is small. Let us
look at this in more detail.
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14—8 Forced Oscillations; Resonance

When an oscillating system is set into motion, it oscillates at its natural frequency
(Egs. 14-7a and 14-12b). However, a system may have an external force applied
to it that has its own particular frequency and then we have a forced oscillation.

For example, we might pull the mass on the spring of Fig. 14-1 back and forth
at a frequency f. The mass then oscillates at the frequency f of the external force,
cven if this frequency is different from the natural frequency of the spring, which
we will now denote by fj; where (see Egs. 14-5 and 14-7a)

n
\'m

In a forced oscillation the amplitude ol oscillation, and hence the energy transferred
to the oscillating system, is found to depend on the difference between [ and f; as
well as on the amount of damping, reaching a maximum when the frequency of the
external force equals the natural frequency of the system—that is, when
f = f;. The amplitude is plotted in Fig. 14-23 as a function of the external
frequency f. Curve A represents light damping and curve B heavy damping. The
amplitude can become large when the driving frequency f is near the natural
frequency, f = f;,, as long as the damping is not too large. When the damping is
small, the increase in amplitude near f = f; is very large (and often dramatic).
This effect is known as resonance. The natural frequency f; of a system is called its
resonant frequency.

A simple illustration of resonance is pushing a child on a swing. A swing, like
any pendulum, has a natural frequency of oscillation that depends on its length £.
If you push on the swing at a random frequency, the swing bounces around and
reaches no great amplitude. But if you push with a frequency equal to the natural
frequency of the swing, the amplitude increases greatly. Al resonance, relatively
little effort is required to obtain a large amplitude.

2afy

Wy
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3. (I) The springs of a 1500-kg car compress 5.0 mm when its
68-kg driver gets into the driver’s seat. If the car goes over a
bump, what will be the frequency of oscillations? Ignore
damping.

9. (IT) A small fly of mass 0.25 g is caught in a spider’s web. The
web oscillates predominately with a f[requency ol 4.0 He
(@) What is the value of the effective spring stiffness constant &
for the web? (b) At what frequency would you expect the web
to oscillate if an insect of mass .50 g were trapped?

59. (IT) A damped harmonic oscillator loses 6.0% of its mechanical
energy per cycle. (a) By what percentage does its frequency
differ from the natural frequency f, = (1/27)Vk/m?
(b) After how many periods will the amplitude have
decreased to 1/e of its original value?

(1I) An 1150 kg automobile has springs with k& = 16,000 N/m.
One of the tires 1s not properly balanced; it has a little extra
mass on one side compared to the other, causing the car to
shake at certain speeds. If the tire radius is 42 cm, at
what speed will the wheel shake most?



9: Der Impuls und Systeme mit veranderlicher Masse

|. Welche Grossen sind wahrend einer Kollision zweier Objekte (Stoss) erhalten ?

Impulserhaltungssatz

ll. Was geschieht wahrend eines Stosses ?

Inelastischer Stoss
l1l. Wie bestimmt man den Schub einer Rakete ?

IV. Welche Grossen sind wahrend einer Kreisbewegung erhalten ?
Rotationsenergie

Erhaltung des Drehimpulses

Vorbereitung auf die Vorlesung und Ubungen

Kapitel im Giancoli vor dem Kurs zu lesen (2 Seiten):

' 9-1 Momentum and its relation to force
10-10 Systems of variable mass; rocket propulsion
11-3 angular momentum of a particle

11-6 conservation of angular momentum
Vorbereltende Ubungen (4) vor der Ubungssession zu erledigen :

Giancoli 9-3, 9, 10, 24, 10-63; 11-1, 5,7

Giancoli Kapitel 9-1; 9-2; 9-4 bis 9-7; 10-10; 11-1, 11-3, 11-4 (6) 9-49
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Zugabe: Beweis des 2. Keplerschen Gesetzes

«Der Ortsvektor des Planeten uberstreicht in

gleichen Zeiten At gleich grol3e Flachen»
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9-1 Momentum and Its Relation to Force

The linear momentum (or “momentum” for short) of an object is defined as the
product of its mass and its velocity. Momentum (plural is momenta) is represented
by the symbol p. If we let m represent the mass of an object and v represent ils
velocity, then its momentum p is defined as

p = mv. (9-1)

Velocity is a vector, so momentum too is a vector. The direction of the momentum
is the direction of the velocity, and the magnitude of the momentum is p = mw,
Because velocity depends on the reference frame, so does momentum; thus
the reference frame must be specified. The unit of momentum is that of
mass X velocity, which in SI units is kg-m/'s, There 1s no special name lor this unit,
Everyday usage of the term momentum 1s in accord with the definition above.
According to Eqg. 9-1, a fast-moving car has more momentum than a slow-moving
car of the same mass; a heavy truck has more momentum than a small car moving
with the same speed. The more momentum an object has, the harder it is to stop it,
and the greater effect 1t will have on another object il it is brought to rest by
striking that object. A football player is more likely to be stunned if tackled by a
heavy opponent running at top speed than by a lighter or slower-moving tackler, A
heavy, fast-moving truck can do more damage than a slow-moving motorcycle.
A force is required to change the momentum of an object, whether it is to
increase the momentum, to decrease it, or to change its direction. Newton origi- [~ T T T T T T T T T o T m e m—m e m e m————— ==
nally stated his second law in terms of momentum (although he called the product | 3. ([[) ]he momentum Of a particle, in SI units, is given by p =
mv the “guantity of motion™). Newton’s statement of the second law of motion, I 4.8 I”l — 8. ﬂ] — 8 g'lk What is the force as a function of time?
translated into modern language, is as [ollows: "
9. (I) A 7700-kg boxcar traveling 18 m/s strikes a second car.
The two stick together and move off with a speed of
5.0 m/s. What is the mass of the second car?

The rate of change of momentum of an object is equal to the net force applied to it.

We can write this as an equation,

. dp

ZF = o #-2) 110. (I) A 9150-kg railroad car travels alone on a level frictionless

|
I
|
1
|
I
= | 1 -
where ZF is the net force applied to the object (the vector sum of all forces acting traCk with a CGI'IS'[aIlt speed of 15.0 m,fs. A 435{}1 kg load,
on it). We can readily derive the familiar form of the second law, XF = mad, from | l[].l‘{la]_l}f at rest, 1s dTDPpCd onto the car. What will be the
Eq. 9-2 for the case of constant mass. If ¥ is the velocity of an object at any | car’s new SpL‘L‘.d?
moment, then Eq. 9-2 gives 1 ) . ,
1 24, (IT) A 12-kg hammer strikes a nail at a velocity of 8.5 m/s
: and comes to rest in a time interval of 8.0 ms. (a) What is the
I impulse given to the nail? (b) What is the average force
I acting on the nail?

- dp d(mv) v _

ZF = I m Mg - me [constant mass|
because, by definition, a = dv/df and we assume m = constant. Newton's state-
ment, Eq. 9-2, is actually more general than the more familiar one because it
includes the situation in which the mass may change. This is important in certain
circumstances, such as for rockets which lose mass as they burn fucl (Section 9-10)
and in relativity theory (Chapter 36). 9-51
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*9-10 Systems of Variable Mass;
Rocket Propulsion

We now treat objects or systems whose mass varies. Such systems could be
trealed as a lype of inelastic collision, but it is simpler 1o use Eg. 9-5,
dP/dt = =F,,, where P is the total momentum of the system and XF,,, is the
net external force exerted on it. Great care must be taken to define the system,
and to include all changes in momentum. An important application is to rockets,
which propel themselves forward by the ejection of burned gases: the force
exerted by the gases on the rocket accelerates the rocket. The mass M of the
rocket decreases as it ejects gas, so for the rocket dM/dt << 0. Another
application is the dropping of material (gravel, packaged goods) onto a conveyor
belt. In this situation, the mass M of the loaded conveyor belt increases and
dMfdt = 0.

To treat the general case of variable mass, let us consider the system
shown in Fig. 9-33. Al some time [, we have a system of mass M and
momenium M¥. We also have a tiny (infinitesimal) mass dM traveling with
velocity i which is about to enter our system. An infinitesimal time df later,
the mass dM combines with the system. For simplicity we will refer to this as a
“collision.” So our system has changed in mass from M to M + dM in the
time df. Note that dM can be less than zero, as for a rocket propelled by
qcclcd gases whose mass M thus decreases.

In order to apply Eq. 9-5. dP/dt = EF.,. we must consider a definite
fixed system of particles. That is, in considering the change in momentum,
dP, we must consider the momentum of the same particles initially and
finally,. We will define our tofal systesn as including M plus dM. Then
initially, at time f, the total momentum is MV + adM (Fig. 9-33). At time
f+ df, aller dM has combined with M, the veloecity of the whole is now
v + dv and the total momentum is (M + dM)(v + d¥). So the change in
momentum dP is

= (M + dM)(¥ + dv) — (MV + @dM)
Mdv + VdM + dMdv — i dM.

The term dM dv is the product of two differentials and 1s zero even after we

“divide by di.” which we do, and apply Eq. Y-5 to obtain

dP Mdv + VvdM —idM

}‘chl - E - di
Thus we get
= . di (LW
¥y = M i (i ‘:ldr {9-19a)

¢ Note that the quantity (4 — ¥) is the relative velocity, ¥, of dM with respect to M.

That is,
Vg = 0 — ¥

is the velocilty of the entering mass dM as scen by an observer on M. We can

— rearrange Eq. 9-19%a:

v B dM
ME =SB+ v :

9-19b
T ( )

1|Irr{:l?
We can interpret this equation as follows. Mdv/dt is the mass times the acceleration
of M. The first term on the right, ZF,,, refers to the external force on the
mass M (for a rocket, it would include the force of gravity and air resistance). I
does not include the foree that &M exerts on M as a result of their collision. This
is taken care of by the second term on the right, ¥, (dM/dt), which represents
the rate at which momentum is being transferred into (or out of) the mass M
because of the mass that is added 1o (or leaves) it. It can thus be interpreted as
the force exerted on the mass M due to the addition {or ejection) of mass. For a
rocket this term is called the thrust, since it represents the force exerted on the
rocket by the expelled gases. For a rocket ejecting burned fuel, dM/dt = (), but
50 i8 ¥y (pases are forced out the back), so the second term in Eq. 9-19b acts
lo increase v.

dM /“\
i

(a)

-
M+ dM l—"'
\ ¥+ dv
-

(b)

FIGURE 9-33 (a) Al time ¢, a mass
dM is about to be added to our
system M. (b) At time ¢ + df, the
mass dM has been added to our
system,
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If we let SF represent the resultant force on the particle, then in an inertial reference

frame, XF = dp/dt and

11-3 Angular Momentum of a Particle

The most general way of writing Newton’s second law for the translational motion EXSF = I x d_p = dL
of a particle (or system of particles) is in terms of the linear momentum p = mv as . ) dt dt )
given by Eq. 9-2 (or 9-5): But ¥ X ZF = Z7 is the net torque on our particle. Hence
: dL
SF = ? 2F = a [particle, inertial frame] (11=7)
!

The rotational analog of linear momentum is angular momentum. Just as the rate Ihe time rate of change of angular momentum of a particle is equal to the net
of change of p is related to the net force ZF, so we might expect the rate of change torque applied to it. Equation 11-7 is the rotational equivalent of Newton’s
of angular momentum to be related to the net torque. Indeed, we saw this was true second law for a particle, written in its most general form. Equation 11-7 is valid

in Section 11-1 for the special case of a rigid object rotating about a fixed axis.
Now we will see il is true in general. We [irst treat a single particle.

Suppose a particle of mass m has momentum p and position vector ¥ with
respect to the origin O in some chosen inertial reference frame. Then the general
definition of the angular momentum, L, of the particle about point O is the vector
cross product of F and p:

L [particle] (11-6)
Angular momentum is a vector.' Its direction is perpendicular to both ¥ and p as
given by the right-hand rule (Fig. 11-12). Its magnitude is given by

L

X p.

rpsin @
or
L =rp =rnp
where 6 is the angle between ¥ and p and p, (= psin@) and r, (= rsin#) are the
components of p and ¥ perpendicular to ¥ and p, respectively.
Now let us find the relation between angular momentum and torque for a
particle. If we take the derivative of L with respect to time we have

dL, d(_x_,) a’fx~+~xdl5

— = —(F = — T —_—

a a7 P d
But o

d—;xli=‘?><m\"=m{\5><1?]=ﬂ,
since sin @ = 0 for this case. Thus

dL dp

2o xR

dt dl
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only in an inertial frame since only then is it true that XF = dp/d!, which was

used in the prool.

¥

L=tFxp

-t

i

FIGURE 11-12 The angular
momentum of a particle of mass m is
givenby L =7 X p =F X mv.
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11-6 Conservation of Angular Momentum

In Chapter 9 we saw that the most general form of Newton’s second law for the,
translational motion of a particle or system of particles is |
dp !

3 — \ 1
E Fex dt

where P is the (linear) momentum, defined as mv for a particle, or Mv,, for al

system of particles of total mass M whose CM moves with velocity ¥, , and EFm is)

the net external force acting on the particle or system. This relation i1s valid only in|

an nerlial relerence [rame. 1

In this Chapter, we have found a similar relation to describe the general rotation!

of a system of particles (including rigid objects):
dL

27 = o5 |

where X7 is the net external torque acting on the system, and L is the total angular!
momentum. This relation is valid when 27 and L are calculated about a point fixed!
in an inertial relerence {rame, or about the cMm ol the system. :

For translational motion, if the net force on the system is zero, dP/di = 0, 80|
the total linear momentum of the system remains constant. This is the law of)
conservation of linear momentum. For rotational motion, if the net torque on thel

system is zero, then 1
. |
dL =
—= =0 and L = constant (37 = 0] (11-12)]
|
In words: 1

The total angular momentum of a system remains constant if the net external
torque acting on the system is zero.

This is the law of conservation of angular momentum in full vector form. It ranks
with the laws of conservation of energy and linear momentum (and others to be
discussed later) as one of the great laws of physics. In Section 11-1 we saw some
Examples of this important law applied to the special case of a rigid object rotating
aboul a lixed axis. Here we have it in general form. We use it now in interesling
Examples.

Gritter Mechanik - Annex
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63. (I) A centrifuge rotor has a moment of inertia of :
425 x 1072 kg-m% How much energy is required to bring it |
from rest to 9750 rpm?

1. (I) What is the angular momentum of a 0.210-kg ball
rotating on the end of a thin string in a circle of radius
1.35 m at an angular speed of 10.4 rad/s?

5. (II) A diver (such as the one shown in Fig. 11-2) can reduce
her moment of inertia by a factor of about 3.5 when changing
from the straight position to the tuck position. If she makes
2.0 rotations in 1.5s when in the tuck position, what is her
angular speed (rev/s) when in the straight position?

7. (II) Determine the angular momentum of the Earth
(a) about its rotation axis (assume the Earth is a uniform
sphere), and (b) in its orbit around the Sun (treat the Earth
as a particle orbiting the Sun). The Earth has
mass = 6.0 X 10 kg and radius = 6.4 X 10°m, and is
1.5 % 10%km from the Sun.
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10: Mehrkorpersysteme

|. Zusammenfassung der Erhaltungssatze

Il.Wie beschreibt man die lineare Bewegung eines Mehrkorpersystems ?
Massenschwerpunkt/Massenmittelpunkt (centre de masse, CM)
Dynamik und mechanische Energie eines Systems mit N Korpern

lll.Wann befindet sich ein starrer Korper im Gleichgewicht ?
Drehmoment

I\V.Was versetzt einen starren Korper in eine Drehbewegung ?
z. Erinnerung: Dynamik der Drehbewegung des Massenpunktes

Vorbereitung auf die Vorlesung und Ubungen

Kapitel im Giancoli vor dem Kurs zu lesen (3.5 Seiten):
: 9-8 Center of Mass
11-4 Torque

; 12-1 The condition for equilibrium
. Vorbereitende Ubungen (5) vor der Ubungssession zu erledigen :

Giancoli 9-62, 63
10-25, 29, 30

Giancoli Kapitel 9-8, 9-9; 11-3, 11-4, 11-2, 12-1 bis 3

Gritter Mechanik - Annex



Annex: Massenschwerpunkt von 3 Objekten

m, M’ m, M
A —O—e—e O- O-
X1 Xem Xcm X2 X3
Far 3 Objekte befindet sich der Massenschwerpunkt xq,’ bei
Y myX FmyXy HMaXy X+ MyX, 4 My Xy XemM RKERE
tom = my +m, + m - M B M +m,

. e Gesamte Masse : M'’=m, + m, + m;
Mit der Definition der totalen Masse des CM von

m, und m, (S. vorher)

Regel 2: Um den Massenschwerpunkt eines komplexen

Objektes zu bestimmen, kann man den CM von den

' _ MxCM T M3 X5 :> individuellen Objekten berechnen, und dann letzere wie ein
- Massenpunkt am respektiven Massenschwerpunkt

M M + ny behandeln.
= A)und B) sind aquivalent :
M ms
B) oo O~

’ X3 10-
Gritter Mechanik - Annex XCM XC|\/| 3 0-56



Beispiel eines isolierten Systems: Erde-Mond

Vorher Nach einer halben Periode

.
B

Eher RICHTIG oder FALSCH ?

Eher RICHTIG oder FALSCH ?

@) (2

10-57
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z. Erinnerung: Die zylindrischen Koordinaten

Kartesisch Zylindrisch
- P = (Xo,Y0:20) ‘ < P =(podo20)

2 .......................................... :
) |0P| =X, +Y, +2, 4 : Verknupfung: ;
1 : Epeost | oo
1 > 0 1 > ZO P . :

@) : Y O : y=psing 2 2 2
",/’/ oo 1) y L z=7 |0P| =P tZ

_________ l yo ~ 1

10-58

Gritter Mechanik - Annex



z.Erinnerung: Kinematik der Kreisbewegung
Definitionen Winkelgeschwindigkeit und -position (s. auch Lektion 3 und 5,6)

Winkelposition: 6
Winkelgeschwindigkeit:

Punkte eines starren Kérpers

Momentane

| Winkelbeschleunigung
AT (ganz analog zur Kinematik

4 .
NB. Die Winkelgeschwindigkeit (w=v/r) ist dieseble fiir alle \f ! definiert)
‘_%7::/— S T Tl Tk =
........................................................................................................................... l\" Stationary skater or pivot ( ) da)(t) d 9 (t)
: . .- : a =
: : 2
dt dt

: Welche Richtung fur o ?

Wenn die Finger der rechten Hand der
Kreisbewegung folgen, gilt o, als positiv

(« Regel der rechten Hand »)

, @

r,—dreht sich

r |=konst

Gritter Mechanik - Annex

Beschrelbt eine Drehung von r um den Vektor @ mit
Frequenz f=w/2n. Der Betrag von r bleibt dabei erhalten
y = Gilt fir jede vektorielle Grosse f anstelle von r




z. Erinnerung: Kinematik und Dynamik der Kreibewegung
Drehmoment, Winkelbeschleunigung (Lektion 3 und 5)

Situation: Objekt befindet SiCh auf einem : ..... . ............................................. ........................................... T g
Kreis, und ist einer resultierenden Kraft F,,, Kinematik der Kreisbewegung (Lektion 3, 5):

ausgesetzt. ETangentieIIe Beschleunigung a,,

Frage: Wie beeinflusst die Kraft F,, die ; - _
Winkelaeschwindiakeit o und o.? R Andert den Betrag und Richtung
9 grelt o o | PrXdg, =ra der Winkelgeschwindigkeit —
I\ . ’I Winkelbeschleunigung
\ FR b /
\ > /
\\R\ 7 I:net//

........................................................................................................

: 2. Axiom:

: Zerlegung in radiale und tangentielle
i Komponenten -

Fnet:Zﬁk:ﬁR+E

~ N L t: Drehmoment der Kraft F
F =ma=m(ay +a,,) {1 I: Tragheitsmoment des Objektes

.........................................................................................................

r,: Distanz rel. zur Drehachse

NB. Zentripetalbedingung :

NB. Das Drehmoment hangt von der Wahl des
Koordinatenursprungs ab !

(Die Drehachse als Ursprung benutzen: Dies ist
anders als fur mund F)

F, =ma(t)x(a(t)x 7) = —mro(t) ;

Gritter Mechanik - Annex
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z. B. Kann man damit die Ture offnen ?
Die Proportionalitat zwischen o und =

Situation: Sie stossen eine Tiire mit einem Finger an verschiedenen Stellen, immer mit
derselben Kraft.

Frage: Welche Kraft (F, = F, etc) kann die grosste Winkelbeschleunigung o, bewirken, i.e.
erlaubt es, die Ture am schnellsten zu 6ffnen ? :

1,=R,F=RF, =RF sin6

(Hebelarm)
" Rotationsachse: z /
O | ————
Keine
Drehung
Drehung

Grosste Winkelbeschleunigung

10-61
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9-8 Center of Mass (cMm)

Momentum 15 a powerful concept not only for analyzing collisions but also for
analyzing the translational motion of real extended objects. Until now, whenever
we have dealt with the motion of an extended object (that is, an object that has
size), we have assumed that it could be approximated as a point particle or that it
undergoes only translational motion. Real extended objects, however, can undergo
rotational and other types of motion as well. For example, the diver in Fig. Y-21a
undergoes only translational motion (all parts of the object follow the same path),
whereas the diver in Fig. 9-21b undergoes both translational and rotational
motion. We will refer to motion that is not pure translation as geseral motion.

Observations indicate that even il an object rotates, or several parts of a
system of objects move relative to one another, there 15 one point that moves
in the same path that a particle would move if subjected to the same net force.
This point is called the center of mass (abbreviated cm). The general motion
of an extended object (or system of ohjects) can be considered as the sum of the
transtational motion of the oM, plus rotational, vibrational, or other types of motion
about the M.

As an example, consider the motion of the center of mass of the diver in Fig. 9-21;
the oM [ollows a parabolic path even when the diver rotates, as shown in Fig. 9-21b.
This is the same parabolic path that a projected particle follows when acted on only
by the force of gravity (projectile motion, Section 3-7), Other points in the rotating
diver’s body, such as her feet or head, follow more complicated paths.

Figure 9-22 shows a wrench acted on by #zero net foree, translating and rotating
along a horizontal surface. Note that its oM, marked by a red cross, moves in a
straight line, as shown by the dashed white line.

We will show in Section 9-9 that the important properties of the oM follow
from Newton’s laws if the cM is defined in the following way. We can consider any
extended object as being made up of many tiny particles. But first we consider a
system made up of only two particles (or small objects), of masses m, and mp . We
choose a coordinate system so that both particles lie on the x axis at positions x,
and xy, Fig. 9-23, The center of mass of this system is defined to be at the position
Xy given by

Mg Xy + Mpxg

Frlly Xp — MlpXp

X, = =
o my + Mg M
where M = m, + my is the total mass of the system. The center of mass lies on
the line joining m, and my. If the two masses are equal (m,.. = my = m), then
Xy 18 midway between them, since in this case
mix, + xp)  (xa

Xp)
2m a 2

Aem —

If one mass is greater than the other, say, my = mpg, then the oM is closer
to the larger mass. If all the mass is concentrated at xg, so my = (), then
Xepg = (U.I..\ + m,;x;;:lfl:ﬂ + ) = xp, as we would expect,

Now let us consider a system consisting of n particles, where n could be very
large. This system could be an extended object which we consider as being made
up of n liny particles. Il these n particles are all along a straight line {call it the
x axis), we deline the cM of the system to be located at ;

Em['.]:_,
mMypxp Hompx ot my Xy i=1

my; + m, + o+ omy, M

Xem (9-10)
where my, m,,...m, are the masses ol each particle and x,, x,,... x, are their
positions. The symbol 3., is the summation sign meaning to sum over all the
particles, where [ takes on integer values from 1 to s, (Often we simply write
Zm;x;, leaving out the i = 1 1o n.) The total mass of the system is M = Zm;.

FIGURE 9-22 Translation plus rotation: a wrench moving over a horizontal surface.
The oM, marked with a red cross, moves in a straight line.

i ‘{\ f’t\h
e/l ' \g i}_‘
e ¥ "

FIGURE 9-23 Ihcccme:m g

of a two-particle system lies on the  (a) (b)

line joining the two masses. Here FIGURE 9-21 The motion of the
my = mg, so the CM is closer to my diver is pure translation in (a), but is
than to mg. translation plus rotation in (b). The
v black dot represents the diver’s oM

d at each moment.

R J.

%A ’j
* . X
Ty
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It is often convenient to think of an extended object as made up of a continuous
distribution of matter. In other words, we consider the object to be made up of
n particles, each of mass Asm; in a tiny volume around a point x;, y;, z;, and we take
the limit of n approaching infinity (Fig. 9-26). Then Asm; becomes the infinitesimal
mass dm at points x, ¥, z. The summations in Egs. 9-11 and 9-12 become integrals:

1 1 1
ey = H[x dm, Voy = HJJJ dm, oy = I [zdm, {9-13)
where the sum over all the mass elements is [dm = M, the total mass of the

object. In vector notation, this becomes

o

L.
Foy = Eerm.

(9-14)

A concept similar to center of mass is eenter of gravity (0G). The ¢G of an object
is that point at which the force of gravity can be considered to act. The foree of gravity
actually acts on all the different parts or particles of an object, but for purposes of
determining the translational motion of an object as a whole, we can assume that the
entire weight of the object (which is the sum of the weights of all its parts) acts at
the ¢G. There is a conceptual difference between the center of gravity and the center
of mass, but for nearly all practical purposces, they are at the same point,'

10-4 Torque

We have so far discussed rotational kincmatics—the description of rotational
maotion in terms of angular position, angular velocity, and angular acceleration,
Mow we discuss the dynamics, or causes, of rotational motion. Just as we found
analogies between linear and rotational motion for the description of motion, so
rotational equivalents for dynamics exist as well,

To make an object start rofating aboul an axis clearly requires a force. But the
direction of this force, and where it is applied, are also important. Take, for
example, an ordinary situation such as the overhead view of the door in Fig. 10-11,
If you apply a force F, to the door as shown, you will find that the greater the
magnitude, £, the more quickly the door opens. But now if you apply the same
magnitude torce at a point closer to the hinpe—saw. Fy in Fig. 10=11-—the door
will not open so quickly. The effect of the force is less: where the force acts, as well
as itg magnitude and direction, affects how quickly the door opens. Indeed, if only
this one force acts, the angular acceleration of the door is proportional not only to
the magnitude of the force, but is also directly proportional to the perpendicular
distance from the axviv of rofation to the line along which the force acis. This distance
i called the lever arm, or moment arm, of the foree, and 5 labeled 8, and & for
the two forces in Fig. 10-11. Thus, if &, in Fig. 10-11 15 three times larger than Ry,
then the angular acceleration of the door will be three times as great, assuming
that the magnitodes of the forces are the same. To say it another way, if
K, = 3y, then F; must be three times as large as £, 1o give the same anpular
acceleration. (Figure 10-12 shows two examples of tools whose long lever arms are
very effective.)
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The angular acceleration, then, is proportional to the product of the force rimes
the lever arm. This product is called the moment of the force aboul the axis, or, more
commonly, it is called the torgue, and i= represented by ¢ (Greek lowercase letter
taw), Thus, the angular acceleration & of an object is directly proportional to the net
applied lorgue T

o T

FIGURE 10-12 (a) A tire iron too
can have a long lever arm. (b} A
plumber can exert greater torque
using a wrench with a long lever arm.

FIGURE 10-11 Top view of a door,
Applying the same foree with
different lever arms, B, and Hy. If
Ry = 3Rg, then to create the same
effect (anpgular acceleration), Fi needs

Axis of rotation

. N . ¥ Axis of rotation
ta he three times F  or Fy, = 3F. {a) (b

We defined the lever arm as the perpendicudar distance from the axis of rotation
to the line of action of the force——that is, the distance which i perpendicular both to
the axis of rotation and to an imaginary line drawn along the direction of the force,
We do this to take into account the effect of forces acting a1 an angle. It is clear that
a force applied at an angle, such as F. in Fig. 10-13, will be less effective than the
same magnitude force applied perpendicular to the door, such as F, (Fig. 10-13a).
Amd il you push on the end of the door so that the force is directed al the hinges {the
axis of rotation), as indicated by Fy, the door will not rotate at all.

The lever arm for a foree such as F is found by drawing a line along the direction
ol 'l-:',:- (this is the “line of action” of If{:l. Then we draw another ling, perpendicular 1o
this ling of action, that goes to the axis of rotation and is perpendicular also to iL
The length of this second line is the lever arm for iﬂ- and is labeled & in Fig, 10-13h.
The lever arm for F,t is the full distance from the hinge to the door knob, &, ; thus
R 1s much smaller than R, .

The magnitude of the torque associated with l"}; is then K- Fp. This short lever
arm R and the corresponding smaller torque associated with F. is consistent with
the observation that F,. is less effective in accelerating the door than is F, . When
the lever arm is defined in this way, experiment shows that the relation o o 7 is
valid in general. Notice in Fig. 10-13 that the line of action of the force Fj; passes
through the hinge, and hence s lever arm is zero. Consegquently, sero torgue is
associated with Fp and it gives rise 10 no angular acceleration, in accord with
everyday experience.



In general, then, we can write the magnitude of the torgue about a given axis as

T R, F, (10=11a)

where K| is the lever arm, and the perpendicular symbol (L) reminds us that we

must use the distance from the axis of rotation that is perpendicular to the line of
action of the force (Fig. 10-14a).

An equivalent way of determining the torque associated with a foree is to
resolve the force into components parallel and perpendicular to the line that
connects the axis 1o the point of application of the foree, as shown in Fig 10-14h.
The component £ exerts no lorgque sinee it is directed at the rotation axis (its
moment arm is gero). Hence the torgue will be equal to F, fimes the distance R from
the axis to the point of application of the force:

r = RF,. {10-10h)
This gives the same result as Eq. 10-10a becawse F, = Fsinf and &, = Ksinf. S0
v = RFsind (10-1ic)

in either case. [Mote that # is the angle between the directions of F and R (radial

ling from the axis 1o the poinl where F acts)|. We can wse any of Egs 10-10 1o

caleulate the torque, whichever is easiest.
FIGURE 10-13 (a) Forces acting at B

v pew

Paint af
different angles at the doorknoh. Axisol = application
{b) The lever arm is defined as the rdation ST of lorce
perpendicular distance from the axis i b '
of rotation {the hinge) to the line of .
action of the foree. F—

B 7 l— H Fig

-

F,
a) = \.‘.\.!‘- (@)
- F.] K
‘r"{""i

B Vo =
J f

R‘ ! Es ?":"-'p
i R ce
f

= == \4\ (b}

(b K FIGURE 10-14 Torque = R, F = RF,.

Because torque is a distance times a force, it 18 measured in units of m-N in 51
units, cm-dyne in the cgs system, and fi-1b in the English system.

When more than one torque acts on an object, the angular acceleration o is
found to be proportional to the ner torque. I1 all the torques acting on an object
tend to rotate it about a fixed axis of rotation in the same direction, the net torgue
is the sum of the torques. But if, say, one torque acts 1o rotate an object in one
direction, and a sccond torgue acts to rotate the object in the opposite direction
{as in Fig. 10-15}, the net torgue is the difference of the two torgues, We normally
assign @ positive sign 1o torgues that act 1o rotate the object counterclock wise (just
a5 # s usually positive counterclockwise), and a negative sign 1o torgues thal act 1o
rofate the object clockwise, when the rotation axis is lxed,
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12-1 The Conditions for Equilibrium

Objects in daily life have at least one force acting on them (gravity). If they are at
rest, then there must be other forces acting on them as well so that the net force is
zero. A book at rest on a table, for example, has two forces acting on it, the down-
ward force of gravity and the normal force the table exerts upward on it (Fig. 12-2).
Because the book is at rest, Newton’s second law tells us the net force on it is zero.
Thus the upward force exerted by the table on the book must be equal in magnitude
to the force of gravity acting downward on the book. Such an object is said to be
in equilibrium (Latin for “equal forces™ or “balance™) under the action of these
two forces.

Do not confuse the two forces in Fig. 12-2 with the equal and opposite forces
of Newton’s third law, which act on different objects. Here, both forces act on the
same object: and they add up to zero.

The First Condition for Equilibrium

For an object to be at rest, Newton’s second law tells us that the sum of the forces
acting on it must add up to zero. Since force is a vector, the components of the net
force must each be zero. Hence, a condition for equilibrium is that

ZF, = 0, ZF, = 0, ZF, = 0. (12-1)
We will mainly be dealing with forces that act in a plane, so we usually need only
the x and ¥ components. We must remember that if a particular force component
poinis along the negative x or y axis, it must have a negative sign. Equations 12-1
are called the first condition for equilibrium.

The Second Condition for Equilibrium

Although Egs. 12-1 are a necessary condition for an object to be in equilibrium,
they are not always a sufficient condition. Figure 12-4 shows an object on which
the net force is zero. Although the two forces labeled F add up to give zero net
force on the object, they do give rise to a net torque that will rotate the object.
Referring to Eq. 10-14, =7 = [, we see that if an object is to remain at rest, the
net torque applied to it (calculated about any axis) must be zero. Thus we have the
second condition for equilibrium: that the sum of the torques acting on an object,
as calculated about any axis, must be zcro:

Sr o= 0. (12-2)

This condition will ensure that the angular acceleration, @, about any axis will be
zero. If the object is not rotating initially (@ = 0), it will not start rotating. Equa-
tions 12-1 and 12-2 are the only requirements for an object to be in equilibrium.

We will mainly consider cases in which the forces all act in a plane (we call it the
xy plane). In such cases the torque is calculated about an axis that is perpendicular 1o
the xy plane. The choice of this axis is arbitrary. If the object is at rest, then 27 = 0
about any axis whatever. Therefore we can choose any axis that makes our calculation
easier. Once the axis is chosen, all torques must be calculated about that axis.



62. (I) The cM of an empty 1250-kg car is 2.50 m behind the front 29. (1I) The bolts on the cylinder head of an engine require

of the car. How far from the front of the car will the cM be tightening to a torque of 75 m-N. If a wrench is 28 cm long,

when two people sit in the front seat 2.80 m from the front of what force perpendicular to the wrench must the mechanic

the car, and three people sit in the back seat 3.90 m from the exert at its end? If the six-sided bolt head is 15 mm across

front? Assume that each person has a mass of 70.0 kg. (Fig. 10-49), estimate the force applied near each of the six
63. (I) The distance between a carbon atom (m = 12 u) and an points by a socket wrench.

oxygen atom (m =16u) in the CO molecule is o 2% em =

1.13 X 107 m. How far from the carbon atom is the center W - = 5§

9 e \ (// ,
of mass of the molecule? ]_ Smm | _|‘\ Lo d //_,
Fufl wrench

25. (I) Calculate the net torque about the axle of the wheel F

shown in Fig. 10-47. Assume that a friction torque of on bak

0.40m-N opposes the motion. FIGURE 10-49 Problem 29.

30. (1I) Determine the net torque on the 2.0-m-long uniform
beam shown in Fig. 10-50.
Calculate about (a) point C,
the oM, and (b) point P at
one end.

56N

FIGURE 10-47
Problem 25. ISN

14. (11} The force required to pull the cork out of the top of a wine
bottle is in the range of 200 to 400N, A common
bottle opener is shown
in Fig 12-54, What

O mmy 70 mm
range of forces Fis o= -
required to open a | — —
wine bottle with this 18, (II) Three children are trying 1o balance on a seesaw, which
device? includes a fulerum rock acting as a pivot at the center,
and a very light board 3.2m long (Fig. 12-57). Two play- Pleg
mates are already on either end. Boy A has a mass of 45 kg, 1
and boy B a mass of 35 kg. Where should girl C, whose mass :.fﬁug
iz 25 kg, place herself so as to balance the seezsaw? FIGURE 10-50 ! 52N
Problem 30. !
FIGURE 12-54 ] —x— -
Problem 14, &
: I 1-'3; m=35kg 10-65
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11: Rotation — feste Achse

|. Wie beschreibt man die Dynamik des Rollens ohne Gleiten ?
z. Erinnerung: 2. Gesetz der Rotation

ll. Wie bestimmt man das Tragheitsmoment eines starren Korpers ?
Parallelachsen-Theorem (Steinersche Satz)

lll. Wie kann man die Rollbewegung als momentane Rotation um
den Kontaktpunkt beschreiben ?

V. Welches Tragheitsmoment fur welche Korper ?

V. Welches ist die mechanische Energie eines rotierenden starren
Korpers ?
z. Erinnerung: Dynamik

Vorbereitung auf die Vorlesung und Ubungen

Kapitel im Giancoli vor dem Kurs zu lesen (1.5 Seiten):
j 10-5 Torque and rotational inertia
: Vorbereitende Ubungen (4) vor der Ubungssession zu erledigen :

Giancoli 10-32, 41, 47a, 56, 10-65, 71

Giancoli Kapitel 10-5 bis 10-9
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Beweis: Parallelachsen-Theorem
(Steinersches Theorem)

Situation: Nehmen wir an, dass Tragheitsmoment bezliglich eine
Zom= Z  Achse z durch den Massenschwerpunkt CM sei bekannt:

ICM=3" Amyri2

Die Drehachse sei nun parallel um h verschoben und mit z’ bezeichnet.

Frage: Welches ist die Beziehung zwischen den beiden
Tragheitsmomenten ?

|cM Mzgy, M
—_—— —_— I_H
CM I'=> Am(r;+h)? = > Amyr? + 2hY Amyr; + >, Am, h?

Rotation um eine Achse || zu derjenigen die durch den CM geht, wird durch ein

Tragheitsmoment |' charakterisiert CM 2
I'=I1"" + Mh

................................................................................................................................................. i 11-67
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Anhang: Herleitung des Tragheitsmoments eines Zylinders

......

Hohlzylinder mit Radius r;: I= mir;2 es folgt: I=>myr;2

Die Masse des Hohlzylinders: V=2rhrdr > m=2nphrdr

I:2ﬁph1R2r3dr =27T,0hzl‘(R22_R12XR12+R22) ............................. >y

M
le Z :

...................................................................................................................................................................................................................................
.....................................................................................................................................................................................................................................

1, = PLRARAQ v
: M T T(sin2 X+ cos? x)dx =2

h=Rsin6 ’ : o
o Zl. Sp—- R L Zm +R pLRdesm Hdé’ e Ism Xd“fc"s xdx
=1z S
................................. T : : J.sin2 xdx
R'M 0

M :27[pLRdR ........... .>

_ SInXCOSX+X
2

................................................................................................................................................................................................................



Bewels: Zugspannung F; eines Yoyo

Entspricht derselben Situation wie ein rollendes

Rad (s. vorher)

das durch eine Kraft Mg an seinem CM gezogen wird. Die
Zugspannung F; entspricht also der Reibungskraft des
Rades F,, fur die gilt, dass

JM \ am Kontaktpunkt P gilt v=0
}?f::'- ;22 acy = F; |
} [2’::__}?[ZGM' 2 2, CM >
F 1 MR*+MR"I. /| MR
Aoy = M (1+]ZCM /Msz | F = _Mg
v

Mit |,CM=MR? folgt [ g( ! j
! MR*/ MR* +1
F, = F/2=Mg/2

0=

11-69
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z. Erinnerung: Kinematik und Dynamik der Rotation

Kinematik der Drehbewegung

Momentane Winkelgeschwindigkeit : =

- —=@Xr
dt

Momentane Winkelbeschleunigung

a0y = 260

dt

Dynamik der Rotation
Drehmoment einer Kraft bezuglich eines Punktes O

= 7. =AFxF=([F-7)xF

Tragheitsmoment bezuglich einer Drehachse

[ = I ridm
beziiglich
Drehachse
r = Distanz zur Drehachse " r 11-70
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Zugabe: Spule und Schnur - Analyse bezuglich dem CM

2.Gesetz Rotation : ‘
2. Axiom: F
7, =RF, —rF = 4o, | cu F y X
dt F cos0+F, =Ma,,
H VA
dt . g (ROlEN) B Fo9
R : X
p v
b RF, —1F =— ;M 1" —RF, —RF cos@=—-MRa,,
\ Addition Y
hd
— -RF cos@—rF =—MRay,, _aﬂ]ZCM
v R
] CM
FR(cos6?+r/R):M{R+ o jaCM r (r/R+cos 9)
. aCM = CM
T eeeeseeseeneestacsaccececesenenannns IS M ]
l+—=—
MR
Je nach 0 ist ag), positiv oder negativ:
Wenn ag), = 0 : RcosO = -r — Rsing=r
4 = Fist entlang OP!
reeeeeseeessssaseesssesseesemeees cos0=-sin(06-90)=-sin QED
P 11-71
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10-5 Rotational Dynamics;
Torque and Rotational Inertia

We discussed in Section 104 that the angular acceleration e« of a rotating object is
proportional to the net torque 7 applied to it

oo AT,

where we wrile Z7 to remind us that it is the ner torque (sum of all lorques acling
on the object) that is proportional to c. This corresponds to Newton's second law
for translational motion, @ o< ZF, but here torque has taken the place of force,
and, correspondingly, the angular acceleration @ takes the place of the linear
acceleration a. In the linear case, the acceleration is not only proportional to the
net foree, but it is also inversely proportional to the incrtia of the object, which we
call its mass, m. Thus we could write @ = ZF/m. But what plays the role of mass
for the rotational case? That is what we now set out to determine. At the same
time, we will see thal the relation o oc E7 follows directly [rom Newlon's second
law, =ZF = ma.

We first consider a very simple casc: a particle of mass m rotating in a circle of
radius A at the end of a string or rod whose mass we can ignore compared to m
(Fig. 10-17), and we assume that a single force F acts on m tangent to the circle as
shown. The torque that gives rise 1o the angular acceleration is © = RF. Il we use
Newton's second law for linear guantities, =F = ma, and Eq. 10-5 relating
the angular acceleration to the tangential linear acceleration, ay,, = Re, then
we have

F = ma

= mhia,

where a is given in rad/s”. When we multiply both sides of this equation by R, we
find that the torque = = RF = R(mRea), or
T = mR%. [single particle] (10-11)

Here at last we have a direct relation belween the angular acceleration and the
applied torque 7. The guantity mR* represents the rotational inertia of the particle
and is called its moment of inertia.

Now let us consider a rotating rigid object, such as a wheel rotating about
a fixed axis through its center, such as an axle. We can think of the wheel as
consisting of many particles located at various distances from the axis of rotation,
We can apply Eq. 10-11 to each particle of the object; that is, we write 7, = m; R}
for the i particle of the object. Then we sum over all the particles, The sum of the
various torques is just the total torque, Z7, so we obtain:

1 = (EmRi)a [axis fixed] (10-12)

- NEWTON'S SECOND LAW

FOR ROTATION
/’ ‘-.\ RC (8
4 N
/ ¥
| R
i ;m
4 /
A ;
N
~ e

— —
FIGURE 10-17 A mass m rotating ,/@

in a circle of radius R about a fixed
point.

FIGURE 10-18 A large-diameter
cylinder has greater rotational
inertia than one of equal mass but
smaller diameter.

where we faclored out the « since it 1s the same 1or au e parucles of a rigid
objeet, The resultant torque, Z7, represents the sum of all internal torques that
each particle exerts on another, plus all external torques applied from the outside:
27 = ETpq T Z7iy. The sum of the internal torques is zero from Newton’s third
law. Hence Z7 represents the resultant external torque.

The sum Xm; R} in Eq. 10-12 represents the sum of the masses of each
particle in the object multiplied by the square of the distance of that particle from
the axis of rotation. If we give each particle a number (1, 2, 3,...), then

TR = m R+ mo RE + ma RS+
This summation 1s called the moment of inertia (or rotational inertia) I of the object:
I = Em R = m R + myR: A (10-13)
Combining Eqgs. 10-12 and 10-13, we can wrile
Sr o= Ja axis fixed in (10-14)

inertial reference frame

This is the rotational equivalent of Newton’s second law. It is valid for the rotation
of a rigid object about a fixed axis.” It can be shown (sce Chapter 11) that
Eq. 10-14 is valid even when the object is translating with acceleration, as long as {
and o are calculated about the center of mass of the object, and the rotation axis
through the oM doesn’t change direction. (A ball rolling down a ramp is an
example.) Then

(E)ew =

(10-15)

axis fixed in direction,
Loy e »

but may accelerate

where the subscript cM means “calculated about the center of mass.”

We see that the moment of inertia, /, which 1s a measure of the rotational
inertia of an object, plays the same role for rotational motion that mass does for
translational motion, As can be seen [rom Eq. 10-13, the rotational inertia of an
object depends not only on its mass, but also on how that mass 1s distributed with
respect to the axis. For example, a large-diameter cylinder will have greater
rotational inertia than one of equal mass but smaller diameter (and therefore
greater length), Fig. 10-18. The former will be harder to start rotating, and harder
lo stop, When the mass is concentraled farther from the axis of rotation, the
rotational inertia 1s greater. For rotational motion, the mass of an object cannot be
considered as concentrated at its center of mass,



For most ordinary objects, the mass is distributed continuously, and the calculation
of the moment of inertia, £mR’, can be difficult. Expressions can, however, be worked
out (using calculus) for the moments of inertia of regularly shaped objects in terms of
the dimensions of the objects, as we will discuss in Section 10-7. Figure 10-20 gives
these expressions for a number of solids rotated about the axes specified. The only one
for which the result is obvious is that for the thin hoop or ring rotated aboutl an axis ,
passing through its center perpendicular to the plane of the hoop (Fig. 10-20a).
For this hoop, all the mass is concentrated at the same distance from the axis, K.
Thus EmR® = (Em)R; = MR}, where M is the total mass of the hoop.

When calculation is difficult, f can be determined experimentally by measuring
the angular acceleration e about a lixed axis due 1o a known net torque, Z7, and
applying Newton's second law, [ = Z7/a, Eq. 10-14.

Location Maoment of
Ohject of axis inertia
Axis
(a)  Thin hoop, Through w1 = .
radius Ry, center @3 [ __J MR
T
Axis
(b) Thin hoop, Through AT
radius Ry, central bef ’?r],- 1 IMRE ¢ SMw?
width w diameter [ -
'\__ V.. 4
Axis
{c) Solid cylinder, Through y #_ . Y A
radius Ry center "-3“_‘__, A %M’Rh
\
Axis
(d) Hollow cylinder, Through A 1 N
inner I‘ddll]\R] center R 1}{ = _I/:A EM(R; o Rf:‘
outer radius R, T
|Axis
(¢) Uniform sphere, Through o~ e
radius ry, center - 2.0 2 )
w sMrj FIGURE 10-20 Moments of inertia
b for various objects of uniform
i composition. [We use R for radial
| Axis distance from an axis, and r for
(0 ll-_o':'lllh““if"rm rod, T]_"i"_“gh E—— 1]—24'-“‘-’ distance from a point (only in g, the
e venter b £—-n sphere), as discussed in Fig. 10-2.]
Axis
(g) Long uniform rod, Through T
length £ end - B ME
| Axis
(h) Ih;'rlzmgu]ar Through | Lme2 WEJ
thin plate, cenler = ,
length £, width w ~o {
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32,

41.

47.

56.

65.

71.

(I) Estimate the moment of inertia of a bicycle wheel
67 cm in diameter. The rim and tire have a combined mass
of 1.1 kg. The mass of the hub can be ignored (why?).

(IT) A merry-go-round accelerates from rest to 0.68 rad/s in
24s. Assuming the merry-go-round is a uniform disk of
radius 7.0 m and mass 31,000 kg, calculate the net torque
required to accelerate it.

(IT) A helicopter rotor blade can be considered a long thin
rod, as shown in Fig. 10-35. (a) If each of the three rotor
helicopter blades is 3.75m long and has a mass of 135 kg,
calculate the moment of inertia of the three rotor blades
about the axis of rotation. (b) How

much torque must the motor apply

to bring the blades from rest up to

a speed of 5.0 rev/s in 8.0s?

e Rotor

m=135 kg
FIGURE 10-55
Problem 47.

(1) Determine the moment of inertia of a 19-kg door that is
2.5m high and 1.0m wide and is hinged along one side.
Ignore the thickness of the door.

(IT) A merry-go-round has a mass of 1640 kg and a radius of
7.50 m. How much net work is required to accelerate it from
rest to a rotation rate of 1.00 revolution per 8.00s? Assume
it is a solid cylinder.

(I) A bowling ball of mass 7.3kg and radius 9.0cm rolls
without slipping down a lane at 3.7 m/s. Calculate its total
kinetic energy.

11-73



12: Der Drehimpuls

|.  Wie bestimmt man den Drehimpuls eines starren Korpers ?
Drehungen im Ungleichgewicht - Zentrifuge

Il. Wozu dient die Drehimpulserhaltung ?

[Il. Wie beschreibt man die Bewegung eines Kreisels ?
Gyroskop — die gleichmassige Drehbewegung der Rotation

Vorbereitung auf die Vorlesung und Ubungen

Kapitel im Giancoli vor dem Kurs zu lesen (2.5 Seiten):

' 11-1 Angular Momentum — objects rotating about a fixed axis
: 11-7 The spinning top and gyroscope

. Vorbereitende Ubungen (12) vor der Ubungssession zu erledigen:

11-2, 4, 6, 15, 55, 57

Giancoli Kapitel 11-4 bis 11-7 (wenig Ubereinstimmung)
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ohne Gleiten
Beobachtung: Nach einer kurzen Zeit, befindet

sich aufgrind von Storungen die Achse des
Geldstlicks nicht mehr L zur Vertikalen (a<90°). Das

Stuck ist abgelenkt und beginnt sich mit ®, um sein
-CM

Anhang: Rollbewegung ohne fixierte Achse

.....................................................................................................

Situation: Ein Geldstick mit Radius R

)=
um CM mit wg=-v/R

: rollt ohne zu gleiten. Rekapitulation:
Translation des vy
: CM zu drehen. M—
a 2. Gesetz rotatlon(r=loc):d—t = o
Das Geldstuck ist abgelenkt

= o, (Drehung um den CM entlang z)
Wie verhalten sich g und o, ? :

:Wenn vem=0, ergeben sich zwei Beitrage
zur Geschwindigkeit am Kontaktpunkt P:

: 1) Durch o,: v (o,)=o,(Rcosa)

: 2) Durch 0! Vy(0g)= -0gR

.
.....................
.........................
...................
..............

o,Rcosa = wgR — wg = ®,cosa

) @p =@, + @D,
Die resultierende Drehung

,
LA

.

.
.
.....................................................................................................
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Zugabe: Wirbelsturme

Gritter Mechanik - Annex

Beobachtung: Wirbelstiirme entstehen

uber warmem Wasser und lhre Rotation mit
starken Winden von 200-300km/h ist Uber
Tage hinaus erhalten.

Die sich drehende Luft erfahrt Reibungskrafte
mit langsmer fliessender Luft sowie mit dem
Wasser.

Das resultiernde Drehmoment reduziert den
Drehimpules ...

Frage |: Welche Kraft/Energie erhalt den
Wirbelstrum aufrecht ?

Frage Il: Welches sind gewissse Folgen der
Klimaerwarmung ?

http://webphysics.iupui.edu/webscience/physics_archive/hurricanes.html

http://www.physics.ubc.ca/outreach/phys420/p420_04/sean/
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Zugabe: Das Drehmoment einer freien Rotation
fast entlang einer Symmetrieachse

Situation: Objekt das sich fast entlang seiner
Symmetrieachse dreht. Der Grossteil des Objektes ist
immer noch symmetrisch zur Drehachse von L, mit
Ausnahme des Ungleichgewichts, hier durch zwei
Massen modelliert, die sich um » drehen, beide mit
einem Drehimpuls L* assoziiert, der um o prazessiert.

Um die Drehachse stabil zu halten, braucht es ein
externes Drehmoment (siehe Zentrifuge und Kugellager).

Analyse (im Koordinatensystem des Objektes): Die
Zentrifugalkrafte der zwei Massen resultieren in einem
Drehmoment von 2m?rsing.

—_— —

p-F,=0->7-L=0-» L2=konstant

Das Drehmoment erhoht das Ungleichgewicht
zwischen Drehachse und Symmetrieachse.
‘o T o
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11-1 Angular Momentum — Objects
Rotating About a Fixed Axis

In Chapter 10 we saw that if we use the appropriate angular variables, the kinematic
and dynamic equations for rotational motion are analogous 1o those lor ordinary
linear motion. In like manner, the linear momentum, p = mw, has a rotational
analog. It is called angular momentum, I, and for an object rotating about a fixed
axis with angular velocity @, it is defined as

L (11-1)
where [ is the moment of inertia. The SI units for L are kg-m®/s; there is no
special name for this unit.

We saw in Chapier 9 (Scction 9-1) that Newton’s seccond law can be written
not only as £ F = ma, but also more generally in terms of momentum (Eq. 9-2),
EF = dp/dt. In a similar way, the rotational equivalent of Newton’s second law,
which we saw in Eqs. 10-14 and 10-15 can be writlen as 27 = [a, can also be
written in terms of angular momentum: since the angular acceleration « = dew/dl
(Eq. 10-3), then Ta = Hdw/dt) = d(lw)/dt = dL/dt, so
dl.

dt
This derivation assumes that the moment of inertia, [, remains constant. However,
Eq. 11-2 is valid even if the moment of inertia changes, and applies also to a
system of objects rotating about a fixed axis where X7 is the net external torque
(discussed in Section 11-4). Equation 11-2 is Newlon's second law [or rotational
motion about a fixed axis, and is also valid for a moving object if its rotation is
about an axis passing through its center of mass (as for Eq. 10-15).

{aw,

Zr

(11-2)

Conservation of Angular Momentum

Angular momentum is an important concept in physics because, under certain
conditions, it is a conserved guantity. What are the conditions for which it is
conserved? From Eq. 11-2 we see immediately that if the net external torque Z+ on
an object (or system of objects) is zero, then

dL
di
This, then, 15 the law of conservation of angular momentumn for a rotating object:

=0 and L = [w = conslanl. [Z2r = 0]

The total angular momentum of a rotating object remains constant if the net
external torque acting on it is zero,

The law of conservation of angular momentum is one of the greal conservation
laws of physics, along with those for energy and linear momentum.
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When there is zero net torque acting on an object, and the object is rotating
about a fixed axis or about an axis through its center of mass whose direction
doesn’t change, we can write

fw = lLjw, = conslant.

Iy and ey are the moment of inertia and angular velocity, respectively, about the axis
at some initial time (f = 0), and [ and w are their values at some other time. The
parts of the object may alter their positions relative to one another, so that T changes.
But then w changes as well and the product [w remains constant.

Many interesting phenomena can be understood on the basis of conservation
of angular momentum. Consider a skater doing a spin on the tips of her skates,
Fig. 11-1. She rotates at a relatively low speed when her arms are outstretched,
but when she brings her arms in close to her body, she suddenly spins much faster.
From the definition of moment of inertia, { = EmR®, it is clear that when she
pulls her arms in closer to the axis of rofation, R is reduced for the arms so her
moment of inertia s reduced. Since the angular momentum lw remains constant
(we ignore the small torque due to friction), if I decreases, then the angular
velocity @ must increase. If the skater reduces her moment of inertia by a factor
of 2, she will then rotate with twice the angular velocity.

A similar example is the diver shown in Fig. 11-2. The push as she leaves the
board gives her an initial angular momentum aboul her center of mass. When she
curls herself into the tuck position, she rotates quickly one or more times, She then
streiches out again, increasing her moment of inertia which reduces the angular
velocity to a small value, and then she enters the water. The change in moment of
inertia from the straight position to the tuck position can be a factor of as much as 3l

Note that for angular momentum to be conserved, the net torque must be
zero, but the net force does not necessarily have to be zero. The net force on the
diver in Fig. 11-2, for cxample, is not zero (gravity is acting), but the net torque
about her oM is zero because the force of gravity acts at her center of mass.

FIGURE 11-2 A diver rotates

&'; |‘”l-1‘-;] L:l 'E‘“‘EI! faster when arms and legs are tucked
RiR ol in than when they are outstretched.
ﬁ }.", Angular momentum is conserved.
- & "' L e
[ .
wn & D
N - 7
14 . A
L 3

1‘ §
\ e |

{a) (b}

FIGURE 11-1 A skater doing a spin

on ice, illustrating conservation of |
angular momentum: (a) 7 is large and

wis small; (b) Fis smaller 50w is larger.
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Directional Nature of Angular Momentum

Angular momentum is a vector, as we shall discuss later in this Chapter. For now
we consider the simple case of an object rotating aboul a fixed axis, and the
direction of L is specified by a plus or minus sign, just as we did for one-dimensional
linear motion in Chapter 2.

For a symmetrical object rotating about a symmetry axis (such as a cylinder or
wheel), the direction of the angular momentum' can be taken as the direction of
the angular velocity @. That is,

L = I

As a simple example, consider a person standing at rest on a circular platform
capable of rotating friction-free about an axis through its center (that is, a simplified
merty-go-round), If the person now starts to walk along the edge of the platform,
Fig. 11-5a, the platform starts rotating in the opposite direction. Why? One explanation
is that the person’s foot exerts a force on the platform. Another explanation (and this
18 the most useful analysis here) is as an example of the conservation of angular
momentum. If the person starts walking counterclockwise, the person’s angular
momenturm will be pointed upward along the axis of rotation (remember how we
defined the direction of @ using the right-hand rule in Section 10-2). The magnitude
of the person’s angular momentum will be L = Jw = (mR*)(v/R), where v is the
person’s speed (relative to the Earth, not the platform), R is his distance from
the rotation axis, m is his mass, and mR® is his moment of inertia if we consider
him a particle (mass concentrated at one point). The platform rotates in the opposite
direction, so ils angular momentum points downward. I the initial total angular
momentum was zero (person and platform at rest), it will remain zero after the
person starts walking, That is, the upward angular momentum of the person just
balances the oppositely directed downward angular momentum of the platform
(Fig. 11-3b), so the total vector angular momentum remains zero. Even though the
person exerls a force (and torque) on the platform, the platform exerts an equal and
opposite torque on the person. So the net torgue on the systesn of person plus
platform is zero (ignoring friction) and the total angular momentum remains constant.
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(b)

FIGURE 11-5 (a) A person on

a circular platform, both initially

at rest, beging walking along the
edge at speed v. The platform,
assumed to be mounted on friction-
free bearings, begins rotating in the
opposite dircetion, so that the total
angular momentum remains £ero, as
shown in (b).

12-79



“11-7 The Spinning Top and Gyroscope

The motion of a rapidly spinning top, or a gyroscope, 1s an interesting example of
rotational motion and of the use of the veetor equation
L dL .
dt
Consider a symmetrical top of mass M spinning rapidly aboul its symmetry axis, as
in Fig, 11-23, The top is balanced on its tip at poinl O in an inertial reference
frame. If the axis of the top makes an angle ¢ to the vertical (z axis), when the top
is carcfully released its axis will move, sweeping out a cone about the vertical as
shown by the dashed lines in Fig. 11-23. This type of motion, in which a torque
produces a change in the direction of the rotation axis, is called precession. The
rale al which the rolation axis moves aboul the vertical (z) axis is called the
angular velocity of precession, {} (capital Greek omega). Let us now try to
understand the reasons for this motion, and calculate (0.

If the top were not spinning, it would immediately fall to the ground when
released due to the pull of gravity. The apparent mystery of a top is that when it is
spinning, it does not immediately fall to the ground but instead precesses—il
moves slowly sideways. But this is not really so mysterious if we examine it from
the point of view of angular momentum and torque, which we caleulate about the
point 0. When the top is spinning with angular velocity @ about its symmetry axis,
it has an angular momentum L directed along its axis, as shown in Fig. 11-23.
{(There is also angular momentum due to the precessional motion, so that the total
L is not exactly along the axis of the top; but if ) <% w, which is usually the case,
we can ignore this.) To change the angular momentum, a torque is required. If no
torgue were applied to the top, L would remain constant in magnitude and direction;
the top would neither fall nor precess. But the slightest tip to the side resulis in a
net torque about O, equal to F,,, = T ®% Mg, where Tis the position veetor of the
top’s center of mass with respect to O, and M is the mass of the top. The direction
of Ty 1s perpendicular to both ¥ and Mg and by the right-hand rule is, as shown in
Fig. 11-23, in the horizontal (xy) plane. The change in L in a time df is

dl = 7, df,

which is perpendicular to L and horizontal (parallel to #,.,), as shown in Fig. 11-23.
Since dL is perpendicular to L, the magnitude of L does not change. Only the
direction of L changes. Since L points along the axis of the top. we see that
this axis moves to the right in Fig. 11-23. That is, the upper end of the top’s axis
moves in a horizontal direction perpendicular to L. This explains why the top
precesses rather than falls. The veclor L and the top’s axis move together in a
horizontal circle. As they do so, T, and dL rotate as well 50 as to be horizontal
and perpendicular to L.
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To determine {), we see from Fig. 11-23 that the angle 4@ (which is in a
horizontal plane) is related to dF by

dl. = Lsinddf,

since L makes an angle ¢ to the z axis. The angular velocity of precession is

= ) = do/dt, which becomes (since df = dL/Lsing )

1 dL T
1l = —_— = . spinning t 11-13
Lsnd di I ond [spinning top] ( a)
But 7., = F X Mg = rMgsind [because sin(w — ) = sind | so we can also wrile
Mgr o
N = 7 [spinning top] (11-13b)

Thus the rate of precession does not depend on the angle &; but it is inversely
propnrtinna] to the tnp’q angu]ar momentum. The faster the top spins, the greater L. is

From Eq. 11-1 (or Eq. 11-11) we can write L = lw, where [ and @ are the
moment of inertia and angular velocity of the spinning top about its spin axis. Then
Eq. 11-13b for the top’s precession angular velocily becomes
Mgr

T

Equations 11-13 apply also to a toy gyroscope, which consists of a rapidly spinning
wheel mounted on an axle (Fig. 11-24). One end of the axle rests on a support.
The other end of the axle is free and will precess like a top if its “spin™ angular
velocity o is large compared to the precession rate (w == (1). As w decreases due
to friction and air resistance, the gyroscope will begin to fall, just as does a top.

0 = (11-13¢)

FIGURE 11-24 A 1oy gyroscope.

FIGURE 11-23 Spinning top.
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65. (IT) A merry-go-round has a mass of 1640 kg and a radius of
7.50 m. How much net work is required to accelerate it from
rest to a rotation rate of 1.00 revolution per 8.00s7 Assume
it is a solid cylinder.

71. (I) A bowling ball of mass 7.3 kg and radius 9.0cm rolls
without slipping down a lane at 3.7 m/s. Calculate its total
kinetic energy.

how long would it take to

2. (I) (@) What is the angular momentum of a 2.8-kg uniform
precess once?

cylindrical grinding wheel of radius 18 cm when rotating at
1300 rpm? (b) How much torque is required to stop it in 6.0s?
4. (IT) A figure skater can increase her spin rotation rate from
an initial rate of 1.0 rev every 1.5s to a final rate of
2.5 re\f,’s. If her initial momgnt qf inertia was 4.6 kg-m?, axle supported at one end, —s
what is her final moment of inertia? How does she physi- precesses. Problems 54,55,
cally accomplish this change? and 56. ~ =

FIGURE 11-41 A wheel,
rotating about a horizontal

6. (IT) A uniform horizontal rod of mass M and length £ rotates *

wn
tn

. (1I) Suppose the solid wheel of Fig. 11-41 has a mass of

15,

with angular velocity w about a vertical axis through its
center. Attached to each end of the rod is a small mass m.
Determine the angular momentum of the system about
the axis.

(IT) A nonrotating cylindrical disk of moment of inertia 7 is
dropped onto an identical disk rotating at angular speed w.
Assuming no external torques, what is the final common
angular speed of the two disks?
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*57.

300 g and rotates at 85rad/s; it has radius 6.0cm and is
mounted at the center of a horizontal thin axle 25 cm long.
At what rate does the axle precess?

(IT) A bicycle wheel of diameter 65 cm and mass m rotates
on its axle; two 20-cm-long wooden handles, one on each side of
the wheel, act as the axle. You tie a rope to a small hook on the
end of one of the handles, and then spin the bicycle wheel with
a flick of the hand. When you release the spinning wheel, it
precesses about the vertical axis defined by the rope, instead of
falling to the ground (as it would if it were not spinning). Esti-
mate the rate and direction of precession if the wheel rotates
counterclockwise at 2.0 rev/s and its axle remains horizontal.
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