

Serie 3: Rotationen

Ziel:

- 1) Beschreibung kreisförmiger Bewegungen.
- 2) Zerlegung der Beschleunigung in Winkel- und Tangeltialbeschleunigung.
- 3) Bewegungen, insb. kreisförmige, in zylindrischen Koordinaten ausdrücken. Verstehen der Unterschiede karthesischer und zylindrischer Koordinaten. Transformationen zwischen Koordinatensystemen.

Wichtige Bemerkungen:

- 1) Alle Aufgaben sollten mit einer Skizze angefangen werden. Aufgaben ohne Schemata werden nicht korrigiert.
- 2) Nummerische Resultate müssen mit der korrekten Einheit versehen werden.
- 2) Solange als möglich sollen Parameter bei Umformungen / Herleitungen gebraucht werden. Erst im letzten Rechnungsschritt werden konkrete Zahlen eingesetzt.

Üb.1 Diskuswerfer

Ein Diskuswerfer dreht sich drei Mal um seine eigene Achse und möchte seinen Diskuss mit $v_f = 10 \left[\frac{m}{s} \right]$ werfen. Es wird angenommen seine Winkelbeschleunigung sei konstant während der Drehung und sein Arm sei 80 cm lang.

- a) Skizzieren Sie die Situation.
- b) Wie lautet der algebraische Ausdruck und der nummerische Wert der Winkelbeschleunigung?
- c) Stellen Sie radiale Beschleunigung, Winkelbeschleunigung und totale Beschleunigung des Diskus nach einer Umdrehung vektoriell dar.
- d) Finden Sie den algebraischen Ausdruck der Normen der radialen, tangentialen und totalen Beschleunigungen des Diskus als Funktion der Zeit.

Üb.2 Verktorielle Geschwindigkeit und Beschleunigung

Radiale Beschleunigung und Corioliskraft gehören zu den schwierigeren Themen des Kurses. Ein Vektor \vec{r} konstanter Norm dreht sich um die z-Achse, wobei sein Ursprung fixiert bleibt (und die Höhe somit konstant). Er werde beschrieben durch $\vec{r}(t) = r_x(t) \cdot \overrightarrow{e_x} + r_y(t) \cdot \overrightarrow{e_y} + r_z \cdot \overrightarrow{e_z}$.

a) Zeigen Sie, dass man zwei Variabeln b und ψ definieren kann, so dass

$$r_x(t) = b \cdot \cos(\psi(t))$$
 und $r_y(t) = b \cdot \sin(\psi(t))$.

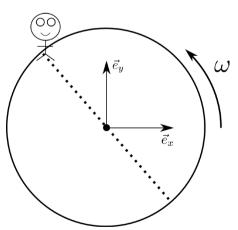
Wie interpretieren Sie diese neu eingeführten Variabeln geometrisch?

- b) Mit Hilfe der neuen Variabeln, bestimmen Sie den algebraische Ausdruck der Geschwindigkeit $\vec{v}(t)$ und der Beschleunigung $\vec{a}(t)$.
- c) Bestimmen Sie einen Vektor $\vec{\Omega}$, so dass $\vec{v}(t) = \vec{\Omega}(t) \times \vec{r}(t)$. Setzen Sie den entarteten Teil der Lösung, welcher proportional zu $\vec{r}(t)$ ist, gleich Null um eine wohl-definierte Lösung zu erhalten. Dies beschreibt allgemein eine augenblickliche Rotation.
- d) Leiten Sie die Beziehung $\vec{a}(t) = \vec{\Omega}(t) \times \left[\vec{\Omega}(t) \times \vec{r}(t) \right] + \dot{\vec{\Omega}}(t) \times \vec{r}(t)$ her.
- e) Falls $\dot{\psi}(t) = \omega$ konstant ist, skizzieren Sie die Vektoren \vec{r} , \vec{v} , \vec{a} und $\vec{\Omega}$ für die beiden Fälle: ω positif und negatif.

Üb. 3 Zylindrische Koordinaten

In dieser Übung geht es darum, dass man kinematische Größen in zylindrische Koordinaten umwandelt. Ein Punkt P, der sich in einem orthonormiertes Bezugsystem $(O, \overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ befindet, ist durch seine drei Koordinaten (x, y, z) bestimmt. In Vektoren, $\overrightarrow{OP} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z}$.

- a) Die Zylindrische Koordinaten sind gegeben durch $\rho = \sqrt{x^2 + y^2}$, $\phi = atan(y/x)$. Es seien die Vektoren $\overrightarrow{e_\rho} = cos(\phi)\overrightarrow{e_x} + sin(\phi)\overrightarrow{e_y}$, $\overrightarrow{e_\phi} = -sin(\phi)\overrightarrow{e_x} + cos(\phi)\overrightarrow{e_y}$. Zeichnen Sie ein Schema der Situation. Schreiben Sie den Vektor \overrightarrow{OP} in der Basis $\{\overrightarrow{e_\rho}, \overrightarrow{e_\phi}, \overrightarrow{e_\phi}, \overrightarrow{e_z}\}$.
- b) Die Geschwindigkeit des Objektes in P ist $\overrightarrow{v_P} = \frac{d\overrightarrow{OP}}{dt}$ und seine Beschleunigung $\overrightarrow{a_P} = \frac{d^2\overrightarrow{OP}}{dt^2}$. Wenn Sie die Lösung von a) benutzen, wie lauten diese zwei Grössen in zylindrischen Koordinaten? Identifizieren Sie die Begriffe für die tangentiale Beschleunigung und die radiale Beschleunigung.
- c) Eine Person befindet sich am Rande eines Karussells, das sich mit einer Winkelgeschwindigkeit ω dreht. Die Person überquert das Karoussell auf einer geraden Linie durch die Mitte. Sie versucht, seine radiale Geschwindigkeit konstant beizubehalten.
 - Ist die Person einer Beschleunigung im Bezugsystem $\{\overrightarrow{e_x}, \overrightarrow{e_y}\}$ während dieser Bewegung ausgesetzt?



Üb.4 Seilzug und Laufrolle

Ein Seilzug ist am Fussende eines Gebäudes installiert um eine Babywanne hinaufzuziehen. Eine Laufrolle bestehend aus zwei konzentrischen Zylindern mit Radien r bzw. R ist am Dach fixiert. Das Seil des Seilzugs ist am grossen Zylinder fixiert und die Laufrolle am kleinen (via eines Seils). Der Seilzug zieht die Ballast mit einer Geschwindigkeit $v(t) = v_T \cdot \left(1 - exp(-A \cdot t)\right)$ nach oben.

- a) Skizzieren Sie die Situation. Zeichnen Sie Geschwindigkeit des Seilzugs als Funktion der Zeit in einem Graphen ein
- b) Bestimmen Sie die algebraischen Ausdrücke der Winkelgeschwindigkeit und Winkelbeschleunigung beider Zylinder.
- c) Die Babywanne erreicht den obersten Punkt des Gebäudes (150m hoch) nach drei Minuten. Bestimmen Sie algebraisch und numerisch v_T . Gegeben seien r = 5cm, R = 20cm und A = 0.1 $\begin{bmatrix} 1 \\ \end{bmatrix}$.
- d) Welche maximale Beschleunigung wirkt auf die Babywanne?
- e) Wie viele Umdrehungen durchläuft die Laufrolle während des Steigens?

Üb.5 Uhr

- a. Der kleine und der grosse Zeiger einer Uhr werden beide auf 00:00 gestellt (Mitternacht). Wie lange dauert es, bis beide Zeiger wieder direkt übereinander liegen? Wie oft liegen sie direkt übereinander während eines Tages?
- b. Wenn auch der Sekundenzeiger zu Beginn auf 00:00 gestellt wird, ist es möglich, dass alle drei Zeiger wieder übereinanderliegen bevor es Mitternacht ist?