

<u>Serie 2 : Gleichförmige Bewegung, 2- und 3-dimensionale Bewegung und Wechsel der Bezugssysteme</u>

Ziel:

- 1) Finden der Trajektorie eines Massenpunktes in 2 und 3 Dimensionen bei gegebener Beschleunigung als Funktion der Zeit, Anfangsgeschwindigkeit und Anfangsposition.
- 2) Vertorielle Beschreibung der Bewegung im Raum mittels Vektorintegration und Vektorableitung.
- 3) Verständnis der Grundlagen von Bezugssystemwechseln. Erkennen von Inertialsystemen.

Wichtige Bemerkungen:

- 1) Alle Aufgaben sollten mit einer Skizze angefangen werden. Aufgaben ohne Schemata werden nicht korrigiert.
- 2) Nummerische Resultate müssen mit der korrekten Einheit versehen werden.
- 3) Solange als möglich sollen Parameter bei Umformungen / Herleitungen gebraucht werden. Erst im letzten Rechnungsschritt werden konkrete Zahlen eingesetzt.

Üb.1 Gleichförmige Bewegung in einer Dimension

Ein Objekt bewegt sich auf einem Gleis im eindimensionalen Raum. Seine Beschleunigung als Funktion der Zeit ist gegeben durch $a(t) = a_o \cdot exp(B \cdot t)$, mit dem Nullpunkt als Anfangsposition. Nach der Zeit T fährt das Objekt vor einem Geschwindigkeitsdetektor durch, welcher eine Geschwindigkeit v_f misst.

- a) Skizzieren Sie die Situation.
- b) Drücken Sie die Geschwindigkeit als Funktion der Zeit algebraisch aus.
- c) Drücken Sie die Position als Funktion der Zeit algebraisch aus.
- d) Berechnen Sie die Position des Geschwindigkeitsdetektors anhand $a_o = \frac{1}{20} \left[\frac{m}{s^2} \right]$, $B = \frac{1}{60} \left[\frac{1}{s} \right]$, $T = 2 \left[min \right]$ und $v_f = 54 \left[\frac{km}{h} \right]$.

Üb.2 Fallhöhe

Sie lassen ein Objekt von der Spitze eines Hauses fallen um die Höhe des Hauses bestimmen zu können. Erstellen Sie eine Relation zwischen der Fallzeit T und der Höhe des Gebäudes h. Die Luftreibung werde vernachlässigt. Wie hoch ist das Haus wenn das Objekt nach 3200ms auftrifft?

Üb.3 Falke vs Hase

Ein Falke jagt einen Hasen. Ihre entsprechenden Trajektorien im Laborsystem sind gegeben durch

$$\overrightarrow{r_F}(t) = \begin{pmatrix} v_F \cdot t - x_{0,F} \\ \frac{h_H}{2} \end{pmatrix} , \quad \overrightarrow{r_H}(t) = \begin{pmatrix} v_H \cdot t \\ \frac{h_H}{2} (1 - cos(\omega_H \cdot t)) \end{pmatrix}.$$

- a) Berechnen Sie die Geschwindigkeit der beiden Tiere. Zeichnen Sie die Trajektorie des Hasen und überlagern Sie seine momentane Geschwindigkeit.
- b) Der Hase ist nach n_s Sprüngen in seinem Bau in Sicherheit. Wie schnell müsste der Falke fliegen um den Hasen fangen zu können?

Üb.4 Beschleunigung in 3D

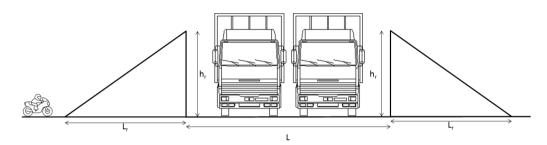
Die Beschleunigung eines Objektes in einem karthesischen Koordinatensystem sei $\vec{a}(t) = \begin{pmatrix} -a\cos(\omega t) \\ -a\sin(\omega t) \\ 0 \end{pmatrix}$. Anfangsgeschwindigkeit und Anfangsposition seien $\overrightarrow{v_0}$, beziehungsweise $\overrightarrow{r_0}$.

- a) Finden Sie die algebraischen Ausdrücke der Geschwindigkeit und Position als Funktion der Zeit.
- b) Welche Bewegung führt ein Objekt aus, für welches gilt $\overrightarrow{v_0} = \begin{pmatrix} 0 \\ a/\omega \\ v_{0,3} \end{pmatrix}$ und $\overrightarrow{r_0} = \begin{pmatrix} a/\omega^2 \\ 0 \\ 0 \end{pmatrix}$?

Üb.5 Motorrad Stuntman

Ein Motorradfahrer will über zwei Lastwagen springen. Hierbei soll eine Rampe verwendet werden.

- a) Wie schnell muss er den Höhepunkt der ersten Rampe überqueren um am Höhepunkt der zweiten Rampe zu landen? Seien $L_r=4[m]$, $h_r=3[m]$ und L=10[m] gegeben.
- b) Zeigen Sie, dass die Trajektorie des Motorrads beim Auftreffen auf der zweiten Rampe parallel zu dieser



verläuft.

Üb.6 Relative Bezugssysteme

Die Position eines Objektes wird immer bezüglich eines beliebig gewählten Punktes O angegeben. Ein sich bei O' befindender Beobachter bewegt sich bezüglich O, so dass $\overrightarrow{OO'} = \vec{d}(t)$.

- a) Finden Sie die vektorielle Beziehung, welche den Zusammenhang zwischen der Geschwindigkeit eines Objektes bezüglich O' und seiner Geschwindigkeit bezüglich O' darstellt.
 - Beschreiben Sie wie die Beschleunigungen in den beiden Bezugssystemen zu einander in Beziehung stehen.
- b) Ein Aufzug beschreibt eine Trajektorie $\vec{z}(t) = (v_0 \cdot t + z_0) \cdot \vec{e_z}$ bezüglich des Bodens. Wie schnell und mit welcher Beschleunigung bewegt sich ein Objekt bezüglich des Bodens? Nehmen Sie an, dass seine Position bezüglich des Aufzugs konstant bleibt.
- c) Finden Sie die Geschwindigkeit und Beschleunigung des Falken aus Sicht des Hasen (aus Üb. 3). Drücken Sie die Geschwindigkeit in der Basis $\{\hat{v}, \hat{v}_{\perp}\}$, wobei \hat{v} der Einheitsvektor in Richtung $\overrightarrow{v_H}$ (Geschwindigkeit des Hasen bezüglich des Bodens) ist. Sei zudem \hat{v}_{\perp} ein Einheitsvektor senkrecht auf \hat{v} .
- d) Zu welcher Zeit ist der Betrag der Geschwindigkeit des Falken bezüglich des Hasen maximal? Vergleichen Sie diese Zeit mit der Zeit der Kollision.
- e) Sind die Bezugssysteme des Aufzugs, Hasen und Falken Inertialsysteme? Begründen Sie Ihre Antwort.